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ABSTRACT 

Due to enormous growth of the Internet, demands for access 

from multiple users and request for new services for its 

applications have also increased significantly.  In a result 

there is a rise in packet loss rates and drop in network 

efficiency. In addition, the inability to support new services 

has severely hindered the widespread deployment of 

bandwidth-sensitive applications. So the success of TCP / IP 

depends on its ability to deliver services in time of extremely 

high demand and hence various congestion control 

mechanisms ensure this ability to prosper. The idea behind 

TCP congestion control is to control network load by having 

sources adjust their rates according to the level of congestion 

in the network. This paper focuses on how congestion control 

and queue management techniques have evolved in due 

course of time and being modified to minimize the rate of 

packet loss. Considering RED being most important of all we 

have optimized the algorithm by challenging the linearity of 

marking/dropping probability. We conduct a survey by 

applying different possible functions in contrary to the linear 

behavior of dropping probability for evaluating their 

performance in comparison to RED. We implement the 

optimized RED by simulating a multicast network for TCP 

flows.   

General Terms 

Active Queue Management Algorithms, RED, Non-linear 

model of RED. 
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1. INTRODUCTION 
Various connections in a network compete for resources like 

link bandwidth and buffer space in the router during network 

congestion. One of the conventional solutions to congestion is 

using the window-based TCP congestion control at the end-

hosts. The Internet Engineering Task Force (IETF) considered 

the deployment of Explicit Congestion Notification (ECN) [1] 

and later on advances in active queue management [2] as a 

means to reduce packet loss. Initially ECN was a success in 

effectively reducing the transmission rates of individual 

connection during congestion; but it does not provide a 

complete solution to the congestion problem of the network as 

a whole. This is because TCP sources reduce their 

transmission rates only after detecting packet loss caused by 

queue overflow at the router. It takes some time between 

packet being dropped at the router and its detection at the 

source during which a large number of packets may have been 

continuously being dropped while the sources continue to 

transmit at a rate that the network cannot support. 

On the other hand AQM schemes have been proposed to 

complement the TCP network congestion control which helps 

in detecting congestion early dropping packets randomly 

before the buffer becomes completely full. The ability of 

AQM to detect incipient congestion and convey congestion 

notification to the end-hosts enables the sources to reduce 

their sending rates prior to buffer overflow. ECN is used in 

conjunction with AQM for signaling congestion to sources 

using packet marking instead of dropping packets.  

2. QUEUING ALGORITHMS 
Various queuing algorithms are implemented in a network 

router to obtain desired bandwidth. The simplest type of 

queue transmits packets in the same order that it receives 

them. This is called a First in First out (FIFO) queue. 

Generally it may seem that it treats all the traffic streams 

equally, but it actually tends to favor resource-hungry, ill-

behaved applications. The problem is that if a single 

application sends a burst that fills a FIFO queue, the router 

will wind up transmitting most of the queued packets, but will 

have to drop incoming packets from other applications. If 

these other applications adapt to the decrease in available 

bandwidth by sending at a slower rate, then the ill-behaved 

application will greedily take up the slack and could gradually 

choke of all the other applications.  

Because FIFO queuing allows some data flows to take more 

than their share of the available bandwidth, it is called unfair. 

Fair Queuing (FQ) and Weighted Fair Queuing (WFQ) are 

two of the simpler algorithms that have been developed to 

deal with this problem. Both of these algorithms sort 

incoming packets into a series of flows. 

Following are the few existing queuing algorithms available 

for our network routers [3]: 

 Drop Tail is a queuing algorithm based on a first-

come-first-serve discipline. 

 Fair Queuing is an algorithm that attempts to 

allocate bandwidth fairly among all input flows. 

 Stochastic Fair Queuing involves a hash function 

used to map flows to a queue. 

 Deficit Round Robin scheduling is an algorithm that 

services each flow in a predefined sequence. 

 Random Early Detection (Drop) tries to anticipate 

congestion by monitoring the queue. When the 
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specified threshold is reached, it randomly discards 

or marks the packets. This is the most widely 

accepted algorithm till date. 

