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ABSTRACT 

In this paper, a two-phase hybrid particle swarm optimization 
algorithm (PRHPSO) is proposed for the permutation flow-
shop scheduling problem (PFSP) with the minimizing 
makespan measure. The smallest position value (SPV) rule is 
used for encoding the particles that enable PSO for suitable 
PFSP, and the NEH and Tabu search algorithms are used for 

initializing the particles. In the first phase, the pattern 
reduction (PR) operator is used in the PSO algorithm for 
reducing the computation time. In order to avoid a premature 
convergence, a regeneration operator is used for escaping to 
the local optimal and balancing exploitation and exploration 
in the second phase. Additionally, a simulated annealing (SA) 
algorithm is utilized for local search to improve the best 
solution after the PSO search process. Finally, the results 

show that PRHPSO is significantly faster than two PSO-based 
algorithms and presents large-sized benchmarks. 

General Terms 

Hybrid Metaheuristic Algorithm, Combinatorial optimization. 

Keywords 

Particle swarm optimization, Permutation flow-shop 
scheduling problem, Pattern reduction, Makespan, Pattern 
Reduction, Regeneration Operator. 

1. INTRODUCTION 
Johnson [1] pioneered permutation flow-shop problem 
research in 1953. Since then, the flow-shop scheduling 
problem (PFSP), an NP-hard problem, has received increasing 
attention in the combinatorial optimization research 
community.  Rinnooy Kan [2] proved that minimizing the 
makespan was an NP-hard problem, and Garay et al. [3] 
proved that total flow-time minimization was also an NP-hard 

problem. Non-polynomial computing time is required for 
finding solutions. The objective of the PFSP is to find the 
sequence of jobs being processed in all machines to optimize 
the performance measure. Heuristics algorithms are 
commonly used for obtaining approximate solutions and 
decreasing CPU time in NP-hard combinatorial optimization 
problems. By 1983, the Nazwa-Enscore-Ham (NEH) [4] 
heuristics had been a well-known algorithm for makespan 

minimization for more than twenty-years. 

 

 

Table 1: Examples permutation flowshop solution 
 

Solution Redundant sub-solution 

1234567  

 

123 

1235467 

1236457 

1234765 

1236574 

 

The PFSP is defined as follows. Considering n 

jobs{ 𝑗1, 𝑗2, 𝑗3 ,… , 𝑗𝑛 }with each job successively processed by 

mmachines{ 𝑀1 ,𝑀2 ,𝑀3 ,… ,𝑀𝑚}, the processing time is given 
by𝑝𝑖,𝑘   between job i and machine k. On the other hand, there 

are rule restrictions in the PFSP that each machine is 
permitted processing one job at most, and each job can be 
processed on one machine at any time. The goal of the PFSP 

is to find the best sequence (order or permutation) of jobs and 
optimize the object function. There are two common object 
functions in PFSP, namely makespan and total flow-time 

minimization.It is given that 𝜋 = { 𝑗1, 𝑗2 , 𝑗3 ,… , 𝑗𝑛 } , which 
indicates the job sequence, andC  𝑗𝑖 , 𝑘 , denotes the 

completion time of job i on machine k. C 𝑗𝑖 , 𝑘 can be defined 

as Eq. 1. 

 

The objective of the makespan is to find permutation 𝜋𝑏𝑒𝑠𝑡 in 

permutation set Π, such that Eq. 2 shows: 

 

Meta-heuristic algorithms have been proposed for solving the 

PFSP and minimizing makespan.  They include simulated 
annealing (SA) [5][6], Tabu search (TS) [7][8], genetic 
algorithms  (GAs) [9][10], ant colony optimization (ACO) 
[11][12], differential evolution [13][14], and the hybrid 
(memetic) algorithm [15][16][17]. Among these algorithms, 



International Journal of Computer Applications (0975 – 8887)  

