
International Journal of Computer Applications (0975 – 888)

Volume 48– No.12, June 2012

11

Evolution and Optimization of Active Queue

Management Algorithms over High Bandwidth

Aggregates

Saurabh Sarkar
Department of CSE

Dr. B.R.Ambedkar, NIT
Jalandhar, India

Geeta Sikka
Department of CSE

Dr. B.R.Ambedkar, NIT
Jalandhar, India

Ashish Kumar
Department of CSE

Dr. B.R.Ambedkar, NIT
Jalandhar, India

ABSTRACT

Due to enormous growth of the Internet, demands for access

from multiple users and request for new services for its

applications have also increased significantly. In a result

there is a rise in packet loss rates and drop in network

efficiency. In addition, the inability to support new services

has severely hindered the widespread deployment of

bandwidth-sensitive applications. So the success of TCP / IP

depends on its ability to deliver services in time of extremely

high demand and hence various congestion control

mechanisms ensure this ability to prosper. The idea behind

TCP congestion control is to control network load by having

sources adjust their rates according to the level of congestion

in the network. This paper focuses on how congestion control

and queue management techniques have evolved in due

course of time and being modified to minimize the rate of

packet loss. Considering RED being most important of all we

have optimized the algorithm by challenging the linearity of

marking/dropping probability. We conduct a survey by

applying different possible functions in contrary to the linear

behavior of dropping probability for evaluating their

performance in comparison to RED. We implement the

optimized RED by simulating a multicast network for TCP

flows.

General Terms

Active Queue Management Algorithms, RED, Non-linear

model of RED.

Keywords

AQM, RED, drop probability, simulations, NS2.

1. INTRODUCTION
Various connections in a network compete for resources like

link bandwidth and buffer space in the router during network

congestion. One of the conventional solutions to congestion is

using the window-based TCP congestion control at the end-

hosts. The Internet Engineering Task Force (IETF) considered

the deployment of Explicit Congestion Notification (ECN) [1]

and later on advances in active queue management [2] as a

means to reduce packet loss. Initially ECN was a success in

effectively reducing the transmission rates of individual

connection during congestion; but it does not provide a

complete solution to the congestion problem of the network as

a whole. This is because TCP sources reduce their

transmission rates only after detecting packet loss caused by

queue overflow at the router. It takes some time between

packet being dropped at the router and its detection at the

source during which a large number of packets may have been

continuously being dropped while the sources continue to

transmit at a rate that the network cannot support.

On the other hand AQM schemes have been proposed to

complement the TCP network congestion control which helps

in detecting congestion early dropping packets randomly

before the buffer becomes completely full. The ability of

AQM to detect incipient congestion and convey congestion

notification to the end-hosts enables the sources to reduce

their sending rates prior to buffer overflow. ECN is used in

conjunction with AQM for signaling congestion to sources

using packet marking instead of dropping packets.

2. QUEUING ALGORITHMS
Various queuing algorithms are implemented in a network

router to obtain desired bandwidth. The simplest type of

queue transmits packets in the same order that it receives

them. This is called a First in First out (FIFO) queue.

Generally it may seem that it treats all the traffic streams

equally, but it actually tends to favor resource-hungry, ill-

behaved applications. The problem is that if a single

application sends a burst that fills a FIFO queue, the router

will wind up transmitting most of the queued packets, but will

have to drop incoming packets from other applications. If

these other applications adapt to the decrease in available

bandwidth by sending at a slower rate, then the ill-behaved

application will greedily take up the slack and could gradually

choke of all the other applications.

Because FIFO queuing allows some data flows to take more

than their share of the available bandwidth, it is called unfair.

Fair Queuing (FQ) and Weighted Fair Queuing (WFQ) are

two of the simpler algorithms that have been developed to

deal with this problem. Both of these algorithms sort

incoming packets into a series of flows.

Following are the few existing queuing algorithms available

for our network routers [3]:

 Drop Tail is a queuing algorithm based on a first-

come-first-serve discipline.

 Fair Queuing is an algorithm that attempts to

allocate bandwidth fairly among all input flows.

 Stochastic Fair Queuing involves a hash function

used to map flows to a queue.

 Deficit Round Robin scheduling is an algorithm that

services each flow in a predefined sequence.

 Random Early Detection (Drop) tries to anticipate

congestion by monitoring the queue. When the

International Journal of Computer Applications (0975 – 888)

Volume 48– No.12, June 2012

12

specified threshold is reached, it randomly discards

or marks the packets. This is the most widely

accepted algorithm till date.

