
International Journal of Computer Applications (0975 – 8887)

Volume 48– No.1, June 2012

1

Game-enabling the 3D-Mandelbulb Fractal by adding

Velocity-induced Support Vectors

Bulusu Rama

Assistant Professor of CSE
SLC Institute of Engg. And Technology

Piglipur(V),Hayatnagar(M),

Hyderabad – 501512(A.P.) India

Jibitesh Mishra
Head of Dept. of Information Technology

College of Engg. & Tech.
BPUT,Ghatikia.

Bhubaneswar- 751030(Odisha) India

ABSTRACT

Fractals provide an innovative method for generating 3D

images of real-world objects by using computational
modelling algorithms based on the imperatives of self-
similarity, scale invariance, and dimensionality. Of the many
different types of fractals that have come into limelight since
their origin, the family of Mandelbrot Set fractals has eluded
both mathematicians and computer scientists alike. And the
„true‟ 3D realization of the Mandelbrot set has been a
challenging centre piece of research with its limits extending

only to that of the sky. An earlier paper co-authored by us in
2011 explained a method of realizing a „true‟ 3D simulation of
the Mandelbrot set and the rendering of the same onto 3-
dimensional space. This paper takes a step further in using this
variant of the Mandelbulb as input and outlines a method of
the game-enabling of the same Mandelbulb by using
direction-oriented vectors that are analogous in function to
that of Support Vectors in the Support Vector Graphics (SVG)

domain. A real-world application of the same can translate to
examples of understanding an entire coast-line set to motion
in space by adding 3D-animation enabled elevation to the
corresponding fractal image.

General Terms

Algorithms, Fractal Geometry

Keywords

Fractals, Mandelbrot Set, Mandelbulb, Three Dimensional
Velocity, Rendering, Support Vectors

1. INTRODUCTION
A fractal is a rough or fragmented geometric shape that can be
subdivided into parts, each of which is (at least
approximately) a reduced size copy of the whole or in other
words, is self-similar when compared with respect to the
original shape. The term was coined by Benoit Mandelbrot in
1975 and was derived from the Latin word “fractus” meaning

“broken” or “fractional”. The primary characteristic properties
of fractals are self-similarity, scale invariance and general
irregularity in shape due to which they tend to have a
significant detail even after magnification-the more the
magnification the more the detail. In most cases, a fractal can
be generated by a repeating pattern constructed by a recursive
or iterative process. Natural fractals possess statistical self-
similarity whereas regular fractals such as Sierpinski Gasket,

Cantor set or Koch curve contain exact self-similarity. A 3D
rendering of the Mandelbrot set is popularly termed as the
Mandelbulb. This paper takes a step further in game-enabling
the Mandelbulb by adding variant input based velocity
induction that sets the Mandelbulb in a dynamically
controllable motion. It does this by using a dynamically set

speed 2-tuple that acts as a Support Vector lever to kick-off
the game-enablement. The source image of the 3D
Mandelbulb is generated based on rotation of the Mandelbrot
set away from the azimuthal or the z-axis, followed by an IFS-
based repeated execution and the rendering of the same in 3D.

The game-enabling program was implemented using the
Python Visual Development Kit and the Python Game API
and rendered using the VIDLE GUI based on the algorithms
presented in the following sections. The displayed output of
the same based on a typical set of inputs is presented. The
experimental results are shown in section 4 and concluding
remarks in section 5.

2. ABOUT MANDELBROT SET AND 3D

MANDELBULB
A brief description of Mandelbrot Set and the 3D Mandelbulb

along with their properties followed by a description of game-
enabling the Mandelbulb based on adding variant support
vectors game-enabling on iterative function systems is
presented in the paragraphs that follow. The Mandelbrot Set
was invented by the French mathematician Benoit Mandelbrot
in 1979, when he was working on the simple equation z = z2 +
c. In this equation, z and c denote complex numbers. In other
words, the Mandelbrot set is the set of all such complex

numbers c, that iterating z = z2+c does not diverge. Hence, it
is a connected set of points, which is bounded.

An Iterated Function System (IFS) based on the maximum
number of iterations and an initially defined region denoting
the lower and upper limits of the bounded space, is iterated as
many times as the maximum number of iterations. The
resulting set of points can be span an indeterminable amount
of space that is a function of the number of iterations
involved. Then the set of all points for which the line spacing

from the origin to that point in each of the co-ordinate
directions is zero constitutes the Mandelbrot Set. Applying the
set of affine transformations iteratively on each point in the
starting region set, the resulting fractal is a self-similar shaped
image that resembles an approximation to the original image.
This effect is best visualized when rendered in 3D.