Volume 48– No.1, June 2102 

12 

population-based heuristic approaches (such like PSO, GA, 
DE…etc.) all share the same critical problem when 
populations evolve over a period of time. For example, five 
solutions are obtained as shown in Table. 1. Each solution 
contains sub-solution 123 at the same position, meaning that it 

would spend redundant CPUcomputation time on calculating 
the makespan with sub-solution 123. If redundant calculations 
can be removed, the CPU computation time can be greatly 
reduced.This paper proposes a two-phaseparticle swarm 
optimization algorithm for solving permutation flow-shop 
scheduling problems. The most significant concerns are 
decreasing computation time and increasing the diversity of 
solutions. The algorithm has two tasks. 

a) To eliminate redundant computations and reduce total 
computation time.  

b) To enhance search behaviour and improve solution quality. 

The task is divided into two parts. Common sub-solutions are 
detected and compressed in part 1, while the regeneration 
operator is used for preserving exploitation and exploration 
when all solutions have the same job sequence in part 2. To 
improve the quality after the two-phase PSO algorithm, the 

SA-based local search is used for fine-tuning the solution, 
which is the simulated annealing (SA) [18] combined with the 
variable neighborhood local search [19]. The experimental 
results show that the algorithms are significantly faster than 
two recently proposed PSO-based algorithms using a different 
scale of benchmarks.  

The remainder of this paper is organized as follows. 
Background knowledge and related work are described in 

Section 2. Section 3 states the details of the proposed 
algorithms.  Evaluations of the proposed algorithms are 
described in Section 4. Finally, conclusions and future work 
are described in Section 5. 

2. BACKGROUND AND RELATED 

WORK 
In this section, the background of this research field and the 
related study are reviewed. The overview will focus on four 
main topics of 

a) NEH heuristic algorithm (NEH), 

b) Tabu Search (TS), 

c) Simulated Annealing (SA), and  

d) Particle Swarm Optimization (PSO). 

2.1 NEH Heuristic algorithm 
For more than, the Nawaz-Enscore-Ham (NEH) [4] heuristic 
algorithm has a widely-used algorithm for solving the 
makespan minimization problem. The NEH algorithm is 
divided into three parts. 

1. Each job is sorted in descending order of processing time 
on the machines. 

2. The first two jobs are chosen. A better partial order is 
obtained by scheduling them according to a comparison of 
makespan values. 

3. Job j = 3,…, n, is inserted at each of j’s possible positions 
in the sequence to obtain the best partial schedule which 
minimizes the partial makespan. 

Although the NEH heuristics is easy to implement, its time 
complexity is O 𝑛3𝑚 . Many studies have proposed ways to 
improve the quality or computation time of the original NEH 
heuristic, such as [20][21][22]. 

2.2 Tabu Search 
Tabu (also called Taboo) search (TS), which was proposed by 

Glover et al. [23], is a meta-heuristic algorithm used for 
combinatorial optimization problems. The motivation for TS 
comes from the visited solutions and repeated visits of local 
search approaches. TS creates a short-memory structure that 
records forbidden moves called a tabu list. The foundation of 
tabu search is described as follows. First, the initial solution is 
generated randomly.  Second, a set of neighborhood 
(candidate) solutions is generated using the current solution. 

Third, the solution with the best admissibility is chosen (the 
solution with the best admissibility is the one in which the 
move satisfies the aspiration criterion) and the tabu list is 
updated. Finally, Steps 2 and 3 are repeated until the stopping 
criterion is reached. 

2.3 Simulated Annealing 
The idea for the annealing process originated in metalwork. 
When metal is heated to a high temperature, it becomes a 
liquid. As a liquid, the structure changes and, when it cools, it 
re-solidifies in different shapes. Inspired by Metropolis et al. 
[24] and physical annealing, simulated annealing (SA) was 
proposed by Kirkpatrick et al. [18]. It became a well-known 
heuristic algorithm and has been used for twenty years. SA is 

a very applicable heuristic algorithm for combinatorial 
problems that uses a neighborhood searching strategy. SA 
begins from a random initial solution. A new state is 
generated using a perturbation method. The change in energy 
is expressed by Eq. 3. 