 Class Based Queuing (Packet by Packet Round

Robin and Weighted Round Robin) queues packets

according to criteria defined by an administrator. It

provides differential forwarding service for each

class. Packets are divided into a hierarchy of classes

defined by input flows.

3. DIFFERENT CLASSES OF ACTIVE

QUEUE MANAGEMENT ALGORITHMS
In this section we will discuss few important AQM algorithms

that are being proposed over the last decade. The performance

of the TCP congestion control mechanism in networks that

implement drop-tail [3] packet discard has some drawbacks,

such as synchronization of flows, inequitable distribution of

packet loss among flows, and low utilization of network

resources. Therefore, even with end systems equipped with

important algorithms such as the TCP congestion avoidance,

slow start, fast retransmit, and fast recovery mechanisms [1],

the performance of the TCP congestion control algorithm over

current drop-tail networks can still be unsatisfactory. Active

queue management has been recommended by the Internet

Engineering Task Force (IETF) as a way of mitigating the

above stated performance limitations of TCP over drop-tail

networks. Random Early Detection (RED) [4] is the first

active queue management algorithm proposed for deployment

in TCP/IP networks. The basic idea behind an active queue

management algorithm is to convey congestion notification

early to the TCP end-points so that they can reduce their

transmission rates before queue overflow and sustained packet

loss occur. It is now widely accepted that a RED controlled

queue performs better than a drop-tail queue. However, RED

has some parameter tuning issues that need to be carefully

addressed for it to give good performance under different

network scenarios. As a result several algorithms, like BLUE

[5] and Stabilized RED (SRED) [5], have been developed as

alternatives to RED. Although these algorithms also control

congestion by discarding packets with a load-dependent

probability whenever a queue in the network appears to be

congested, they are designed with the objective of maintaining

stabilized network queues, thereby minimizing occurrences of

queue overflows and underflows, and providing high system

utilization. The Dynamic RED (DRED) active queue

management algorithm [5] also has similar objectives.

However, unlike SRED and BLUE, this new active queue

management algorithm uses a simple feedback control

approach to compute the drop probabilities used to discard

packets during times of queue congestion.

Although these AQM algorithms are highly robust to diverse

network conditions, most of them were designed without

considering their robustness against network attacks, such as

the Denial-of-Service (DoS) [6,7] attacks that have been

identified as a major threat to today’s Internet services.

Example DoS attacks include TCP SYN attacks, ICMP

directed broadcasts and DNS flood attacks. These attacks

normally generate high rate transmission of packets toward

the victim node. They can be detected and alleviated [3,6,7].

Recently a new kind of DoS attack, low-rate DoS attack, has

been proposed in that exploits TCP’s retransmission timeout

mechanism to reduce TCP throughput without being detected.

Compared to traditional flooding based DoS attacks, the low-

rate DoS attack does not employ a “sledge-hammer” approach

of high-rate transmission of packets, and consequently eludes

detection. RED-like algorithms have already been found to be

notably vulnerable to LDoS attacks.

For this a novel Robust RED (RRED) algorithm [8] is

proposed to thwart the LDoS attacks. The RRED algorithm

consists of a new detection algorithm and a traditional RED

algorithm. The basic idea behind the RRED is to detect and

filter out LDoS attack packets from incoming flows before

they feed to the RED algorithm. Bloom filter techniques have

been used in the implementation of the RRED algorithm to

manage potentially numerous incoming flows and increase the

detection accuracy. Experiment results show that the RRED

algorithm is highly robust when the router is under an LDoS

attack. The TCP traffic remains its ideal rate and TCP

throughput is nearly fully preserved.

4. OPTIMIZATION OF RANDOM

EARLY DETECTION USING A NON-

LINEAR MODEL FOR DROPPING

PACKETS
Understanding AQM congestion control requires knowledge

on the response characteristics of the traffic to control.

Internet traffic has been dominated by TCP that responds to

network congestion in an Additive Increase Multiplicative

Decrease (AIMD) manner [9]. We have used a non- linear

model for dropping packet rather than linear model which is

used in the conventional RED scheme. The non linear model

explained later in this section is particularly useful for

configuring the Random Early Detect ion (RED) family router

queue management mechanisms that use the average queue

length to compute drop probability.

We choose to study and evaluate RED-family AQM for the

several reasons: First, while recently proposed AQM

mechanisms such as RRED [8], DRED [5], and BLUE [5] do

not strictly use the average queue to compute congestion, they

have performance goals similar to that of RED- family

AQMs. Second, since RED congestion control mechanisms

are relatively well-understood and are commonly used as a

benchmark for evaluation of other AQM mechanisms, further

extending an understanding of RED-family mechanisms and

illustrating possible outcomes of RED will help researchers to

design experiments that fairly compare RED with other AQM

mechanisms. Third, with the help of a general modification, it

is easy to configure RED- family AQMs to create various test

scenarios that reveal interesting AQM congestion control

issues. In turn, a general non- linear model proposed can be

revalidated through evaluation with different configurations

presented in RED family. Lastly, since RED is already

implemented in some commercial routers, our optimized RED

can be used to tune these routers, thus realizing some of the

potential benefits of ECN with few network infrastructure

changes.

RED maintains an exponentially weighted moving average

(EWMA) of the queue length which it uses to detect

congestion. RED detects increases in the average queue length

and uses it to determine whether or not to drop or ECN -mark

a packet. More specifically, Fig 1 plots the marking/dropping

probability of RED as a function of the average queue length.

As the figure shows, when the average queue length exceeds a

minimum threshold (thmin), packets are randomly dropped or

marked with a given probability. A connection receiving

congestion notification in the form of an ECN mark cuts its

congestion window in half as it would if it had detected a

packet loss. The probability that a packet arriving at the RED

queue is either dropped or marked depends on, among other

International Journal of Computer Applications (0975 – 888)

Volume 48– No.12, June 2012

13

things, the average queue length and an initial probability

parameter (Pmax). As Fig 1 shows, the calculated

marking/dropping probability is a linear function of the

average queue length. The probability is 0 when the average

queue length is less than or equal to thmin and linearly

increases Pmax when the average queue length approaches a

maximum threshold (thmax). If average queue length exceeds

thmax, all packets are dropped or marked.

Fig 1: The marking/dropping behavior of RED.

The general RED algorithm [4] is given below (calculate the

average queue size avg):-.

If avg < thmin

Queue packet

else if thmin ≤ avg < thmax

Calculate probability Pa

With probability Pa

Discard packet

Else with probability 1- Pa

Queue packet

else if avg ≥ thmax

Discard packet

4.1 Average Queue Size
The average queue size is calculated using an exponentially

weighted average (EWA) of previous queue lengths.

If q > 0

avg = (1– wq) avg + wqq

 else

t = f (time – q_time)

avg = (1 – wq)
t avg

The weight wq determines how rapidly avg changes in

response to changes in actual queue size. The number t is

estimated by the router’s idle time; in this period m packets

could have been transmitted. With wq the algorithm can avoid

reacting to short bursts of congestion.

4.2 Probability of Discard
Let c be the number of how many consecutive packets have

not been discarded since the last packet was dropped. It is

obvious that the higher the value of c, the higher the

probability of discard. Let Pb represent a temporary

probability varies from 0 at avg = thmin to Pmax at avg =thmin.

))((minmaxminmax thththavgPPb  (1)

)1(bba PcPP  (2)

When c = 1 / Pb – 1, Pa = 1. But Pa increases very slowly when

c is not very big. Only when c is close to 1 / Pb – 1, Pa begins

to rise dramatically.

5. SIMULATION SCENARIOS AND

EVALUATION
In this part, we modified the equation in step (1) by applying

two different functions (viz. V1 and V2) to calculate drop

probability (Pb) and compare the results. The curves for the

two functions V1 & V2 can be assumed roughly by Fig 2:-

Fig 2: Assumed behavior of RED

In NS2 RED queue implementation doesn’t use the formula

(1) above directly, instead it uses the formula below,

)___(max bvavevavPPb  (3)

where v_a = 1.0 / (thmax – thmin), v_ave is the average queue

size, and v_b = - thmin / (thmax – thmin). This forumla is

equivalent to formula (1).

Now considering equation (3) we can see that drop probability

(Pb) linearly depend upon the average queue size i.e. v_ave. In

order to increase or decrease the drop probability as shown in

Fig 2 we need a non-linear dependency of Pb upon v_ave.

For increasing the drop probability than usual we need a

concave function (V1) instead of a linear function as in (3). In

our simulation we have considered log as the concave

function (V1) applied to transform the formula (3) in

following form:-

))_log((max navevmPPb  (4)

Hence m and n are constants to be derived with respect to v_a

and v_ b.