 Class Based Queuing (Packet by Packet Round 

Robin and Weighted Round Robin) queues packets 

according to criteria defined by an administrator. It 

provides differential forwarding service for each 

class. Packets are divided into a hierarchy of classes 

defined by input flows. 

3. DIFFERENT CLASSES OF ACTIVE 

QUEUE MANAGEMENT ALGORITHMS  
In this section we will discuss few important AQM algorithms 

that are being proposed over the last decade. The performance 

of the TCP congestion control mechanism in networks that 

implement drop-tail [3] packet discard has some drawbacks, 

such as synchronization of flows, inequitable distribution of 

packet loss among flows, and low utilization of network 

resources. Therefore, even with end systems equipped with 

important algorithms such as the TCP congestion avoidance, 

slow start, fast retransmit, and fast recovery mechanisms [1], 

the performance of the TCP congestion control algorithm over 

current drop-tail networks can still be unsatisfactory. Active 

queue management has been recommended by the Internet 

Engineering Task Force (IETF) as a way of mitigating the 

above stated performance limitations of TCP over drop-tail 

networks. Random Early Detection (RED) [4] is the first 

active queue management algorithm proposed for deployment 

in TCP/IP networks. The basic idea behind an active queue 

management algorithm is to convey congestion notification 

early to the TCP end-points so that they can reduce their 

transmission rates before queue overflow and sustained packet 

loss occur. It is now widely accepted that a RED controlled 

queue performs better than a drop-tail queue. However, RED 

has some parameter tuning issues that need to be carefully 

addressed for it to give good performance under different 

network scenarios. As a result several algorithms, like BLUE 

[5] and Stabilized RED (SRED) [5], have been developed as 

alternatives to RED. Although these algorithms also control 

congestion by discarding packets with a load-dependent 

probability whenever a queue in the network appears to be 

congested, they are designed with the objective of maintaining 

stabilized network queues, thereby minimizing occurrences of 

queue overflows and underflows, and providing high system 

utilization. The Dynamic RED (DRED) active queue 

management algorithm [5] also has similar objectives. 

However, unlike SRED and BLUE, this new active queue 

management algorithm uses a simple feedback control 

approach to compute the drop probabilities used to discard 

packets during times of queue congestion. 

Although these AQM algorithms are highly robust to diverse 

network conditions, most of them were designed without 

considering their robustness against network attacks, such as 

the Denial-of-Service (DoS) [6,7] attacks that have been 

identified as a major threat to today’s Internet services. 

Example DoS attacks include TCP SYN attacks, ICMP 

directed broadcasts and DNS flood attacks. These attacks 

normally generate high rate transmission of packets toward 

the victim node. They can be detected and alleviated [3,6,7]. 

Recently a new kind of DoS attack, low-rate DoS attack, has 

been proposed in that exploits TCP’s retransmission timeout 

mechanism to reduce TCP throughput without being detected. 

Compared to traditional flooding based DoS attacks, the low-

rate DoS attack does not employ a “sledge-hammer” approach 

of high-rate transmission of packets, and consequently eludes 

detection. RED-like algorithms have already been found to be 

notably vulnerable to LDoS attacks. 

For this a novel Robust RED (RRED) algorithm [8] is 

proposed to thwart the LDoS attacks. The RRED algorithm 

consists of a new detection algorithm and a traditional RED 

algorithm. The basic idea behind the RRED is to detect and 

filter out LDoS attack packets from incoming flows before 

they feed to the RED algorithm. Bloom filter techniques have 

been used in the implementation of the RRED algorithm to 

manage potentially numerous incoming flows and increase the 

detection accuracy. Experiment results show that the RRED 

algorithm is highly robust when the router is under an LDoS 

attack. The TCP traffic remains its ideal rate and TCP 

throughput is nearly fully preserved. 

4. OPTIMIZATION OF RANDOM 

EARLY DETECTION USING A NON-

LINEAR MODEL FOR DROPPING 

PACKETS 
Understanding AQM congestion control requires knowledge 

on the response characteristics of the traffic to control. 