Δ𝐸 = 𝑓 𝑛𝑒𝑤 − 𝑓(𝑜𝑙𝑑) (3) 

wheref (new) is the new state object value and f (old) is the 
current best solution value. The new state is accepted ifΔ𝐸< 0. 

IfΔ𝐸>0, the new state may still be accepted if the Boltzmann 

distribution is satisfied with Eq. 4. 

𝑃𝑟𝑜𝑏 < ( 𝑒−
Δ𝐸

𝑇 )  (4) 

where Prob is a random number [0,1] and T is a dynamic 
control  parameter. The SA process stops when it freezes or 
the set number of iterations is reached.  

2.4 Particle Swarm Optimization 
Particle swarm optimization (PSO) is a population-based 
swarm intelligence algorithm that was first presented by 
Kennedy and Eberhard in 1995 [25], when the original PSO 
was used for continuous optimization (i.e., function 

optimization). PSO was first used for discrete problem [26] in 
1997; the first article discussing the application of PSO to 
solving PFSP was presented by Tasgetiren et al. [27] in 2004. 
Some study applied particle swarm optimization (PSO) to 
solving the PFSP,  such  as 
[28][29][30][31][32][33][34][35][36].The main idea is that 
each individual updates its current solution to reference with 
its own history experiences and the experiences of others.Base 

on [25] and [37], each particle is generated using a random 
solution. The goal for each particle is to search for solution 
space and update its own solution between cognitive 
behaviour and social behaviour in the swarm, as the following 
Eqs.5 and 6. 

𝑣𝑖,𝑗
𝑡+1 = 𝜔𝑣𝑖,𝑗

𝑡 + 𝑐1𝑟1 𝑝𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡  + 𝑐2𝑟2 𝑝𝑔𝑏𝑒𝑠𝑡 ,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡  (5) 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑣𝑖,𝑗
𝑡+1(6) 
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Fig 1: A standard particle swarm optimization (PSO) 

algorithm 
 

Table 2: Examples representing particle i 

 

Position j Position value Ranking of values Job order 

1 -0.43 -2.98 3 

2 3.14 -2.37 7 

3 -2.98 -0.43 1 

4 2.61 0.25 6 

5 1.56 1.56 5 

6 0.25 2.61 4 

7 -2.37 3.14 2 

 

Table 3: Position information examples obtained from the 

permutation solutions 
 

Position j NEH/TS 

solution 

Random value Mapping 

value 

1 3 -3.14 -0.43 

2 7 -2.37 3.14 

3 1 -0.43 -2.98 

4 6 1.56 2.61 

5 5 0.25 1.56 

6 4 2.61 0.25 

7 2 -2.98 -2.37 

 
where d is the dimension of the search area and tisthe iteration 
number. The position and velocity of particlei in iteration t 

are 𝛸𝑖
𝑡 =  𝛸𝑖,1

𝑡 , 𝛸𝑖,2
𝑡 , 𝛸𝑖,3

𝑡 ,… , 𝛸𝑖,𝑑
𝑡   and 

𝑉𝑖
𝑡 =  𝑉𝑖,1

𝑡 , 𝑉𝑖,2
𝑡 , 𝑉𝑖,3

𝑡 ,… , 𝑉𝑖,𝑑
𝑡  , respectively. Personal best 

𝑝𝑖
𝑡 =  𝑝𝑖,1

𝑡 , 𝑝𝑖,2
𝑡 , 𝑝𝑖,3

𝑡 ,… , 𝑝𝑖,𝑑
𝑡   corresponds to particle i and is 

the best fitness value so far during time period t. The global 
best is respected so that 