To generate the Mandelbrot set graphically, the computer
screen becomes the complex plane. Each point on the plane is

tested into the equation z = z2+c. If the iterated z stayed
within a given boundary forever, i.e., is convergent, the point
is inside the set and the point is plotted black. If the iteration
went of control, i.e., is divergent, the point was plotted in a
colour with respect to how quickly it escaped. When testing a
point in a plane to see if it is part of the set, the initial value of
z is always zero. This is so because zero is the critical point of
the equation used to generate the set. The true canonical form

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.1, June 2012

2

of 3D Mandelbrot set is deemed to be non-existent as the 3D
equivalent of the 2D complex plane is non-existent.

However, using an nth power of a 3D hyper-complex number,
a true 3D version of the same can be obtained and is often
referred to as the Mandelbulb. This is obtained by using a

rotation transformation away from the z-axis.

The corresponding rotational matrix of the Mandelbulb is

{x, y, z}^n = Rz(n θ)*Ry(-n*φ)*{r^n, 0, 0}

where

 r = SQRT(x²+y²+z²),

 θ (theta) = ATAN2(y, x),

 φ (phi) = ASIN(z/r)

This does an azimuthal angle (phi) rotation away from the

azimuthal axis (z-axis).

The 3D version is obtained using the iteration z = zn + c

where z and c are 3-dimensional hyper-complex numbers with

the power mapping z → zn defined as stated above. For n > 3,

the result is a 3-dimensional bulb-like structure with fractal

surface detail and a number of "lobes" controlled by the

parameter n. Multiple graphic renderings can be generated

using n = 8.

The rotational matrices of the 3D Mandelbulb can be defined

as

Rx(θ) = matrix[(1 0 0), (0 cos(θ) - sin(θ)), (0 sin(θ)

cos(θ))],

Ry(θ) = matrix[(cos(θ) 0 sin(θ)), (0 1 0), (-sin(θ) 0

cos(θ))],

Rz(θ) = matrix[(cos(θ) -sin(θ) 0), (sin(θ) cos(θ) 0), (0 0 1)]

The expanded trigonometric form of the same is given below.

{x, y, z}^n = rn{a1cos(nθ) – a2sin(nθ), a1sin(nθ) + a2cos(nθ),

 xsin(nφ)/rxy}

The corresponding equation for n=2 is as follows:

{x, y, z}2 = {x2 – y2 – (x4 – 6x2y2 + y4)z2 / r4xy, 2xy(1 –

2(x2 – y2)z2/r4xy), 2xz}.

3. METHOD OF GAME-ENABLING

THE MANDELBULB
A step-by-step description of the method used to game-enable

the Mandelbulb is outlined in the following steps:

1. Adding a support vector property that is input-

variant to a chosen 3D Mandelbulb fractal

image.

2. The support vector consists of a 2-tuple speed

vector [sx, sy] corresponding to the [horizontal,

vertical] velocities that sets the Mandelbulb in

motion (simultaneously) in either direction.

3. Setting the reference frame of motion wherein

the Mandelbulb games through driven by the

added support vector.

4. Using brit-and-flip graphics functionality to

dynamically contain the Mandelbulb within the

boundaries of the frame-of-motion.

5. The dynamic variables involved in this method

are:

a. The speed vector 2-tuple.

b. The referential frame-of-motion itself.

c. The back ground colour.

d. The maximum time period that allows

the Mandelbulb to game in motion.

The program runs as a Windows console application using the
VIDLE GUI, with the 3D Mandelbulb being input as a colour-

mapped JPEG image obtained by projecting the Mandelbrot
set onto the 3D plane, using MATHLAB 3D Image Rendering
software. The game-enabling was achieved using the Python
Visual Development Kit and the Python Game API also called
pygame. The flex-based gaming-in-motion is as depicted in
Figure 2.

The pygame() is a Python-enabled Visual Graphics API that is
Open-source and compatible with OpenGL algorithms and

other standard Graphics libraries. This eased the
implementation of the routines for constructing the initial
reference frame-of-motion and the subsequent velocity-
induced support vectors that set the Mandelbulb in motion-
driven gaming in a very flexible and efficient fashion.
Additional details and other related techniques for further
research can be found in the books as in [3], [4], and the
publications [5]-[8].

4. EXPERIMENTAL RESULTS
This section depicts the results obtained by applying above
described method(s) to implement the Mandelbulb game-
enabling based on the defined variant parameters, and the
subsequent gaming-in-action is captured as a Video Clip in
AVI format. The program was written in the Python

programming language, the Python-based 3D “visual”
Graphics library VPython, and the Python Game API called
pygame. It runs as a Windows console application using the
VIDLE GUI, with the 3D Mandelbulb being input as a colour-
mapped JPEG image obtained by projecting the Mandelbrot
set onto the 3D plane, using MATHLAB 3D Image Rendering
software.

The flex-based gaming-in-motion is as depicted in Figure 2.

That contains an embedded AVI Object of the corresponding
Video Clip.

Figure 1 shows the „true‟ 3D simulated Mandelbulb fractal
image that is used as primary input source for the game-
enabling process. Figure 2 shows the flex-version of the
motion-based output of the game in action.

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.1, June 2012

3

Fig. 1: The ‘true’ 3D simulated Mandelbulb fractal image

that is used as primary input source for the game-enabling

process.

gameEnablingMandelbulb.avi

Fig. 2: The embedded link to the flex-version Video Clip of

the motion-based output of the Mandelbulb in action.

Double-clicking the image activates the video clip.

5. CONCLUSION
The 3D version of the Mandelbrot set termed as Mandelblub
gives an idea about the nature and mathematical aspect of the
Mandelbrot formula. Though the authors mentioned in their
earlier communication that a true 3D version of Mandelbrot
set is not created so far [2], the JPEG image of the 3D

Mandelbulb used as the input source is one obtained by an
pragmatic attempt made to create a 3D version of Mandelbrot
set based on rotation away from the azimuthal or the z-axis. It
is to be noted that there are many such Mandelblub made by
researchers from time to time. However none of them truly
represents the 3D version of Mandelbrot set. This image is an
interim result of an ongoing work. This paper presents an
extension of the Mandelbulb by enabling it to be used in 3D

Games in a flexible manner opens the doors for an entirely
different domain of fitting the infinite subversions in the finite
world - where the so-termed infinitely dimensional
Mandelbulb (a zoomed-in version of the Mandelbrot set that
tends to extend to infinity), namely the Mandelbrot Set and
the Mandelbulb, is algorithmically interpolated by way of
theory and experimentation, to be dynamically set to motion
by adding the support vector as the extra lever. A real-world
Imagineering of the same can translate to examples like an

entire coast-line set to dance in space by adding 3D-animation
enabled elevation to the corresponding fractal image.

6. REFERENCES
[1] B. Rama and J. Mishra, “Generation of 3D fractal images

for Mandelbrot Set,” In Proceedings of the Intl. Conf.
Communication, Computing & Security, pp. 235-238,
2011, doi:10.1145/1947940.1947990 (ACM-
International Conference Proceedings Series).

[2] B. Rama and J. Mishra, "Generation of 3D Fractal
Images for Mandelbrot and Julia Sets," Intl. J. of
Computer and Communication Tech. vol. 1, nos. 2-4, pp.
178-182, 2010 (Special Issue).

[3] Akenine-Moller, T., Haines, E., and Hoffman, N. 2009
Real-Time Rendering, Natick, MA: A.K. Peters, 3rd
Edition.

[4] Roelofs, G., 1999. PNG – The Definitive Guide.
Sebastopol, CA: O'Reilly & Associates.

[5] Scherer, D., Andersen, D., Brandmeyer, J., Chabey, R.,
Heitner, A., Peters, I., and Sherwood, B. 2000 VPython
– 3D Programming for Ordinary Mortals, available at

http://www.vpython.org/index3.html
[6] OOoAuthors Group. 2010. “Changing Object

Attributes,” OpenOffice.org 3 Draw Guide, Chapter 04,
available at
:http://wiki.services.openoffice.org/wiki/Documentation/
OOo3_User_Guides/Draw_Guide/Changing_Object_Attr
ibutes

[7] Lei, T. 1990. "Similarity between the Mandelbrot Set and

Julia Sets", Communications in Math. Phys., vol. 134,
pp. 587-617.

[8] Peitgen, H.O., Saupe, D., Fisher, Y., McGuire, M., Voss,
R.F., Barnsley, M.F., Devaney, R.L., and Mandelbrot,
B.B. 1988. The Science of Fractal Images, New York,
NY: Springer-Verlag.

[9] N. Yokoya, K. Yamamoto, and N. Funakubo, "Fractal-
based analysis and interpolation of 3D natural surface
shapes and their application to terrain modeling,"

Computer Vision, Graphics, and Image Processing, vol.
46, pp. 289–302, 1989.

[10] G.B. Wyvill and C. McPheeters, "Solid texturing of soft
objects," IEEE Computer Graphics and Applications,
vol. 7, no. 12, pp. 20–26, 1987.

[11] Norton, "Generation and display of geometric fractals in
3D," Computer Graphics, vol. 16, no. 1, pp. 61–67,
1982.[12] E. Groeller and H. Wegenkiltl, "Interactive

design of non-linear functions for iterated function
systems," Proc. 4th Intl. Conf. Computer Graphics
and Visualization, (WSCG‟96), pp. 93–102, Plzen,
1996.

[12] M.F. Barnsley, J.H. Elton, and D.P. Hardin, "Recurrent
iterated function systems," