
International Journal of Computer Applications (0975 – 888)

Volume 48– No.10, June 2012

28

An Efficient Algorithm for Web Page

Change Detection

Srishti Goel Rinkle Rani Aggarwal
Department of Computer Sc. & Engg. Department of Computer Sc. & Engg.

Thapar University, Patiala (INDIA) Thapar University, Patiala (INDIA)

ABSTRACT
Internet is actively used for the exchange of information.
People upload the web pages and updating the new web pages
very frequently. There is a frequent change in the content of
the web page hence it become necessary to develop an

efficient system which could detect these changes efficiently
and in the minimum browsing time. So as to achieve this we
compare the old web page and the new web page. Changes in
a web page can be detected with the use of various algorithms.
Various tools and services are also available which can be
used to detect these changes.

In this paper a new algorithm for the structural as well as
content change detection has been proposed and described.

For better results tree has been designed for the corresponding
web pages. The proposed change detection algorithm is based
on assigning hash value to each leaf node and tag value to the
non leaf nodes. Bottom up approach has been used for
assignment. The level of each node has been used to find hash
values and modification in a node. It has been shown with the
help of suitable examples that the proposed algorithm extracts
the changes very efficiently from the various web pages.

Keywords
Web page change detection, Tag of node, Tree matching,
Hash value, Change monitoring

1. INTRODUCTION
Internet has become an effective way for the exchange of
information across the world. It delivers the information
mainly in the form of the web pages. New pages are uploaded
frequently to provide new and more information to the user.
Now the users are not only interested in gathering the new

information along with the changes that have taken place in
the web page. If a user is observing a web page that is
refreshed very frequently then the user might not be interested
in downloading or viewing the entire web page each and every
time. He will be interested in observing the changes that have
taken place in the web page since last visit. In order to find
these changes user will select a zone in which he is interested
to observe the changes. The web page detection system will

find the zones selected by the user in old and new web pages.
The system then compares the two web pages to detect the
changes which have taken place.

User may be interested to know the changes in the web pages
every time he visits the page. For example: a stock trader may
be interested in knowing the current status of the market or he
may be interested in knowing the new price of the stocks.

Similarly a user may be interested in knowing the ranking of
the cricket teams, statistics of players playing in IPl which
changes frequently with each match. The web page change
detection system helps the user to detect such changes
efficiently and in minimum browsing time.

Various algorithms [1][2][3] and tools [4][5][6] are available
to detect the changes in web pages. Different algorithms are
proposed in various research papers. Erwin Leonardi [7]
explains the change detection based on ordered and unordered

tree. In this paper a scheme is proposed which help to detect
the changes. It also explains the types of changes which can
occur in a web page and the architecture which can be used to
detect the changes. The hash based algorithm is to be used to
detect the changes. First a web page is searched in which
changes had to be detected. Then the tree will be designed for
that web page and then the two trees are compared by the tag
values assigned to each node.

2. CLASSIFICATION OF CHANGES IN

A WEB PAGE
 Web pages can be classified as follows:

1. Structural Changes
2. Content Or Semantic Changes
3. Presentation Or Cosmetic changes
4. Behavioural Changes

2.1 Structural Changes
These changes occur when ever we a tag is added or deleted
in a web page i.e. addition or deletion of a tag causes

structural change[8] in a web page. Sometimes the
addition/deletion/modification of a link also causes a
structural change. These types of changes are important to
find as they are not visually perceptible.

Fig 1: a) Initial Version b) Modified Version

2.2 Content or Semantic Changes
These changes occur whenever the content of a web page
changes according to the user point of view. [8] A stock trader

may be interested to know the changed status of the market or
the current price of the share. He is interested in the current or

International Journal of Computer Applications (0975 – 888)

Volume 48– No.10, June 2012

29

the changed status of the market and not in the old price or the
old market status. Another example could be the web pages
displaying the score of a match. The user viewing the page is
interested in the current score and the content of the page
changes every time whenever the score changes. Web pages

containing the records or schedule of a tournament changes
accordingly with the change in a tournament.

(a)

(b)

 Fig 2: a) Initial Version b) Modified Version

2.3 Presentation or Cosmetic Change
These Types of changes Occur whenever the appearance of a

web page changes but the content of a web page remains the
same [8]. For example: with the changes in tags the
appearance of a page may change without change in the
content of a page.