𝑝𝑔𝑏𝑒𝑠𝑡 ,𝑗
𝑡 =  𝑝𝑔𝑏𝑒𝑠𝑡 ,1

𝑡 , 𝑝𝑔𝑏𝑒𝑠𝑡 ,2
𝑡 , 𝑝𝑔𝑏𝑒𝑠𝑡 ,3

𝑡 ,… , 𝑝𝑔𝑏𝑒𝑠𝑡 ,𝑑
𝑡  , which 

indicates the best fitness solution found since initialization.  
Inertia weight ω is used for controlling the convergence speed, 

𝑐1  is the acceleration weight cognitive element, 𝑐2 is the 

weight of the social parameter, and 𝑟1 and 𝑟2  are random 

numbers uniformly distributed in the area of [0,1]. The 
personal best update processing of particle iand the current 
best (global best) solution in the swarm is updated using the 
minimizing the object function f. 
Figure 1 show the procedure for the standard PSO approach. 

3. THE PROPOSED ALGORITHM  
This PRHPSO algorithm consists of two main phases during 

the PSO evolution, namely the pattern reduction operator 
phase and regeneration operator phase. This section 
introduces pattern reduction and the regeneration operator, 
which are adapted into the PSO-based algorithm for solving 
the permutation flow-shop scheduling problem (PFSP). 

3.1 Particle Encoding 
In the PSO algorithm, the particles fly through the solution 
space engaging in social behaviour. Encoding particles in the 
population for the PFSP is an important issue. In order to find 
a suitable direct mapping between the positions (dimensions) 
of particles and the job sequence, this paper employs a 
heuristic approach called smallest position value (SPV) [38], 
which is used for converting the continuous values into 

permutations of the job sequence. In short, each particle is 
represented by n continuous values. In the decoding process, 
these continuous values are transformed into a permutation of 
the job sequence by the SPV rule. Table 2 illustrates the 
process of decoding a particle using the SPV rule. 

The second column denotes the position values of the particle. 
The fourth column indicates the increase of each value. 
According to the SPV value, -2.98 is the smallest position 

value. The first job order in 𝑥𝑖,1 is 3. Then, -2.37 is picked and 

𝑥𝑖,2 is assigned in 7. The remaining values are picked 

according to their ranking to construct the permutation.  Thus, 

the complete job permutation π = (3, 7,1,6,5,4,2). 

3.2 Particle Initialization 
To ensure that the initial swarm has a quality solution, the 
NEH [4] heuristic algorithm and TS [23] are applied to 
generating two solutions. The remaining particles are given 
random values (including position and velocity) using 

𝑥𝑖,𝑗 = 𝑥𝑢,𝑏 ∗ 𝑟                                                (7) 

𝑣𝑖,𝑗 = 𝑣𝑙,𝑏 +  𝑣𝑢,𝑏 − 𝑣𝑙,𝑏 ∗ 𝑟                    (8) 

where 𝑥𝑢,𝑏   = 5.0, 𝑣𝑙,𝑏   = −5.0, 𝑣𝑢,𝑏  = 5.0, and r is in the 

interval [0,1]. Table 3 shows an example of position values 
generated from the permutation results. 

3.3 Pattern Reduction 
In the first phase, the concept of the pattern reduction (PR) 
technique was presented by Chiang et al. [39]. It was used for 

solving a clustering problem. According to previous research, 
the PR can be used in meta-heuristics algorithms for solving 
the combinatorial optimization problem.  

In this paper, we modify the basic PR for the PFSP. This 
operator is divided into two parts, namely detection and 
compression. The goal of PR is to quickly eliminate redundant 
process during PSO processing. Details of the two parts are 
given below. Before the PR phase, the current best solution 
will be called parent 1 and used in regeneration operator 
phases. 

3.3.1 Detection operator: 
In this operator, the solutions are inspected against all 
positions (dimensions), which are marked as either undetected 
or detected, (detected positions are indicated by 1, others by 
0). The detection vector is defined as. 

𝐷𝑣𝑒𝑐 ∈ ( 0,1 ,∀ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 )  (9) 
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Table 4: Rearrangement the of permutationusing 

newposition value and spv rule 
 

(Iteration i-1) 

Position j 

Position 

value 

Ranking of 

values 

Job 

order 

1 -0.43 -2.98 3 
2 3.14 -2.37 7 
3 -2.98 -0.43 1 
4 2.61 0.25 6 
5 1.56 1.56 5 
6 0.25 2.61 4 

7 -2.37 3.14 2 

    

(Iteration i) 

Position j 

Position 

value 

Ranking of 

values 

Job 

order 

1 1.26 -2.01 4 
2 -0.72 -1.67 7 
3 1.68 -0.72 2 

4 -2.01 0.53 5 
5 0.53 1.26 1 
6 3.91 1.68 3 
7 -1.67 3.91 6 

 

Table 5: Rearrangement of position values after the 

pattern reduction operator 

 

(Iteration i) 

Position j 

Job order Position value 

1 4 1.26 
2 7 -0.72 
3 2 1.68 
4 5 -2.01 

5 1 0.53 
6 3 3.91 
7 6 -1.67 

   

(After PR) 

Position j 
Job order Position value 

1 47251 -2.14 
2 3 1.68 
3 6 3.91 

 
Table 1 shows that all of the five permutation solutions have 
three detected positions (1, 2, and 3), which have respective 
element values of {1}, {2}, and {3}. The following rules are 
used for determining the trigger condition for the compression 
operator. 

i.) If there are fewer than two positions marked as 
detected. 

ii.) If there are at least two positions labelled detected, 
but none is marked as connected. 

iii.) If there are two or more elements marked as 
connected. 

If the solutions belong to casei.) or case ii.), the compression 
part is not triggered. 

3.3.2 Compression operator: 
In this part, the connected positions can be readily obtained 
from common sub-solutions by interacting with the detection 
vector. If the connective sub-solutions detected are redundant, 
they can be merged into one element. Considering the 
previous example in this operator, elements {1}, {2}, and {3} 

can be merged into one set {123}. The {123} may find the 
connective sub-solution {64} and the two sub-solutions may 
be combined into one set {12364}. Then the set {12364} will 
be compressed into one element {1}. Finally, the solution will 
become {157}, which means only the makespan of the job 
sequence {157} needs to be calculated, rather than {1236457}. 

3.4 Particle Updating 
A particle moves in a direction according to the inertia weight. 
The best position and the best position so far of other particles 
can be formalized using Eqs.5 and 6. These two equations are 
used for determining the final position of particle i in iteration 
t. However, new velocity and position values are obtained 
aftereachiteration. Thus, after updating particle position 

values, the permutation jobs sequence must be rearranged by 
the SPV rule. Table 4 shows how to determine the new 
permutation sequence after particle update. Table 5 shows 
another example of how to determine and reduce the 
dimensions of the new position values after the PR operator. It 
can be seen in Table 5 that the job sequence {4725136} will 
be reduced and compressed into the new job sequence {436}. 
Thus the PR can reduce the computation time. 

After the PR operator, we can get the convergence solution, 
parent 2. Although the PR approach can reduce the 
computation time, it may cause particles to converge very 

quickly. Thus, the regeneration operator method is used for 
improving the quality and diversity of the PSO algorithm. 

3.5 Regenerate Operator 
The concept in this phase uses the crossover operator - order 
operator [40] (OX) to reconstruct all particles by using parent 
1 and parent 2. The use of parent 1, parent 2 and (OX) 
operator should be used for reconstructing the remaining 

particles. Fig. 2 shows how the regeneration operator rebuilds 
the remaining particles. After the reconstruction phase, each 
new particle (solution) is used for reinitializing the position 
and velocity values according to the SPV rule. This new 
population will be evaluated by using the PSO algorithm until 
the termination criteria are reached, but without employing 
the PR operator again. 

3.6 SA-based Local Search 
In order to add diversity and improve quality, four 
neighborhood perturbation methods (SA-based VNS local 
search) can be used in the SA local search, namely pair-swap, 
insertion, inversion, and displacement. 

a) Pair-Swap: Randomly select two distinct positions and 
swap them. 

b) Insertion: Randomly select two distinct positions (a, b) and 
insert b in front of a.  

c) Inversion: Invert the subsequence between two random 
positions in the solution. 

d) Displacement:  Select a subsequence and one cut point, and 

insert in the subsequence before the cut point position. Figure 
3 shows a simple example illustrating each of the 
neighborhood perturbation methods. 
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Fig 2: Example regeneration operator. 

 

 

Fig 3: Example of the perturbation methods. 

3.7 The PRHPSO algorithm 
The PRHPSO algorithm is a two-phase hybrid PSO-based 
algorithm for solving PFSP.  Phase 1 uses the PR technique to 
reduce computation time and, in phase 2, a regeneration 

operator is adopted to balance exploitation and exploration 
and restart the PSO evolution process without using the PR 
operator.  

Finally, the SA-based local search preserves the best solution 
after the regeneration operator.The PRHPSO algorithm is 
illustrated in Fig. 4. 

 

 

Fig 4: The flowchart of the PRHPSO. 

3.8 An Example 
Considering the five solutions in Table 1, the process for 
executing PRHPSO for this example is shown in Fig. 5. The 
PR and regeneration operator are applied to the PSO 
convergence processing. Assuming that the current best 
solution sequence (parent 1) is {523641} before the PR 
operator, and parent 2 is {123456} at the PR operator, then 

parent 1 and parent 2 pass through the regeneration operator 
OX to reconstruct the remaining particles. Straightforward the 
PSO process, the best solution becomes {251364}. Finally, 
the best solution {251364} is adjusted to {314562} using the 
SA-based local search. 

4. EXPERIMENTAL RESULTS 
In this section, the performance of the proposed algorithm is 
evaluated. The PRHPSO refers to the approach of applyingthe 
PSO with PR to reduce the computation time, regenerate the 
particle population, balance intensification and diversification, 
and fine-tune the SA-based local search. The PRHPSO is 
compared to two algorithms; one is the swap-based algorithm 
[28] and the other is the SPV-based algorithm [32]. 
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Fig 

5: An Example of PRHPSO algorithm. 

Table 6: The Taillard benchmarks for permutation flow-

shop problem 

 

Name of instance n jobs * m machines 

Ta01 20*5 

Ta11 20*10 

Ta21 20*20 

Ta31 50*5 

Ta41 50*10 

Ta51 50*20 

Ta61 

Ta71 

Ta81 

Ta91 

Ta101 

Ta111 

100*5 

100*10 

100*20 

200*10 

200*20 

500*20 

 
 

Table 7Parameter settings for permutation flow-shop 

instance 
 

PSO parameters  

Swarm size 50 

# of iterations 1000 

PR start iteration 20 

# of simulations (R) 30 

# of Regeneration  

Operator iterators 

100 

ω 0.9 to 0.4 

𝑐1 ,𝑐2  2 

SA parameters  

Initial temperature T 100 

Cooling coefficient β 0.99 

TS parameters  

Size of Tabu list 7 

# of iterations 1000 

Table 8Experimental results of the PRHPSO against 

DPSO 
 

Name of instance DPSO[28]  PRHPSO 

ARPD 𝑡𝑎𝑣𝑔   ARPD 𝑡𝑎𝑣𝑔  

Ta01 0.94 0.40  0.06 0.78 

Ta11 4.74 0.47  0.69 0.92 

Ta21 4.13 0.63  0.52 0.73 

Ta31 0.77 1.76  0.18 2.36 

Ta41 6.15 1.88  2.80 2.65 

Ta51 4.05 2.27  2.93 3.22 

Ta61 0.33 6.23  0.04 5.94 

Ta71 2.01 6.42  0.92 5.77 

Ta81 3.72 7.27  2.08 6.29 

Ta91 15.74 23.35  0.69 17.86 

Ta101 3.01 25.68  2.21 21.03 

Ta111 7.47 142.93  1.97 109.76 

Average 4.82 19.94  1.37 16.12 

 
 

