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ABSTRACT 

Uncertainty parameters in risk assessment can be modeled by 

different ways viz. probability distribution, possibility 

distribution, belief measure, depending upon the nature and 

availability of the data. Different transformations exist for 

converting expression of one form of uncertainty to another 

form. In this paper, we reviewed the consistency principles as 

given by different researchers. Then we have carried out dose 

assessment using probability- possibility transformation 

satisfying consistency conditions. 
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1 INTRODUCTION 

In some situations, some models parameters of radiological 

risk assessment may be affected by variability and uncertainty 

simultaneously. Basically, transforming probabilistic data to 

possibilistic data is useful when weak source of information 

make probabilistic data unrealistic. Also, it is useful in order 

to explore the advantages of possibilistic theory at 

combination steps, or perhaps to reduce the complexity of the 

solution when computing with possibility values rather than 

with probability values.  

Transforming from possibility to probability may be 

meaningful in the case of decision making where a precise 

outcome is often preferred, such that, the decision maker is 

interested to know “what is likely to happen in future”, instead 

of “what is possible in future” [8]. 

According to [3] transforming possibility measure into 

probability measure or conversely can be useful in any 

problem where heterogeneous uncertain and imprecise data 

must be dealt with (e.g. subjective, linguistic like evaluation 

and statistical data).The possibilistic representation is weaker 

because it explicitly handles imprecision (i.e., incomplete 

knowledge) and because possibility measure are based on 

ordering structure rather than additive one. Therefore, it can 

be concluded that transforming a probabilistic representation 

to possibilistic representation, some information is lost 

because we go from point value probabilities to interval 

values ones. The converse transformation from possibility 

adds information to some possibilistic incomplete Knowledge. 

Different transformations exist for converting expression of 

one form of uncertainty to another form. They differ from one 

another substantially, ranging from simple ratio scaling to 

more sophisticated transformation based upon various 

principles. These transformations should satisfy certain 

consistency principles. Here, we reviewed the consistency 

principles as given by various authors viz., Zadeh, Klir, 

Dubois & Prade. Then dose assessment is carried out using 

Probability-Possibility transformations (as [1]).  

2 TRANSFORMATION CONSISTENCY 

PRINCIPLES 

When information regarding some phenomenon is given in 

both probabilistic and possibilistic terms, the two descriptions 

should be in some sense consistent. That is, given 

probabilistic representation ip and possibilistic representation 

i on X, the two representations should satisfy some 

consistency condition. Although various consistency 

conditions may be required, the weakest one acceptable on 

intuitive groups can be expressed as follows: 

An event that is probable to some degree must be possible at 

least to the same degree. That is, the weakest consistency 

condition is expressed formally by the inequality  

i ip   

On the other hand, the strongest consistency condition would 

require that any event with nonzero probability must be fully 

possible. 

0 1.i ip     

In this section different consistency principles [2], [5], [7], 

[10] are reviewed  

2.1. Zadeh consistency principle 

Zadeh defined the probability-possibility consistency principle 

such as “a high degree of possibility does not imply a high 

degree of probability, nor does a low degree of probability 

imply a low degree of possibility” (Zadeh 1978). 

Let U be a finite set. X is a variable taking a value in U. i  

and ip are possibility and probability that X = ui ϵ U 

respectively. Then, Zadeh’s consistency principle can be 

expressed by  

0 0i ip    and i > j  i jp p  . 

He defined the degree of consistency between a probability  

                     and a possibility distribution 

1 2 3( , , .... )n      as: 
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From (1), it can be check that 

(i) if 0,i i    then 0r  , no consistency available. An 

impossible event cannot be probable. 

(ii) If 1,i i    then  1r   , the maximum consistency 

value is reached. Any probability measure is still consistent 

with this probability measure. 

Maximizing the degree of consistency, however, poses us a 

very restrictive condition that;
 

1 0.i ip   
 
 

2.2: Klir consistency principle: 

Let 1 2{ , ,.... }nX w w w  be a finite universe, let 

( )i i ip p w  and ( )i i iw  . Assume that the 

elements of X  are ordered in such a way that:

11,2,... : 0,i i ii n p p p      and 

10,i i i      with  1 0np    and 1 0n   . 

According to Klir the transformation from ip  to i  must 

preserve some appropriate scale and the amount of 

information contained in each distribution (Klir 1993).The 

information contained in p or can be expressed by the 

equality of their uncertainties. Klir has considered the 

principle of uncertainty preservation under two scales. 

The ratio scale: This is a normalization of the 

probability distribution. The transformation p   and 

p  are named the normalized transformations and they 

are defined by 

1

1

, ........(2)i i
i i n
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The log-interval scales: the corresponding transformation 

p   and p   are define by: 

1

1

1

1

( ) , ........(3)i i
i i n

i

i

p
p

p
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







 


 

These transformations are known as Klir transformation 

satisfying the uncertainty preservation principle defined by 

Klir (1993).   is a parameter that belongs to the open 

interval (0, 1). According to Klir any transformation should be 

based on the following three assumptions: 

- A scaling assumption that forces each value ( i ) i to be a 

function of pi/p1 (where p1≥p2≥……≥pn) that can be ratio scale, 

interval scale, log-interval scale transformation etc. 

- An uncertainty invariance assumption according to which the 

entropy H(p) should be numerical equal to the measure of 

information E( i ) contained in the transformation i  to p.  

- The transformation should satisfy the consistency condition 

  (u) ≥ p(u),  i, starting that what is probable must be 

possible. 

Dubois and Prade gave an example to show that the scaling 

assumption of Klir may some time lead to violation of the 

consistency principle that requires P  for all events. The 

second assumption is also debatable because it assumes 

possibilistic and probabilistic information measures are 

commensurate. 

5.2.3: Dubois and Prade consistency 

Principle 

The transformation p   is guided by the principle of 

maximum specificity, which aims at finding the most 

informative possibility distribution. While the transformation 

p  is guided by the principle of insufficient reason 

which aims at finding the possibility distribution that contains 

as much as uncertainty as possible but that retains the features 

of possibility distribution (Dubois 1993). This leads to write 

the consistency principle of Dubois and Prade such as: 

: ( ) ( ).......(4)A X A p A    

The transformation p   and p   are define by  

1( )
; .......(5)

n n
j j

i j i

j i j i

p p
j

 




 


      

The two transformations define by (5) are not converse of 

each other because they are not based on same informational 

principle. Therefore, the transformation defined by (5) can be 

named as asymmetric. Dubois and Prade suggested a 

symmetric p   transformation which is define by: 

min( , )............(6)
n

i i j

j i

u p p


  

Dubois and Prade proved that the symmetric transformation

p  , define by (6), is the most specific transformation 

which satisfies the condition of consistency of Dubois and 

Prade define by (4). 

5.3 Probability to Possibility 

Transformation 

Transforming probabilistic data to possibilistic data is useful 

when weak source of information make probabilistic data 

unrealistic. Also, it is useful in order to explore the advantages 

of possibilistic theory at combination steps, or perhaps to 

reduce the complexity of the solution when computing with 

possibility values rather than with probability values [8]. 

5.3.1 Normal probability distribution 

function to Gaussian fuzzy number 

Although, Triangular or Trapezoidal shape fuzzy membership 

functions have been widely studied in literature to represent 

uncertainty. However, in practice, there are certain 

applications where to represent uncertainty besides Triangular 
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or Trapezoidal shape fuzzy numbers some other types of 

fuzzy numbers come into picture viz., Gaussian fuzzy number, 

lognormal shaped fuzzy number etc. 

To define a fuzzy number in the form of Gaussian distribution 

and so, the membership function required for building the 

Gaussian shaped fuzzy set must be expressed as follows [9]: 

2

2

1 ( )
( ) exp

22

x
f x



 

  
  

 
 

where   and  represent the mean and the standard 

deviation respectively. 

By definition, a fuzzy number is a fuzzy set whose 

membership function 

: [0,1] : ( ) 1A AR x R x      i.e., there must 

be at least one domain element whose membership grade 

equals 1, and normal. 

Hence, by normalizing the fuzzy set, we obtain the following 

expression for membership function of the fuzzy set (Pacheco 

et al, 2009): 

2

2

( )
( ) exp ...(7)

2
A

x
x






  
  

 
 

For fuzzy set to become convex, one calculates the inflexion 

points of the domain of the Gaussian by making the second 

derivative equal to zero, i.e., 
''( ) 0f x  . Thus, the domain 

of the normalized and convex fuzzy set is formed by the 

interval[ , ].     However, for this domain, only 

68% of the information contained in the Gaussian will be 

represented by the fuzzy number. Due to small amount of 

Gaussian information contained in the fuzzy set, we consider 

considered a new interval,[ 3 , 3 ]     , as the 

domain of the fuzzy number which represents approximately 

99.7% of the information contained in the Gaussian and 

established an  -cut at 0.01. Here, convexity constrained is 

relaxed and operation on Gaussian fuzzy number is 

performed. 

The domain R of the fuzzy number is bounded to the interval 

[ 3 , 3 ]     and whose  -cut is placed at 0.01. 

For this fuzzy number, the  -cut is defined as: 

[ 2ln , 2ln ]A            

Where   and  represent the mean and the standard 

deviation respectively and  corresponds to the  -cut 

defined in the interval [0.01, 1]. Then interval arithmetic can 

be applied to perform operations on Gaussian fuzzy numbers, 

where each possibilistic interval defined by the  -cut can be 

treated independently. 

5.3.2 Triangular probability distribution 

function to triangular fuzzy number 

A random variable X is said to be triangularly distributed with 

lower limit a, upper limit c and mode b such that      , 

the probability density function is given by 



























otherwisw

cxb
abbc

xc

bxa
acab

ax

xf

,0

,
))((

)(2

,
))((

)(2

)(

 

Normalizing the distribution function (dividing the function 

by the maximum height i.e., by 2/(c-a)) we will have the fuzzy 

number whose membership function is  

,

,
A

x a
a x b

b a

c x
b x c

c b




  

 
  

 

 

5.4 Possibility to Probability 

Transformation 

Transforming from possibility to probability may be 

meaningful in the case of decision making where a precise 

outcome is often preferred, such that, the decision maker is 

interested to know “what is likely to happen in future”, instead 

of “what is possible in future” [8]. 

5.4.1 Gaussian fuzzy number to normal 

probability distribution function 

As authors in [9] defined the Gaussian fuzzy number, whose 

membership function is 

2

2

( )
( ) exp

2
A

x
x






  
  

   

where   and  represent the mean and the standard 

deviation respectively. 

Whenever we have mean and the standard deviation and the 

shape of the distribution, so in such situation where a precise 

outcome is often preferred, we can consider its probabilistic 

form as follows: 

2

2

1 ( )
( ) exp

22

x
f x



 

  
  

   

where   and  represent the mean and the standard 

deviation respectively. 

5.4.2 Triangular fuzzy number to 

triangular probability distribution function 

Consider a triangular fuzzy number A= [a, b, c] whose 

membership function is given as: 

,

,
A

x a
a x b

b a

c x
b x c

c b




  

 
  

 

                … (8) 
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  Integrating the Fuzzy set    with respect to x on [a, c] we 

have,      

c b c

A A A

a a b

dx dx dx     

1 1
( ) ( )

b c

a b

x a dx c x dx
b a c b
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  
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Dividing the Fuzzy set (8) by  
1

( )
2

c a  , we get 

the probability distribution function 

2( )
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5 DOSE ASSESSMENT USING 

PROBABILITY-POSSIBILITY 

TRANSFORMATION 

5.1 Problem definition  

Here, we have considered a case of soil contamination by lead 

on an ironworks Brownfield in the south of France. Following 

an on-site investigation revealing the presence of lead in the 

superficial soil at levels on the order of tens of grams per kg of 

dry soil, a cleanup objective of 300 mg/kg was established by 

a consulting company, based on a potential risk assessment, 

taking into account the most significant exposure pathway and 

the most sensitive target (direct soil ingestion by children).  