As described in Fig 2 the curve intersects with original linear

function at thmin and thmax, so we can say that the curve V1

satisfies the points (thmin , 0) and (thmax , Pmax).

International Journal of Computer Applications (0975 – 888)

Volume 48– No.12, June 2012

14

Hence by satisfying these points in equation (4) we have the

following,

nthmP )log((0 minmax (5)

nthmPP )log((maxmaxmax (6)

Also the original linear function gives us the function,

)__(0 minmax bvthavP  (7)

with (5) (6) and (7), we can get values for m and n in formula

(4),

))_/_log()(log(

1

max avbvth
m


 (8)

)_/_log(avbvmn  (9)

Similarly, we can assume a decrease in drop probability as

shown in Fig 2 (V2) using a convex function. In our

simulation we have considered x2 as the convex function (V2),

which is again applied to transform the formula (3) in

following form :-

)_(2

max navevmPPb  (10)

By obtaining the value of the constants m and n in similar

way, we have:-

))_/_((

1
22

max avbvth
m


 (11)

2)_/_(avbvmn  (12)

5.1 Simulation Configuration
Considering the scenario discussed in the previous section we

configured and run the related NS-2 program to get simulation

results. The results are analyzed by several perl and python

programs and the figures are drawn by gnuplot. The

configuration of this simulation is with reference to the

problem defined in [10]:

5.1.1 Network Topology
Fig 3 shows the topology of the simulation network. There are

50 sender nodes (s1-s50), one receiver (r1) and one

destination node (d1). The node d1 is investigated for its

throughput and packet loss.

Fig 3: Network topology assumed.

Part of tcl main program for simulation is listed below:

set ns [new Simulator]

set NumSenders 50

set NumReceivers 1

#read scenario, seed and bottleneck bandwidth from the

command line input arguments

set Scenario [lindex $argv 0]

set function [lindex $argv 1]

set seed [lindex $argv 2]

puts "scenario: $Scenario; function: $function; seed: $seed"

ns-random $seed

set BufSize 100

set PktSize 1024

#set winSize 200

#in seconds

set Duration 50

#create all nodes: note that the order of creating the nodes

matter

for {set i 1} {$i <= $NumSenders} {incr i} {

 set s($i) [$ns node]

}

set r1 [$ns node]

set d1 [$ns node]

#open the nam trace file

set nf [open out.nam w]

$ns namtrace-all $nf

#open the traffic trace file to record all events

set nd [open out5.tr w]

$ns trace-all $nd

#define a finish procedure

proc finish {} {

 global ns nf nd qtf

 $ns flush-trace

 close $nf

 close $nd

 close $qtf

 #start nam

 #exec nam out.nam &

 exit 0

}

*

*

*

for {set i 1} {$i <= $NumSenders} {incr i} {

 $ns duplex-link $s($i) $r1 10Mb 100ms DropTail

 $ns queue-limit $s($i) $r1 $BufSize

}

#r1 d1 and d1 r1 are different

$ns duplex-link $r1 $d1 5Mb 100ms RED

$ns queue-limit $r1 $d1 $BufSize

#trace the queue: note that link r1 d1 is different from d1 r1

set redq [[$ns link $r1 $d1] queue]

set qtf [open queue.txt w]

$redq trace curq_

$redq trace ave_

$redq attach $qtf

#setting up TCP connections

for {set i 1} {$i <= $NumSenders} {incr i} {

 set tcp($i) [new Agent/TCP]

 $ns attach-agent $s($i) $tcp($i)

 set sink($i) [new Agent/TCPSink]

 $ns attach-agent $d1 $sink($i)

 $ns connect $tcp($i) $sink($i)

International Journal of Computer Applications (0975 – 888)

Volume 48– No.12, June 2012

15

 $tcp($i) set fid_ $i

 $tcp($i) set packetSize_ $PktSize

 #$tcp($i) set window_ $winSize

 #set up FTP over TCP connection as traffic source

 set ftp($i) [new Application/FTP]

 $ftp($i) attach-agent $tcp($i)

 $ftp($i) set type_ FTP

}

#schedule events for the FTP agents

set StartTime [expr [ns-random] / 2147483647.0 / 100]

puts "starttime $StartTime"

#temporarily set to 2

for {set i 1} {$i <= $NumSenders} {incr i} {

 $ns at $StartTime "$ftp($i) start"

 $ns at $Duration+$StartTime "$ftp($i) stop"

}

#ensure the ftp application have enough time to finish, so we

+1

$ns at $Duration+$StartTime+1 "finish"

#run the simulation

$ns run

6. SIMULATION RESULTS

6.1 Queue Size
From our simulation results, we can get the curves about

current queue size and average queue size as in Fig 4. The

'drop probability' is selected based on the average queue size,

not the current queue size.

(a)

(b)

(c)

Fig 4: Queue size and average queue size of (a) RED (b)

RED using V1 function (c) RED using V2 function.

From the plot, we can see that V1 keeps the average queue

size at a lower level than regular RED, while V2 keeps the

average queue size at a higher level than regular RED. This is

expected as V1 is always above the original linear function

given the same average queue size value in the range of [thmin,

thmax], in other words, V1 are more aggressive in terms of

dropping packets when the average queue size is between

thmin and thmax. On the contrast, V2 are less aggressive than

regular RED.

6.2 Packet loss
The number of packet dropped in course of simulation period

can be shown by Fig 5:

Fig 5: Pattern of packets dropped in assumed time

duration

From the plot, we can see that V2 ensures less packet drop

than regular RED and vice versa in case of V1 in which

packet is dropped at a higher rate than V1 and regular RED

algorithm.

6.3 Throughput
Throughput for both V1 and V2 function in comparison to

RED can be clearly viewed in Fig 6:

International Journal of Computer Applications (0975 – 888)

Volume 48– No.12, June 2012

16

Fig 6: Throughput pattern in assumed time duration

From the plot, we can see that V2 function ensures higher

throughput than regular RED and V1 function.

7. CONCLUSIONS
To avert the exploitation of bandwidth over the network

various active queue management techniques have been

introduced over the decade. In this paper my simulation result

reflects the probable way of modifications in RED and their

advantages over the regular concept of RED where packet

loss can be considerably reduced. We have chosen a quadratic

function (V2) showing convex pattern for drop probability

and replacing v_a and v_b, used in equation (3), with their

new derived values m and n respectively. Therefore various

possible convex functions for drop probability can be

considered and their effect on various network traffics can be

evaluated for enhancing the performance of the algorithm than

conventional RED algorithm.

8. REFERENCES
[1] “Improving Internet Congestion Control and Queue

Management Algorithms” by Wu-chang Feng. A

dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

(Computer Science and Engineering) in The University

of Michigan, 1999.

[2] S. Dijkstra, Modeling active queue management

algorithms using stochastic Petri nets, Master’s Thesis,

University of Twente, 2004.

[3] Lau, F.; Rubin, S.H.; Smith, M.H.; Trajkovic, L.; ,

"Distributed denial of service attacks," Systems, Man,

and Cybernetics, 2000 IEEE International Conference,

vol.3, no., pp.2275-2280 vol.3, 2000.

[4] Shu-Gang Liu; , "Simulation and evaluation of random

early detection in congestion control," Machine Learning

and Cybernetics, 2008 International Conference, vol.4,

no., pp.2363-2368, 12-15 July 2008.

[5] Chengyu Zhu; Yang, O.W.W.; Aweya, J.; Ouellette, M.;

Montuno, D.Y.; "A comparison of active queue

management algorithms using the OPNET Modeler,"

Communications Magazine, IEEE, vol.40, no.6, pp.158-

167, June 2002.

[6] CDouligeris, C.; Mitrokotsa, A.; "DDoS attacks and

defense mechanisms: a classification," Signal Processing

and Information Technology, 2003. ISSPIT 2003.

Proceedings of the 3rd IEEE International Symposium,

vol., no., pp. 190- 193, 14-17 Dec. 2003.Brown, L. D.,

Hua, H., and Gao, C. 2003.

[7] Stephen Specht & Ruby Lee; “Taxonomies of

Distributed Denial of Service Networks, Attacks, Tools,

and Countermeasures”; May 2003.

[8] Changwang Zhang; Jianping Yin; Zhiping Cai; Weifeng

Chen; , "RRED: robust RED algorithm to counter low-

rate denial-of-service attacks," Communications Letters,

IEEE , vol.14, no.5, pp.489-491, May 2010.

[9] Jae Chung; Claypool, M.; "Analysis of active queue

management," Network Computing and Applications,

2003. NCA 2003. Second IEEE International

Symposium, vol., no., pp. 359- 366, 16-18 April 2003.

[10] “Problem on modification of RED” by Richard T.B.Ma

an Assistant Professor in School of Computing, National

University of Singapore.