Table 9: Experimental results of the PRHPSO against 

PSOVNS 
 

Name of instance DPSO[28]  PRHPSO 

ARPD 𝑡𝑎𝑣𝑔   ARPD 𝑡𝑎𝑣𝑔  

Ta01 0.03 9.84  0.06 0.78 

Ta11 0.04 13.93  0.69 0.92 

Ta21 0.18 21.57  0.52 0.73 

Ta31 0.02 22.37  0.18 2.36 

Ta41 1.73 30.56  2.80 2.65 

Ta51 2.12 46.80  2.93 3.22 

Ta61 0.06 43.72  0.04 5.94 

Ta71 0.45 59.43  0.92 5.77 

Ta81 1.57 92.89  2.08 6.29 

Ta91 0.76 121.70  0.69 17.86 

Ta101 1.49 190.49  2.21 21.03 

Ta111 1.17 522.22  1.97 109.76 

Average 0.88 106.95  1.37 16.12 

 
 

The dataset generated by Taillard [41] was used in this 
evaluation. The well-known benchmark composed of 120 
instances from 20 jobs and 5 machines (Ta01) to 500 jobs and 

20 machines (Ta111) for permutation flow-shop scheduling, 
as shown in Table VI. All experiments were performed on a 
computer with a core(TM)2 Quad Q9400 2.66GHz  Intel CPU 
with 2GB of memory running on Microsoft Windows 7. In the 
experiments, all of the programs were implemented using 
Java language. The PSO, SA, and TS parameter settings are 
shown in Table VII. Table VIII and Table IX show a 
comparison of the simulation results. The average percentage 

relative deviation ARPD is shown in Eq. 10 and the average 

computation time is denoted as𝑡𝑎𝑣𝑔 seconds. 

ARPD =     
𝑄𝑖−𝑄𝑏𝑘𝑠

𝑄𝑏𝑘𝑠
 ∗ 100% /R𝑅

𝑖           (10) 

where  𝑄𝑖  denotes the values of the makespan of algorithm 

found, 𝑄𝑏𝑘𝑠  indicates the best known solutions, and R denotes 

the number of simulations.  The performance can be divided 
into the two parts, the ARPD value and the computation time. 
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Table VIII and Table IX show the results of the DPSO, 
PSOVNS, and the proposed PRHPSO algorithms for the best 
known solutions for the Taillard’s benchmark. In Table VIII, 
the PRHPSO is slightly slower than the DPSO in the dataset 
Ta01 to Ta61. This is because the DPSO does not have the 

SPV-rule mapping and rearranging strategy. By using the 
SPV-rule, regeneration operator and SA-based local search, 
the PRHPSO outperforms the DPSO in ARPD measure. In 
Table IX, the PRHPSO is faster than the PSOVNS almost 6 
times in total average; except in Ta61 and Ta91, it losses 
quality in ARPD. This is because the PR operator leads the 
PSO to fast convergence, and regeneration operator and SA 
increase the quality. 

5. CONCLUSIONS 
A two-phase mememic PSO algorithm (PRHPSO) is proposed 
for solving the permutation flow-shop scheduling problem. 
The experimental results indicate that the proposed method is 
faster than other algorithms with regard to CPU time in large 
scale of benchmarks and has some quality loss compared to 
PSOVNS. Many things can be done to refine this algorithm. 
(1) More effective detection strategies should be developed 

for the pattern reduction phase of algorithm. (2) In making the 
ARPD solutions better than those of PSOVNS or other 
effective algorithms, another powerful regeneration approach 
should be considered, meaning to enhance the solution 
searching abilities of particles. 
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