Internet traffic has been dominated by TCP that responds to 

network congestion in an Additive Increase Multiplicative 

Decrease (AIMD) manner [9]. We have used a non- linear 

model for dropping packet rather than linear model which is 

used in the conventional RED scheme. The non linear model 

explained later in this section is particularly useful for 

configuring the Random Early Detect ion (RED) family router 

queue management mechanisms that use the average queue 

length to compute drop probability. 

We choose to study and evaluate RED-family AQM for the 

several reasons: First, while recently proposed AQM 

mechanisms such as RRED [8], DRED [5], and BLUE [5] do 

not strictly use the average queue to compute congestion, they 

have performance goals similar to that of RED- family 

AQMs. Second, since RED congestion control mechanisms 

are relatively well-understood and are commonly used as a 

benchmark for evaluation of other AQM mechanisms, further 

extending an understanding of RED-family mechanisms and 

illustrating possible outcomes of RED will help researchers to 

design experiments that fairly compare RED with other AQM 

mechanisms. Third, with the help of a general modification, it 

is easy to configure RED- family AQMs to create various test 

scenarios that reveal interesting AQM congestion control 

issues. In turn, a general non- linear model proposed can be 

revalidated through evaluation with different configurations 

presented in RED family. Lastly, since RED is already 

implemented in some commercial routers, our optimized RED 

can be used to tune these routers, thus realizing some of the 

potential benefits of ECN with few network infrastructure 

changes. 

RED maintains an exponentially weighted moving average 

(EWMA) of the queue length which it uses to detect 

congestion. RED detects increases in the average queue length 

and uses it to determine whether or not to drop or ECN -mark 

a packet. More specifically, Fig 1 plots the marking/dropping 

probability of RED as a function of the average queue length. 

As the figure shows, when the average queue length exceeds a 

minimum threshold (thmin), packets are randomly dropped or 

marked with a given probability. A connection receiving 

congestion notification in the form of an ECN mark cuts its 

congestion window in half as it would if it had detected a 

packet loss. The probability that a packet arriving at the RED 

queue is either dropped or marked depends on, among other 
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things, the average queue length and an initial probability 

parameter (Pmax). As Fig 1 shows, the calculated 

marking/dropping probability is a linear function of the 

average queue length. The probability is 0 when the average 

queue length is less than or equal to thmin and linearly 

increases Pmax when the average queue length approaches a 

maximum threshold (thmax). If average queue length exceeds 

thmax, all packets are dropped or marked. 

 
Fig 1: The marking/dropping behavior of RED. 

The general RED algorithm [4] is given below (calculate the 

average queue size avg):-. 

 

If avg < thmin 

Queue packet 

else if thmin ≤ avg < thmax 

Calculate probability Pa 

With probability Pa 

Discard packet 

Else with probability 1- Pa 

Queue packet 

else if avg ≥ thmax 

Discard packet 

4.1 Average Queue Size 
The average queue size is calculated using an exponentially 

weighted average (EWA) of previous queue lengths. 

If q > 0 

avg = (1– wq) avg + wqq 

   else 

t = f (time – q_time) 

avg = (1 – wq)
t avg 

The weight wq determines how rapidly avg changes in 

response to changes in actual queue size. The number t is 

estimated by the router’s idle time; in this period m packets 

could have been transmitted. With wq the algorithm can avoid 

reacting to short bursts of congestion.  

4.2 Probability of Discard 
Let c be the number of how many consecutive packets have 

not been discarded since the last packet was dropped. It is 

obvious that the higher the value of c, the higher the 

probability of discard. Let Pb represent a temporary 

probability varies from 0 at avg = thmin to Pmax at avg =thmin. 

))(( minmaxminmax thththavgPPb   (1) 

)1( bba PcPP    (2) 

When c = 1 / Pb – 1, Pa = 1. But Pa increases very slowly when 

c is not very big. Only when c is close to 1 / Pb – 1, Pa begins 

to rise dramatically. 

5. SIMULATION SCENARIOS AND 

EVALUATION 
In this part, we modified the equation in step (1) by applying 

two different functions (viz. V1 and V2) to calculate drop 

probability (Pb  ) and compare the results. The curves for the 

two functions V1 & V2 can be assumed roughly by Fig 2:- 

 
Fig 2: Assumed behavior of RED 

In NS2 RED queue implementation doesn’t use the formula 

(1) above directly, instead it uses the formula below, 

)___(max bvavevavPPb   (3) 

where v_a = 1.0 / (thmax – thmin), v_ave is the average queue 

size, and v_b = - thmin / (thmax – thmin). This forumla is 

equivalent to formula (1). 

 

Now considering equation (3) we can see that drop probability 

(Pb) linearly depend upon the average queue size i.e. v_ave. In 

order to increase or decrease the drop probability as shown in 

Fig 2 we need a non-linear dependency of Pb upon v_ave. 

For increasing the drop probability than usual we need a 

concave function (V1) instead of a linear function as in (3). In 

our simulation we have considered log as the concave 

function (V1) applied to transform the formula (3) in 

following form:-     

))_log((max navevmPPb   (4) 

Hence m and n are constants to be derived with respect to v_a 

and v_ b. 

 

As described in Fig 2 the curve intersects with original linear 

function at thmin and thmax, so we can say that the curve V1 

satisfies the points (thmin , 0) and (thmax , Pmax).  
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Hence by satisfying these points in equation (4) we have the 

following, 

nthmP  )log((0 minmax   (5) 

nthmPP  )log(( maxmaxmax  (6) 

Also the original linear function gives us the function, 

)__(0 minmax bvthavP   (7) 

with (5) (6) and (7), we can get values for m and n in formula 

(4), 

))_/_log()(log(

1

max avbvth
m


        (8) 

)_/_log( avbvmn    (9) 

Similarly, we can assume a decrease in drop probability as 

shown in Fig 2 (V2) using a convex function. In our 

simulation we have considered x2 as the convex function (V2), 

which is again applied to transform the formula (3) in 

following form :- 

)_( 2

max navevmPPb   (10) 

By obtaining the value of the constants m and n in similar 

way, we have:- 

))_/_((

1
22

max avbvth
m


  (11) 

 
2)_/_( avbvmn    (12) 

5.1 Simulation Configuration 
Considering the scenario discussed in the previous section we 

configured and run the related NS-2 program to get simulation 

results. The results are analyzed by several perl and python 

programs and the figures are drawn by gnuplot. The 

configuration of this simulation is with reference to the 

problem defined in [10]: 

5.1.1 Network Topology 
Fig 3 shows the topology of the simulation network. There are 

50 sender nodes (s1-s50), one receiver (r1) and one 

destination node (d1). The node d1 is investigated for its 

throughput and packet loss. 

 
Fig 3:  Network topology assumed. 

 

Part of tcl main program for simulation is listed below: 

set ns [new Simulator] 

set NumSenders 50 

set NumReceivers 1 

#read scenario, seed and bottleneck bandwidth from the 

command line input arguments 

set Scenario [lindex $argv 0] 

set function [lindex $argv 1] 

set seed [lindex $argv 2] 

puts "scenario: $Scenario; function: $function; seed: $seed" 

ns-random $seed 

set BufSize 100 

set PktSize 1024  

#set winSize 200 

#in seconds 

set Duration 50  

 

#create all nodes: note that the order of creating the nodes 

matter 

for {set i 1} {$i <= $NumSenders} {incr i} { 

    set s($i) [$ns node] 

} 

set r1 [$ns node] 

set d1 [$ns node] 

#open the nam trace file 

set nf [open out.nam w] 

$ns namtrace-all $nf 

#open the traffic trace file to record all events 

set nd [open out5.tr w] 

$ns trace-all $nd 

 

#define a finish procedure 

proc finish {} { 

 global ns nf nd qtf 

 $ns flush-trace 

 close $nf 

 close $nd 

 close $qtf 

 #start nam 

 #exec nam out.nam & 

 exit 0 

} 

* 

* 

* 

for {set i 1} {$i <= $NumSenders} {incr i} { 

 $ns duplex-link $s($i) $r1 10Mb 100ms DropTail 

 $ns queue-limit $s($i) $r1 $BufSize 

} 

 

#r1 d1 and d1 r1 are different 

$ns duplex-link $r1 $d1 5Mb 100ms RED 

$ns queue-limit $r1 $d1 $BufSize 

 

#trace the queue: note that link r1 d1 is different from d1 r1 

set redq [[$ns link $r1 $d1] queue] 

set qtf [open queue.txt w] 

$redq trace curq_ 

$redq trace ave_ 

$redq attach $qtf 

 

#setting up TCP connections 

for {set i 1} {$i <= $NumSenders} {incr i} { 

 set tcp($i) [new Agent/TCP] 

 $ns attach-agent $s($i) $tcp($i) 

 set sink($i) [new Agent/TCPSink] 

 $ns attach-agent $d1 $sink($i) 

 $ns connect $tcp($i) $sink($i) 
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 $tcp($i) set fid_ $i 

 $tcp($i) set packetSize_ $PktSize 

 #$tcp($i) set window_ $winSize 

    #set up FTP over TCP connection as traffic source 

 set ftp($i) [new Application/FTP] 

 $ftp($i) attach-agent $tcp($i) 

 $ftp($i) set type_ FTP 

} 

 

#schedule events for the FTP agents 

set StartTime [expr [ns-random]  / 2147483647.0 / 100] 

puts "starttime $StartTime" 

#temporarily set to 2 

for {set i 1} {$i <= $NumSenders} {incr i}  { 

 $ns at $StartTime "$ftp($i) start" 

 $ns at $Duration+$StartTime "$ftp($i) stop" 

} 

 

#ensure the ftp application have enough time to finish, so we 

+1 

$ns at $Duration+$StartTime+1 "finish" 

#run the simulation 

$ns run 

6. SIMULATION RESULTS 

6.1 Queue Size 
From our simulation results, we can get the curves about 

current queue size and average queue size as in Fig 4. The 

'drop probability' is selected based on the average queue size, 

not the current queue size. 

 
(a) 

 
(b) 

 

 
(c) 

Fig 4: Queue size and average queue size of (a) RED (b) 

RED using V1 function (c) RED using V2 function. 

From the plot, we can see that V1 keeps the average queue 

size at a lower level than regular RED, while V2 keeps the 

average queue size at a higher level than regular RED. This is 

expected as V1 is always above the original linear function 

given the same average queue size value in the range of [thmin, 

thmax], in other words, V1 are more aggressive in terms of 

dropping packets when the average queue size is between 

thmin and thmax. On the contrast, V2 are less aggressive than 

regular RED. 

6.2 Packet loss 
The number of packet dropped in course of simulation period 

can be shown by Fig 5: 

 

Fig 5: Pattern of packets dropped in assumed time 

duration 
 

From the plot, we can see that V2 ensures less packet drop 

than regular RED and vice versa in case of V1 in which 

packet is dropped at a higher rate than V1 and regular RED 

algorithm. 

 

6.3 Throughput 
Throughput for both V1 and V2 function in comparison to 

RED can be clearly viewed in Fig 6: 
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Fig 6: Throughput pattern in assumed time duration 

From the plot, we can see that V2 function ensures higher 

throughput than regular RED and V1 function. 

7. CONCLUSIONS 
To avert the exploitation of bandwidth over the network 

various active queue management techniques have been 

introduced over the decade. In this paper my simulation result 

reflects the probable way of modifications in RED and their 

advantages over the regular concept of RED where packet 

loss can be considerably reduced. We have chosen a quadratic 

function (V2) showing convex pattern for drop probability 

and replacing v_a and v_b, used in equation (3), with their 

new derived values m and n respectively. Therefore various 

possible convex functions for drop probability can be 

considered and their effect on various network traffics can be 

evaluated for enhancing the performance of the algorithm than 

conventional RED algorithm. 
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