(a)

(b)

 Fig 3: a) Initial Version b) Modified Version

2.4 Behavioural Changes
 Behavioural changes refer to changes in the active

components which are present in a document[8]. For example,
web pages may contain scripts, applets etc as active
components. When such hidden components change, the
behaviour of the document gets changed. However, it is
difficult to catch such changes especially when the codes of
these active components are hidden in other files.

3. ARCHITECTURE
The general architecture is shown below in the figure 4. This
architecture contains the comparison module where various
algorithms can be applied to compare the two web pages. [9]
This architecture follow a path from the start state to the end
state these states are denoted by the ellipse. The user will
input the web pages in which the changes is to be detected.

The user will input the old web page and the new web page.
The input module then asks the crawler to fetch the pages. The
old web page will be fetched from archive and the new web
page will be fetched from the site. These pages will be saved
in page report archive. These pages will be sending to the tree
builder module via manager. Tree builder module will design
the trees corresponding to the old and the new web page.
These trees will be passing on to the comparator module. In

this module comparison algorithm is applied to find the
difference between the two web pages. Then the result will be
given to the presentation module. Presentation module
prepares a report from these results and save it in page report
archive. Notification centre will compare all the reports
related to a page compile them and send it to the user. There is
an inverse tree builder module which will generate the page
from the tree and give the pages to the browser to show the

result.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.10, June 2012

30

Fig 4: Architecture of a web page change detection system

4. PROPOSED ALGORITHM
An algorithm is designed which will find structural as well as
the content change. Before finding the changes URL of a
particular web page is to be searched. A crawler has been
designed which will save the HTML code of the page.
Another algorithm is designed which will develop the trees
corresponding to the pages. Algorithm is mainly implemented
in C# and uses the inbuilt classes and methods of C#.

Tree development algorithm is mainly based on tags
extraction and then developing the tree while the change
detection algorithm is based on assigning the hash value to
each node which we have calculated by giving each tag a
number and the level number where the child is zplaced in
the tree. Hash value is mainly assigned to the leaf nodes in the
tree and for the non leaf nodes the tag value will be assigned
which is the sum of hash value of its child. Tag value is

assigned in a bottom up manner and uses them to find the
changes. If the tag value of a node changes then we can say
that there is a change.

4.1 Algorithm for tree development
4.1.1 Extract Tags
Input: Web page searched by the crawler
Output: Tags are extracted from the web page

1. Find index No. of each tag

2. If tag does not exist then it will return -1.
3. Assign node No. And nodename to each node and then

add the node to the tree
 node.index = index;
 node.nodename = "html";
 tree.Add(node);

4.1.2 Assign Node Number to each node
Input: Extracted tags are given
Output: Node Number is assigned to the tag
 1. Check for each tag t
 2. If
 It is a closing tag then we do not assign any

 Node number.
 3. Else

 Count opening tag and closing tag until we get the
closing tag of t

 if (countopen - countclose == 1)
 tree[j].nodeno = k; k++;

4.1.3 Find Childs
 Input: Nodes will be given as a input
Output : Find the child of each node
 1. Check for each tag t
 2. If

 It is a closing tag then we don’t assign nay child.
 3. Else
 if (countopen - countclose == 1 &&

!subs.Equals("/"))
 tree[i].childs = tree[i].childs + tree[j].nodeno + ",";

4.2 Algorithm to detect the change
4.2.1 To Calculate Hash Value
Input: Nodename is name of leaf node to which hash value

has to assign, level is depth at which that node exists.

 Output: Hash value of node.

Input

Unit

Crawler

Manager

Inverse Tree

Builder

Tree Builder

Comparator

Module

Presentation

Module

Page

Report

archive

Notification

Center

Old and the new web

page
Fetch These Pages Repor

t

Resul

t

Trees

Web

 Pages

HTM

L

Two

Trees

Trees

Resul

t

International Journal of Computer Applications (0975 – 888)

Volume 48– No.10, June 2012

31

1. Provide some number to all tags i.e. nodename which can

exist in webpage or can take enumeration of tags.

2. Foreach node n in tree

 if (n.childs.Equals(""))
 n.tag = GetHash(n.nodename, n.level);

4.2.2 Assign Hash Function

Input: All nodes of a tree.

Output: Hash value of leaf nodes.

1. For each node of a tree.

2. If (node.childs.equals (null)).

 Call to calculate hash value function.

 Hash function = nodename + Levelno.

4.2.3 Calculate Tag

Input: All nodes of a tree.

Output: Tree with calculated Tag value of all nodes.

1. Start from bottom of a tree for each node n.

2. We will assign tag values to non leaf nodes.

 If (! node.childs.equals (null))

 n.tag = sum of tag values of its all child’s

4.2.4 Find changes

Input: Old tree and new tree to find changes in them.

Output: Nodes added or deleted in old tree.

1. Find nodes at each level of tree in old tree as well as new tree.

 if (!n1.childs.Equals(""))

 nextchildnodes = nextchildnodes + n1.childs + ",";
2. Compare nodes at each level

 If number of nodes at any level of new tree are less than or

equal to node at same level of old tree

3. Compare the tags of parents of that level

4. If tag of any new parent(n) > old parent(o)

 if (oldparentChild.Count() > newparentChild.Count())
 int d = n1.tag - n3.tag;

5. Then addednode=n.tag – o. tag

6. Else

 int d = n3.tag - n1.tag;

7. Deletednode = o.tag – n.tag.

 Fig 5: Initial Version

Fig 6: Snapshot of content change

International Journal of Computer Applications (0975 – 888)

Volume 48– No.10, June 2012

32

Fig 7: Modified Tree

Fig 8: Snapshot showing structural change

New Node Added

Node Deleted

International Journal of Computer Applications (0975 – 888)

Volume 48– No.10, June 2012

33

Fig 9: Snapshot showing deletion of a node

5. CONCLUSION
This study is to develop an efficient web page change
detection system which will detect the changes in a web page.
The proposed algorithm extracts changes between different
versions of web pages. The algorithm is able to make out
structural as well as content based changes by developing an
efficient application in C# which scores on other techniques
on the basis of simplicity and understandability. This

algorithm detects the changes, based on the change in the tag
value. Tag value is assign to every node. To find the changes
algorithm traverses each node in two version of the tree.

Tree traversing is based on the depth first search. Two
different algorithms are used first one is used to construct the
tree corresponding to the web pages and the second one is
used to detect the changes which are made in the web page.

While detecting the changes in the new and old web page
three main problems are encountered. Solution for these
problems has been provided through these algorithms. This
system is useful for saving the browsing time and also gives
the user time to time update regarding the changes which will
occur in a web page.

6. REFRENCES
[1] Buneman P., Davidson S., Fan W., Hara C., and Tan

W. Aug 2002”Keys for XML” Proceedings of
international conference on Computer Networks, 39 (5),
473–487.

[2] Chawathe S., Rajaraman A., Garcia-Molina H. and Widom
June 1996, “Change Detection in Hierarchically

Structured Information”, Proceedings of the ACM
SIGMOD International Conference on Management of
Data, 25(2), 493-504.

[3] Chawathe S., Garcia-Molina H. May 1997“Meaningful
Change detection in structured data”, proceeding in ACM
SIGMOD International conference, 26-37.

[4] Liu, L., Pu C., and Tang W. “WebCQ: 2000 Detecting

and Delivering Information Changes on the Web”. In
Proceedings of International Conference on Information
and Knowledge Management, pp.512-519.

[5] Lu, B., Hui C.B., and Zhang Y.2002. Personalized
“Information Monitoring over the Web”. in First
International Conference on Information Technology and
Applications(ICITA).

[6] Available at: Mind-it, http://www.netmind.com.

[7] Leonardi E., Sourav Bhownick S., “Detecting Content
Changes on Ordered XML Documents Using Relational
Databases”.

[8] Yadav D. 2009”Design of A Novel Incremental Parallel
web crawler” Phd thesis, Jaypee Institute of Information
Technology University, 2009.

[9] H. P. Khandagale H.P.and Halkarnikar P.P.” A Novel
Approach for Web Page Change Detection System” June
2010, International Journal of Computer Theory and

Engineering, 2(3), 793-8201.

http://www.netmind.com/

