
International Journal of Computer Applications (0975 – 8887)

Volume 48– No.1, June 2102

11

A Two-Phase Hybrid Particle Swarm Optimization

Algorithm for Solving Permutation Flow-Shop

Scheduling Problem

Ko-Wei Huang

Institute of Computer and
Communication Engineering,

Department of Electrical
Engineering,National Cheng

Kung University, Tainan 70101,
Taiwan, ROC.

Chu-Sing Yang
Institute of Computer and

Communication Engineering,
Department of Electrical

Engineering,National Cheng
Kung University, Tainan 70101,

Taiwan, ROC.

Chun-Wei Tsai
Department of Applied

Geoinformatics,

Chia Nan University of
Pharmacy Science, Tainan

71710, Taiwan, ROC

ABSTRACT

In this paper, a two-phase hybrid particle swarm optimization
algorithm (PRHPSO) is proposed for the permutation flow-
shop scheduling problem (PFSP) with the minimizing
makespan measure. The smallest position value (SPV) rule is
used for encoding the particles that enable PSO for suitable
PFSP, and the NEH and Tabu search algorithms are used for

initializing the particles. In the first phase, the pattern
reduction (PR) operator is used in the PSO algorithm for
reducing the computation time. In order to avoid a premature
convergence, a regeneration operator is used for escaping to
the local optimal and balancing exploitation and exploration
in the second phase. Additionally, a simulated annealing (SA)
algorithm is utilized for local search to improve the best
solution after the PSO search process. Finally, the results

show that PRHPSO is significantly faster than two PSO-based
algorithms and presents large-sized benchmarks.

General Terms

Hybrid Metaheuristic Algorithm, Combinatorial optimization.

Keywords

Particle swarm optimization, Permutation flow-shop
scheduling problem, Pattern reduction, Makespan, Pattern
Reduction, Regeneration Operator.

1. INTRODUCTION
Johnson [1] pioneered permutation flow-shop problem
research in 1953. Since then, the flow-shop scheduling
problem (PFSP), an NP-hard problem, has received increasing
attention in the combinatorial optimization research
community. Rinnooy Kan [2] proved that minimizing the
makespan was an NP-hard problem, and Garay et al. [3]
proved that total flow-time minimization was also an NP-hard

problem. Non-polynomial computing time is required for
finding solutions. The objective of the PFSP is to find the
sequence of jobs being processed in all machines to optimize
the performance measure. Heuristics algorithms are
commonly used for obtaining approximate solutions and
decreasing CPU time in NP-hard combinatorial optimization
problems. By 1983, the Nazwa-Enscore-Ham (NEH) [4]
heuristics had been a well-known algorithm for makespan

minimization for more than twenty-years.

Table 1: Examples permutation flowshop solution

Solution Redundant sub-solution

1234567

123

1235467

1236457

1234765

1236574

The PFSP is defined as follows. Considering n

jobs{ 𝑗1, 𝑗2, 𝑗3 ,… , 𝑗𝑛 }with each job successively processed by

mmachines{ 𝑀1 ,𝑀2 ,𝑀3 ,… ,𝑀𝑚}, the processing time is given
by𝑝𝑖,𝑘 between job i and machine k. On the other hand, there

are rule restrictions in the PFSP that each machine is
permitted processing one job at most, and each job can be
processed on one machine at any time. The goal of the PFSP

is to find the best sequence (order or permutation) of jobs and
optimize the object function. There are two common object
functions in PFSP, namely makespan and total flow-time

minimization.It is given that 𝜋 = { 𝑗1, 𝑗2 , 𝑗3 ,… , 𝑗𝑛 } , which
indicates the job sequence, andC 𝑗𝑖 , 𝑘 , denotes the

completion time of job i on machine k. C 𝑗𝑖 , 𝑘 can be defined

as Eq. 1.

The objective of the makespan is to find permutation 𝜋𝑏𝑒𝑠𝑡 in

permutation set Π, such that Eq. 2 shows:

Meta-heuristic algorithms have been proposed for solving the

PFSP and minimizing makespan. They include simulated
annealing (SA) [5][6], Tabu search (TS) [7][8], genetic
algorithms (GAs) [9][10], ant colony optimization (ACO)
[11][12], differential evolution [13][14], and the hybrid
(memetic) algorithm [15][16][17]. Among these algorithms,

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.1, June 2102

12

population-based heuristic approaches (such like PSO, GA,
DE…etc.) all share the same critical problem when
populations evolve over a period of time. For example, five
solutions are obtained as shown in Table. 1. Each solution
contains sub-solution 123 at the same position, meaning that it

would spend redundant CPUcomputation time on calculating
the makespan with sub-solution 123. If redundant calculations
can be removed, the CPU computation time can be greatly
reduced.This paper proposes a two-phaseparticle swarm
optimization algorithm for solving permutation flow-shop
scheduling problems. The most significant concerns are
decreasing computation time and increasing the diversity of
solutions. The algorithm has two tasks.

a) To eliminate redundant computations and reduce total
computation time.

b) To enhance search behaviour and improve solution quality.

The task is divided into two parts. Common sub-solutions are
detected and compressed in part 1, while the regeneration
operator is used for preserving exploitation and exploration
when all solutions have the same job sequence in part 2. To
improve the quality after the two-phase PSO algorithm, the

SA-based local search is used for fine-tuning the solution,
which is the simulated annealing (SA) [18] combined with the
variable neighborhood local search [19]. The experimental
results show that the algorithms are significantly faster than
two recently proposed PSO-based algorithms using a different
scale of benchmarks.

The remainder of this paper is organized as follows.
Background knowledge and related work are described in

Section 2. Section 3 states the details of the proposed
algorithms. Evaluations of the proposed algorithms are
described in Section 4. Finally, conclusions and future work
are described in Section 5.

2. BACKGROUND AND RELATED

WORK
In this section, the background of this research field and the
related study are reviewed. The overview will focus on four
main topics of

a) NEH heuristic algorithm (NEH),

b) Tabu Search (TS),

c) Simulated Annealing (SA), and

d) Particle Swarm Optimization (PSO).

2.1 NEH Heuristic algorithm
For more than, the Nawaz-Enscore-Ham (NEH) [4] heuristic
algorithm has a widely-used algorithm for solving the
makespan minimization problem. The NEH algorithm is
divided into three parts.

1. Each job is sorted in descending order of processing time
on the machines.

2. The first two jobs are chosen. A better partial order is
obtained by scheduling them according to a comparison of
makespan values.

3. Job j = 3,…, n, is inserted at each of j’s possible positions
in the sequence to obtain the best partial schedule which
minimizes the partial makespan.

Although the NEH heuristics is easy to implement, its time
complexity is O 𝑛3𝑚 . Many studies have proposed ways to
improve the quality or computation time of the original NEH
heuristic, such as [20][21][22].

2.2 Tabu Search
Tabu (also called Taboo) search (TS), which was proposed by

Glover et al. [23], is a meta-heuristic algorithm used for
combinatorial optimization problems. The motivation for TS
comes from the visited solutions and repeated visits of local
search approaches. TS creates a short-memory structure that
records forbidden moves called a tabu list. The foundation of
tabu search is described as follows. First, the initial solution is
generated randomly. Second, a set of neighborhood
(candidate) solutions is generated using the current solution.

Third, the solution with the best admissibility is chosen (the
solution with the best admissibility is the one in which the
move satisfies the aspiration criterion) and the tabu list is
updated. Finally, Steps 2 and 3 are repeated until the stopping
criterion is reached.

2.3 Simulated Annealing
The idea for the annealing process originated in metalwork.
When metal is heated to a high temperature, it becomes a
liquid. As a liquid, the structure changes and, when it cools, it
re-solidifies in different shapes. Inspired by Metropolis et al.
[24] and physical annealing, simulated annealing (SA) was
proposed by Kirkpatrick et al. [18]. It became a well-known
heuristic algorithm and has been used for twenty years. SA is

a very applicable heuristic algorithm for combinatorial
problems that uses a neighborhood searching strategy. SA
begins from a random initial solution. A new state is
generated using a perturbation method. The change in energy
is expressed by Eq. 3.

Δ𝐸 = 𝑓 𝑛𝑒𝑤 − 𝑓(𝑜𝑙𝑑) (3)

wheref (new) is the new state object value and f (old) is the
current best solution value. The new state is accepted ifΔ𝐸< 0.

IfΔ𝐸>0, the new state may still be accepted if the Boltzmann

distribution is satisfied with Eq. 4.

𝑃𝑟𝑜𝑏 < (𝑒−
Δ𝐸

𝑇) (4)

where Prob is a random number [0,1] and T is a dynamic
control parameter. The SA process stops when it freezes or
the set number of iterations is reached.

2.4 Particle Swarm Optimization
Particle swarm optimization (PSO) is a population-based
swarm intelligence algorithm that was first presented by
Kennedy and Eberhard in 1995 [25], when the original PSO
was used for continuous optimization (i.e., function

optimization). PSO was first used for discrete problem [26] in
1997; the first article discussing the application of PSO to
solving PFSP was presented by Tasgetiren et al. [27] in 2004.
Some study applied particle swarm optimization (PSO) to
solving the PFSP, such as
[28][29][30][31][32][33][34][35][36].The main idea is that
each individual updates its current solution to reference with
its own history experiences and the experiences of others.Base

on [25] and [37], each particle is generated using a random
solution. The goal for each particle is to search for solution
space and update its own solution between cognitive
behaviour and social behaviour in the swarm, as the following
Eqs.5 and 6.

𝑣𝑖,𝑗
𝑡+1 = 𝜔𝑣𝑖,𝑗

𝑡 + 𝑐1𝑟1 𝑝𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 + 𝑐2𝑟2 𝑝𝑔𝑏𝑒𝑠𝑡 ,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 (5)

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑣𝑖,𝑗
𝑡+1(6)

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.1, June 2102

13

Fig 1: A standard particle swarm optimization (PSO)

algorithm

Table 2: Examples representing particle i

Position j Position value Ranking of values Job order

1 -0.43 -2.98 3

2 3.14 -2.37 7

3 -2.98 -0.43 1

4 2.61 0.25 6

5 1.56 1.56 5

6 0.25 2.61 4

7 -2.37 3.14 2

Table 3: Position information examples obtained from the

permutation solutions

Position j NEH/TS

solution

Random value Mapping

value

1 3 -3.14 -0.43

2 7 -2.37 3.14

3 1 -0.43 -2.98

4 6 1.56 2.61

5 5 0.25 1.56

6 4 2.61 0.25

7 2 -2.98 -2.37

where d is the dimension of the search area and tisthe iteration
number. The position and velocity of particlei in iteration t

are 𝛸𝑖
𝑡 = 𝛸𝑖,1

𝑡 , 𝛸𝑖,2
𝑡 , 𝛸𝑖,3

𝑡 ,… , 𝛸𝑖,𝑑
𝑡 and

𝑉𝑖
𝑡 = 𝑉𝑖,1

𝑡 , 𝑉𝑖,2
𝑡 , 𝑉𝑖,3

𝑡 ,… , 𝑉𝑖,𝑑
𝑡 , respectively. Personal best

𝑝𝑖
𝑡 = 𝑝𝑖,1

𝑡 , 𝑝𝑖,2
𝑡 , 𝑝𝑖,3

𝑡 ,… , 𝑝𝑖,𝑑
𝑡 corresponds to particle i and is

the best fitness value so far during time period t. The global
best is respected so that

𝑝𝑔𝑏𝑒𝑠𝑡 ,𝑗
𝑡 = 𝑝𝑔𝑏𝑒𝑠𝑡 ,1

𝑡 , 𝑝𝑔𝑏𝑒𝑠𝑡 ,2
𝑡 , 𝑝𝑔𝑏𝑒𝑠𝑡 ,3

𝑡 ,… , 𝑝𝑔𝑏𝑒𝑠𝑡 ,𝑑
𝑡 , which

indicates the best fitness solution found since initialization.
Inertia weight ω is used for controlling the convergence speed,

𝑐1 is the acceleration weight cognitive element, 𝑐2 is the

weight of the social parameter, and 𝑟1 and 𝑟2 are random

numbers uniformly distributed in the area of [0,1]. The
personal best update processing of particle iand the current
best (global best) solution in the swarm is updated using the
minimizing the object function f.
Figure 1 show the procedure for the standard PSO approach.

3. THE PROPOSED ALGORITHM
This PRHPSO algorithm consists of two main phases during

the PSO evolution, namely the pattern reduction operator
phase and regeneration operator phase. This section
introduces pattern reduction and the regeneration operator,
which are adapted into the PSO-based algorithm for solving
the permutation flow-shop scheduling problem (PFSP).

3.1 Particle Encoding
In the PSO algorithm, the particles fly through the solution
space engaging in social behaviour. Encoding particles in the
population for the PFSP is an important issue. In order to find
a suitable direct mapping between the positions (dimensions)
of particles and the job sequence, this paper employs a
heuristic approach called smallest position value (SPV) [38],
which is used for converting the continuous values into

permutations of the job sequence. In short, each particle is
represented by n continuous values. In the decoding process,
these continuous values are transformed into a permutation of
the job sequence by the SPV rule. Table 2 illustrates the
process of decoding a particle using the SPV rule.

The second column denotes the position values of the particle.
The fourth column indicates the increase of each value.
According to the SPV value, -2.98 is the smallest position

value. The first job order in 𝑥𝑖,1 is 3. Then, -2.37 is picked and

𝑥𝑖,2 is assigned in 7. The remaining values are picked

according to their ranking to construct the permutation. Thus,

the complete job permutation π = (3, 7,1,6,5,4,2).

3.2 Particle Initialization
To ensure that the initial swarm has a quality solution, the
NEH [4] heuristic algorithm and TS [23] are applied to
generating two solutions. The remaining particles are given
random values (including position and velocity) using

𝑥𝑖,𝑗 = 𝑥𝑢,𝑏 ∗ 𝑟 (7)

𝑣𝑖,𝑗 = 𝑣𝑙,𝑏 + 𝑣𝑢,𝑏 − 𝑣𝑙,𝑏 ∗ 𝑟 (8)

where 𝑥𝑢,𝑏 = 5.0, 𝑣𝑙,𝑏 = −5.0, 𝑣𝑢,𝑏 = 5.0, and r is in the

interval [0,1]. Table 3 shows an example of position values
generated from the permutation results.

3.3 Pattern Reduction
In the first phase, the concept of the pattern reduction (PR)
technique was presented by Chiang et al. [39]. It was used for

solving a clustering problem. According to previous research,
the PR can be used in meta-heuristics algorithms for solving
the combinatorial optimization problem.

In this paper, we modify the basic PR for the PFSP. This
operator is divided into two parts, namely detection and
compression. The goal of PR is to quickly eliminate redundant
process during PSO processing. Details of the two parts are
given below. Before the PR phase, the current best solution
will be called parent 1 and used in regeneration operator
phases.

3.3.1 Detection operator:
In this operator, the solutions are inspected against all
positions (dimensions), which are marked as either undetected
or detected, (detected positions are indicated by 1, others by
0). The detection vector is defined as.

𝐷𝑣𝑒𝑐 ∈ (0,1 ,∀ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) (9)

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.1, June 2102

14

Table 4: Rearrangement the of permutationusing

newposition value and spv rule

(Iteration i-1)

Position j

Position

value

Ranking of

values

Job

order

1 -0.43 -2.98 3
2 3.14 -2.37 7
3 -2.98 -0.43 1
4 2.61 0.25 6
5 1.56 1.56 5
6 0.25 2.61 4

7 -2.37 3.14 2

(Iteration i)

Position j

Position

value

Ranking of

values

Job

order

1 1.26 -2.01 4
2 -0.72 -1.67 7
3 1.68 -0.72 2

4 -2.01 0.53 5
5 0.53 1.26 1
6 3.91 1.68 3
7 -1.67 3.91 6

Table 5: Rearrangement of position values after the

pattern reduction operator

(Iteration i)

Position j

Job order Position value

1 4 1.26
2 7 -0.72
3 2 1.68
4 5 -2.01

5 1 0.53
6 3 3.91
7 6 -1.67

(After PR)

Position j
Job order Position value

1 47251 -2.14
2 3 1.68
3 6 3.91

Table 1 shows that all of the five permutation solutions have
three detected positions (1, 2, and 3), which have respective
element values of {1}, {2}, and {3}. The following rules are
used for determining the trigger condition for the compression
operator.

i.) If there are fewer than two positions marked as
detected.

ii.) If there are at least two positions labelled detected,
but none is marked as connected.

iii.) If there are two or more elements marked as
connected.

If the solutions belong to casei.) or case ii.), the compression
part is not triggered.

3.3.2 Compression operator:
In this part, the connected positions can be readily obtained
from common sub-solutions by interacting with the detection
vector. If the connective sub-solutions detected are redundant,
they can be merged into one element. Considering the
previous example in this operator, elements {1}, {2}, and {3}

can be merged into one set {123}. The {123} may find the
connective sub-solution {64} and the two sub-solutions may
be combined into one set {12364}. Then the set {12364} will
be compressed into one element {1}. Finally, the solution will
become {157}, which means only the makespan of the job
sequence {157} needs to be calculated, rather than {1236457}.

3.4 Particle Updating
A particle moves in a direction according to the inertia weight.
The best position and the best position so far of other particles
can be formalized using Eqs.5 and 6. These two equations are
used for determining the final position of particle i in iteration
t. However, new velocity and position values are obtained
aftereachiteration. Thus, after updating particle position

values, the permutation jobs sequence must be rearranged by
the SPV rule. Table 4 shows how to determine the new
permutation sequence after particle update. Table 5 shows
another example of how to determine and reduce the
dimensions of the new position values after the PR operator. It
can be seen in Table 5 that the job sequence {4725136} will
be reduced and compressed into the new job sequence {436}.
Thus the PR can reduce the computation time.

After the PR operator, we can get the convergence solution,
parent 2. Although the PR approach can reduce the
computation time, it may cause particles to converge very

quickly. Thus, the regeneration operator method is used for
improving the quality and diversity of the PSO algorithm.

3.5 Regenerate Operator
The concept in this phase uses the crossover operator - order
operator [40] (OX) to reconstruct all particles by using parent
1 and parent 2. The use of parent 1, parent 2 and (OX)
operator should be used for reconstructing the remaining

particles. Fig. 2 shows how the regeneration operator rebuilds
the remaining particles. After the reconstruction phase, each
new particle (solution) is used for reinitializing the position
and velocity values according to the SPV rule. This new
population will be evaluated by using the PSO algorithm until
the termination criteria are reached, but without employing
the PR operator again.

3.6 SA-based Local Search
In order to add diversity and improve quality, four
neighborhood perturbation methods (SA-based VNS local
search) can be used in the SA local search, namely pair-swap,
insertion, inversion, and displacement.

a) Pair-Swap: Randomly select two distinct positions and
swap them.

b) Insertion: Randomly select two distinct positions (a, b) and
insert b in front of a.

c) Inversion: Invert the subsequence between two random
positions in the solution.

d) Displacement: Select a subsequence and one cut point, and

insert in the subsequence before the cut point position. Figure
3 shows a simple example illustrating each of the
neighborhood perturbation methods.

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.1, June 2102

15

Fig 2: Example regeneration operator.

Fig 3: Example of the perturbation methods.

3.7 The PRHPSO algorithm
The PRHPSO algorithm is a two-phase hybrid PSO-based
algorithm for solving PFSP. Phase 1 uses the PR technique to
reduce computation time and, in phase 2, a regeneration

operator is adopted to balance exploitation and exploration
and restart the PSO evolution process without using the PR
operator.

Finally, the SA-based local search preserves the best solution
after the regeneration operator.The PRHPSO algorithm is
illustrated in Fig. 4.

Fig 4: The flowchart of the PRHPSO.

3.8 An Example
Considering the five solutions in Table 1, the process for
executing PRHPSO for this example is shown in Fig. 5. The
PR and regeneration operator are applied to the PSO
convergence processing. Assuming that the current best
solution sequence (parent 1) is {523641} before the PR
operator, and parent 2 is {123456} at the PR operator, then

parent 1 and parent 2 pass through the regeneration operator
OX to reconstruct the remaining particles. Straightforward the
PSO process, the best solution becomes {251364}. Finally,
the best solution {251364} is adjusted to {314562} using the
SA-based local search.

4. EXPERIMENTAL RESULTS
In this section, the performance of the proposed algorithm is
evaluated. The PRHPSO refers to the approach of applyingthe
PSO with PR to reduce the computation time, regenerate the
particle population, balance intensification and diversification,
and fine-tune the SA-based local search. The PRHPSO is
compared to two algorithms; one is the swap-based algorithm
[28] and the other is the SPV-based algorithm [32].

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.1, June 2102

16

Fig

5: An Example of PRHPSO algorithm.

Table 6: The Taillard benchmarks for permutation flow-

shop problem

Name of instance n jobs * m machines

Ta01 20*5

Ta11 20*10

Ta21 20*20

Ta31 50*5

Ta41 50*10

Ta51 50*20

Ta61

Ta71

Ta81

Ta91

Ta101

Ta111

100*5

100*10

100*20

200*10

200*20

500*20

Table 7Parameter settings for permutation flow-shop

instance

PSO parameters

Swarm size 50

of iterations 1000

PR start iteration 20

of simulations (R) 30

of Regeneration

Operator iterators

100

ω 0.9 to 0.4

𝑐1 ,𝑐2 2

SA parameters

Initial temperature T 100

Cooling coefficient β 0.99

TS parameters

Size of Tabu list 7

of iterations 1000

Table 8Experimental results of the PRHPSO against

DPSO

Name of instance DPSO[28] PRHPSO

ARPD 𝑡𝑎𝑣𝑔 ARPD 𝑡𝑎𝑣𝑔

Ta01 0.94 0.40 0.06 0.78

Ta11 4.74 0.47 0.69 0.92

Ta21 4.13 0.63 0.52 0.73

Ta31 0.77 1.76 0.18 2.36

Ta41 6.15 1.88 2.80 2.65

Ta51 4.05 2.27 2.93 3.22

Ta61 0.33 6.23 0.04 5.94

Ta71 2.01 6.42 0.92 5.77

Ta81 3.72 7.27 2.08 6.29

Ta91 15.74 23.35 0.69 17.86

Ta101 3.01 25.68 2.21 21.03

Ta111 7.47 142.93 1.97 109.76

Average 4.82 19.94 1.37 16.12

Table 9: Experimental results of the PRHPSO against

PSOVNS

Name of instance DPSO[28] PRHPSO

ARPD 𝑡𝑎𝑣𝑔 ARPD 𝑡𝑎𝑣𝑔

Ta01 0.03 9.84 0.06 0.78

Ta11 0.04 13.93 0.69 0.92

Ta21 0.18 21.57 0.52 0.73

Ta31 0.02 22.37 0.18 2.36

Ta41 1.73 30.56 2.80 2.65

Ta51 2.12 46.80 2.93 3.22

Ta61 0.06 43.72 0.04 5.94

Ta71 0.45 59.43 0.92 5.77

Ta81 1.57 92.89 2.08 6.29

Ta91 0.76 121.70 0.69 17.86

Ta101 1.49 190.49 2.21 21.03

Ta111 1.17 522.22 1.97 109.76

Average 0.88 106.95 1.37 16.12

The dataset generated by Taillard [41] was used in this
evaluation. The well-known benchmark composed of 120
instances from 20 jobs and 5 machines (Ta01) to 500 jobs and

20 machines (Ta111) for permutation flow-shop scheduling,
as shown in Table VI. All experiments were performed on a
computer with a core(TM)2 Quad Q9400 2.66GHz Intel CPU
with 2GB of memory running on Microsoft Windows 7. In the
experiments, all of the programs were implemented using
Java language. The PSO, SA, and TS parameter settings are
shown in Table VII. Table VIII and Table IX show a
comparison of the simulation results. The average percentage

relative deviation ARPD is shown in Eq. 10 and the average

computation time is denoted as𝑡𝑎𝑣𝑔 seconds.

ARPD =
𝑄𝑖−𝑄𝑏𝑘𝑠

𝑄𝑏𝑘𝑠
 ∗ 100% /R𝑅

𝑖 (10)

where 𝑄𝑖 denotes the values of the makespan of algorithm

found, 𝑄𝑏𝑘𝑠 indicates the best known solutions, and R denotes

the number of simulations. The performance can be divided
into the two parts, the ARPD value and the computation time.

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.1, June 2102

17

Table VIII and Table IX show the results of the DPSO,
PSOVNS, and the proposed PRHPSO algorithms for the best
known solutions for the Taillard’s benchmark. In Table VIII,
the PRHPSO is slightly slower than the DPSO in the dataset
Ta01 to Ta61. This is because the DPSO does not have the

SPV-rule mapping and rearranging strategy. By using the
SPV-rule, regeneration operator and SA-based local search,
the PRHPSO outperforms the DPSO in ARPD measure. In
Table IX, the PRHPSO is faster than the PSOVNS almost 6
times in total average; except in Ta61 and Ta91, it losses
quality in ARPD. This is because the PR operator leads the
PSO to fast convergence, and regeneration operator and SA
increase the quality.

5. CONCLUSIONS
A two-phase mememic PSO algorithm (PRHPSO) is proposed
for solving the permutation flow-shop scheduling problem.
The experimental results indicate that the proposed method is
faster than other algorithms with regard to CPU time in large
scale of benchmarks and has some quality loss compared to
PSOVNS. Many things can be done to refine this algorithm.
(1) More effective detection strategies should be developed

for the pattern reduction phase of algorithm. (2) In making the
ARPD solutions better than those of PSOVNS or other
effective algorithms, another powerful regeneration approach
should be considered, meaning to enhance the solution
searching abilities of particles.

6. ACKNOWLEDGMENTS
This work was supported in part by the National
ScienceCouncil, Taiwan, R.O.C., under grants NSC 100-

2218-E-006-031-MY3.

7. REFERENCES
[1] S. M. Johnson, “Optimal two- and three-stage production

schedules withsetup times included,” Naval Research
Logistics Quarterly, vol. 1, pp.61–68, 1954.

[2] A. H. G. Rinnooy Kan, Machine scheduling problems:
Classification,complexity and computations. Martinus

Nijhoff, The Hague, 1976.

[3] M. R. Garey, D. S. Johnson, and R. Sethi, “The
complexity of flowshopand jobshop scheduling,”
Mathematics of Operations Research, vol. 1,pp. 117–
129, 1976.

[4] M. Nawaz, E. E. Enscore Jr, and I. Ham, “A heuristic
algorithm for them-machine, n-job flow-shop sequencing
problem,” OMEGA, vol. 11,no. 1, pp. 91–95, 1983.

[5] I. H. Osman and C. N. Potts, “Simulated annealing for
permutationflow-shop scheduling,” Omega, vol. 17, no.
6, pp. 551–557, 1989.

[6] C. Low, J. Yeh, and K. Huang., “A robust simulated
annealing heuristicfor flow shop scheduling problem,”
International Journal of AdvancedManufacturing
Technology, vol. 23, pp. 762–767, 2004.

[7] E. Nowicki and C. Smutnicki, “A fast tabu search

algorithm for thepermutation flow-shop problem,”
European Journal of OperationalResearch, vol. 91, no. 1,
pp. 160–175, 1996.

[8] J. P.Watson, L. Barbulescu, L. D. Whitley, and A. E.
Howe, “Contrastingstructured and random permutation
flow-shop scheduling problems:Search-space topology

and algorithm performance,” ORSA Journal
onComputing, vol. 14, pp. 98–123, 2002.

[9] C. R. Reeves, “A genetic algorithm for flowshop
sequencing,” Computersand Operations Research., vol.
22, pp. 5–13, January 1995.

[10] O. Etiler, B. Toklu, M. Atak, and J. Wilson., “A genetic
algorithmfor flow shop scheduling problems,” The
Journal of the OperationalResearch Society, vol. 55, no.
8, pp. 830–835, 2004.

[11] T. St¨utzle, F. Intellektik, F. Informatik, and T. H.
Darmstadt, “Anant approach to the flow shop problem,”
in In Proceedings of the6th European Congress on
Intelligent Techniques & Soft Computing(EUFIT’98,

1997, pp. 1560–1564.

[12] C. Rajendran and H. Ziegler, “Ant-colony algorithms for
permutationflowshop scheduling to minimize
makespan/total flowtime of jobs,”European Journal of
Operational Research, vol. 155, no. 2, pp. 426–
438,2004..

[13] Q.-K. Pan, M. F. Tasgetiren, and Y.-C. Liang, “A
discrete differentialevolution algorithm for the

permutation flowshop scheduling problem,”Computers
and Industrial Engineering, vol. 55, no. 4, pp. 795–
816,2008.

[14] Q.-K. Pan, L. Wang, and B. Qian, “A novel differential
evolution algorithmfor bi-criteria no-wait flow shop
scheduling problems,” Computersand Operations
Research, vol. 36, pp. 2498–2511, 2009.

[15] B. Qian, L. Wang, R. Hu, W.-L. Wang, D.-X. Huang,

and X. Wang, “Ahybrid differential evolution method for
permutation flow-shop scheduling,”The International
Journal of Advanced Manufacturing Technology,vol. 38,
pp. 757–777, 2008.

[16] Y. Zhang, X. Li, and Q. Wang, “Hybrid genetic
algorithm for permutationflowshop scheduling problems
with total flowtime minimization,”European Journal of
Operational Research, vol. 196, no. 3, pp. 869–876,2009.

[17] T.-C. Chiang, H.-C. Cheng, and L.-C. Fu, “NNMA: An

effective memeticalgorithm for solving multiobjective
permutation flow shop schedulingproblems,” Expert
Systems with Applications, vol. 38, no. 5, pp. 5986 –
5999, 2011..

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
“Optimization bysimulated annealing,” Science, vol.
220, pp. 671–680, 1983.

[19] N. Mladenovic, “Variable neighborhood search,”

Computers and OperationsResearch, vol. 24, no. 11, pp.
1097–1100, 1997.

[20] E. Taillard, “Some efficient heuristic methods for the
flow shop sequencingproblem,” European Journal of
Operational Research, vol. 47, no. 1,pp. 65–74, Jul.
1990.

[21] T. Aldowaisan and A. Allahverdi, “New heuristics for
no-wait flowshopsto minimize makespan,” Computers

and Operations Research, vol. 30,no. 8, pp. 1219 – 1231,
2003.

[22] P. J. Kalczynski and J. Kamburowski, “An improved neh
heuristicto minimize makespan in permutation flow

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.1, June 2102

18

shops,” Computers andOperations Research, vol. 35, pp.
3001–3008, 2008.

[23] F. Glover and M. Laguna, Tabu Search. Norwell, MA,
USA: KluwerAcademic Publishers, 1997.

[24] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A.

H. Teller, andE. Teller, “Equation of State Calculations
by Fast Computing Machines,”The Journal of Chemical
Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[25] J. Kennedy and R. Eberhart, “Particle swarm
optimization,” in NeuralNetworks, 1995. Proceedings.,
IEEE International Conference on, vol. 4,1995, pp.
1942–1948.

[26] J. Kennedy and R. C. Eberhart, “A discrete binary

version of the particleswarm algorithm,” in IEEE
International Conference on Systems, Man,and
Cybernetics,, vol. 5, 1997, pp. 4104–4108.

[27] M. Tasgetiren, M. Sevkli, Y.-C. Liang, and G.
Gencyilmaz, “Particleswarm optimization algorithm for
permutation flowshop sequencingproblem,” in Ant
Colony Optimization and Swarm Intelligence.
SpringerBerlin / Heidelberg, 2004.

[28] K. Rameshkumar, R. Suresh, and K. Mohanasundaram,
“Discrete particleswarm optimization (dpso) algorithm
for permutation flowshopscheduling to minimize
makespan,” in Advances in Natural Computation,ser.
Lecture Notes in Computer Science. Springer Berlin
/Heidelberg, 2005, vol. 3612, p. 572581.

[29] Z. Lian, X. Gu, and B. Jiao, “A similar particle swarm
optimizationalgorithm for permutation flowshop

scheduling to minimize makespan,”Applied Mathematics
and Computation, vol. 175, pp. 773–785, 2006.

[30] C.-J. Liao, C.-T. Tseng, and P. Luarn, “A discrete
version of particleswarm optimization for flowshop
scheduling problems,” Computers andOperations
Research, vol. 34, pp. 3099–3111, 2007.

[31] B. Liu, L. Wang, and Y.-H. Jin, “An effective pso-based
memeticalgorithm for flow shop scheduling,” Systems,
Man, and Cybernetics,Part B: Cybernetics, IEEE

Transactions on, vol. 37, no. 1, pp. 18 –27,feb. 2007.

[32] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G.
Gencyilmaz, “A particleswarm optimization algorithm

for makespan and total flowtime minimizationin the
permutation flowshop sequencing problem,”
EuropeanJournal of Operational Research, vol. 177, no.
3, pp. 1930 – 1947, 2007.

[33] C. Zhang, J. Sun, X. Zhu, and Q. Yang, “An improved

particle swarmoptimization algorithm for flowshop
scheduling problem,” InformationProcessing Letters, vol.
108, pp. 204–209, 2008.

[34] D. Sha and H. Hung Lin, “A particle swarm optimization
for multiobjectiveflowshop scheduling,” The
International Journal of AdvancedManufacturing
Technology, vol. 45, pp. 749–758, 2009.

[35] C. Zhang, J. Ning, and D. Ouyang, “A hybrid alternate

two phases particleswarm optimization algorithm for
flow shop scheduling problem,”Computers and Industrial
Engineering, vol. 58, pp. 1–11, February 2010.

[36] H. Liu, L. Gao, and Q. Pan, “A hybrid particle swarm
optimization withestimation of distribution algorithm for
solving permutation flowshopscheduling problem,”
Expert Systems with Applications, vol. 38, pp.4348–
4360, 2011.

[37] Y. Shi and R. Eberhart, “A modified particle swarm
optimizer,” in Proceedingsof IEEE international
conference on evolutionary computation,1998, pp. 69–
73.

[38] J. C. Bean, “Genetic algorithms and random keys for
sequencing andoptimization,” ORSA Journal on
Computing, vol. 6, no. 2, pp. 154–160,1994.

[39] M.-C. Chiang, C.-W. Tsai, and C.-S. Yang, “A time-

efficient patterreduction algorithm for k-means
clustering,” Inf. Sci., vol. 181, no. 4,pp. 716–731, Feb.
2011.

[40] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study
of permutationcrossover operators on the traveling
salesman problem,” in Proceedingsof the Second
International Conference on Genetic Algorithms
onGenetic algorithms and their application. Hillsdale,
NJ, USA: L.Erlbaum Associates Inc., 1987, pp. 224–230.

[41] E. Taillard, “Benchmarks for basic scheduling
problems,” EuropeanJournal of Operational Research,
vol. 64, no. 2, pp. 278–285, January1993..