5.2 Dose Assessment Model 

The mathematical model calculating the quantity Dlead 

absorbed by a child living on the site and exposed via soil 

ingestion is given by EPA, (1989) [6]. 

6

( )
...(9)

10
soil soil inside outside

lead

C IR Fi Fi EF ED
D

Bw AT

    


 
 

where, Dlead  is the absorbed lead dose related to the ingestion 

of soil (mg/[kg:day]), Csoil is the lead concentration in Soil 

(mg/kg),IRsoil is the ingestion Rate mg soil/day, Fiindoor is the 

indoor Fraction of contaminated soil ingestion (unitless), 

Fioutdoor is the outdoor Fraction of contaminated soil ingestion 

(unitless), E F is the exposure Frequency (days/year), EDis 

the exposure Duration (years), Bw  is the body Weight (kg), 

AT is the Averaging time (period over which exposure is 

averaged–days) 

5.3 Results and discussion 

Here, we have considered three scenarios. In scenario1, 

representations of some model parameters are probabilistic 

while some are probabilistic. In scenario2, possibilistic model 

parameters are transformed into probabilistic mode while in 

scenario3, probabilistic model parameters are transformed into 

possibilistic mode. 

5.3.1 Scenario1  

Here, representations of the parameters Csoil as well as Fiindoor 

are possibilistic and IRsoil and Bw are probabilistic and other 

parameters are deterministic. 

Table 1 Parameter values used in the dose assessment 

Variable 
Mode of 

Representation 
Value 

Csoil Fuzzy TFN(40,300,500) 

IRsoil Probabilistic Triangular(20,160,300) 

Fiindoor Fuzzy TFN(0.2,0.55,0.9) 

Fioutdoor Deterministic 1.0 

EF Deterministic 273.75 

ED Deterministic 6 

AT Deterministic 6×365 = 2190 

Bw Probabilistic Normal(17.2,2.57) 

 

The graphical representation of the result of the calculation 

      using hybrid method [4] is given in figure 1. 

 

Fig. 1: Plot of upper and lower probability function for 

estimating dose 

According to the World Health Organization prescribed the 

acceptable lead dose related to the ingestion of polluted soil to 

be equal to 3.5 µg/[kg:day]. That means that after the cleanup 

objective of 300 mg/kg on the site (ironworks Brownfield), 

calculated doses Dlead should not be larger than 3.5 

µg/[kg:day]. From the figure1 it is clear that probability that 

for dose value less than 3.5 µg/[kg:day], we have probability 

comprised between 0.31 (lower probability or belief) and 0.81 

(upper probability or plausibility). So, consideration of 
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imprecision regarding input parameters leads to a clearer 

rejection of the proposition Dlead < 3.5 µg/[kg:day]. The gap 

between the lower probability and upper probability reflects 

the imprecision of some model parameters. 

5.3.2 Scenario2  

In this scenario, possibilistic model parameters are 

transformed to probabilistic mode (section 4). Parameter 

values used in this calculation are given in the following table 

2. 

Table 2: Parameter values used in the dose assessment 

Variable 
Mode of 

Representation 
Value 

Csoil Probabilistic Triangular(40,300,500) 

IRsoil Probabilistic Triangular(20,160,300) 

Fiindoor Probabilistic Triangular(0.2,0.55,0.9) 

Fioutdoor Deterministic 1.0 

EF Deterministic 273.75 

ED Deterministic 6 

AT Deterministic 6×365 = 2190 

Bw Probabilistic Normal(17.2,2.57) 

 

The graphical representation of the result of the calculation 

      using proposed method (previous chapter) of scenario 2 

is given in figure 2. 

 

Fig. 2: Plot of probability function for estimating dose 

 Here, we have seen from the figure 2 that probability of dose 

value less than 3.5 µg/[kg:day], is 0.576 which is not enough 

to consider to be a low dose i.e., to  accept the proposition 

Dlead < 3.5 µg/[kg:day]. 

5.3.3 Scenario3  

In this scenario, probabilistic model parameters are 

transformed to possibilistic mode (section 3). Representation 

the parameter body weight (Bw) is a Gaussian fuzzy number 

with mean 17.2 and standard deviation is 2.57. Parameter 

values used in this calculation are given in the following table 

3. 

 

 

Table 3: Parameter values used in the dose assessment 

Variable 
Mode of 

Representation 
Value 

Csoil Fuzzy Triangular(40,300,500) 

IRsoil Fuzzy Triangular(20,160,300) 

Fiindoor Fuzzy Triangular(0.2,0.55,0.9) 

Fioutdoor Deterministic 1.0 

EF Deterministic 273.75 

ED Deterministic 6 

AT Deterministic 6×365 = 2190 

Bw Fuzzy Gaussian(17.2,2.57) 

 

Here, we will relax the convexity condition to combine 

Gaussian fuzzy number and triangular fuzzy number using 

 -cut by considering that corresponds to the  -cut 

defined in the interval [0.01, 1]. It will not affect the 

uncertainty involved in the fuzzy number. 

The result of the dose assessment of scenario 3 is depicted in 

figure 3.  

 

Fig. 3: Plot of membership function for estimating dose 

The resulting dose is also obtained in the form of a fuzzy 

number as some input parameters are available in the form of 

fuzzy number. 3.244 is the core of the output fuzzy dose while 

the range is [0.03292, 22.5]. Here, the threshold value 3.5 

µg/[kg:day] slightly exceeds the core value with membership 

value 0.976 and it belongs to the range [0.03292, 22.5]. Here, 

also consideration of imprecision regarding input parameters 

leads to a clearer rejection of the proposition Dlead < 3.5 

µg/[kg:day]. 

6. CONCLUSION 

Basically, transforming probabilistic data to possibilistic data 

is useful when weak source of information make probabilistic 

data unrealistic. Also, it is useful in order to explore the 

advantages of possibilistic theory at combination steps, or 

perhaps to reduce the complexity of the solution when 

computing with possibility values rather than with probability 

values. Transforming from possibility to probability may be 

meaningful in the case of decision making where a precise 

outcome is often preferred, such that, the decision maker is 

interested to know “what is likely to happen in future”, instead 

of “what is possible in future”. The motivation for study of 



International Journal of Computer Applications (0975 – 888) 

Volume 48– No.12, June 2012 

6 

probability-possibility transformations arises not only from a 

desire to comprehend the relationship between the two 

theories of uncertainty, but also for some practical problems. 

For example: to construct a membership grade function of a 

fuzzy set from statistical data, to construct a probability 

measure from a given possibility measure in the context of 

decision making or system modeling, to combine probabilistic 

and possibilistic information in expert systems, or to 

transform probabilities to possibilities to reduce 

computational complexity. To deal with these problems, 

various probability-possibility transformations satisfying 

different consistency principles have been suggested in the 

literature. Here, we have considered a case of soil 

contamination by lead on an ironworks Brownfield in the 

south of France. Following an on-site investigation revealing 

the presence of lead in the superficial soil at levels on the 

order of tens of grams per kg of dry soil, a cleanup objective 

of 300 mg/kg was established by a consulting company, based 

on a potential risk assessment, taking into account the most 

significant exposure pathway and the most sensitive target 

(direct soil ingestion by children). The assessment is carried 

out by considering there scenarios. In scenario1, 

representations of some model parameters are probabilistic 

while some are probabilistic. In scenario2, possibilistic model 

parameters are transformed into probabilistic mode while in 

scenario3, probabilistic model parameters are transformed into 

possibilistic mode. In each scenario, we have seen the clear 

rejection of the World Health Organization prescribed the 

acceptable lead dose related to the ingestion of polluted soil to 

be equal to 3.5 µg/[kg:day]. 
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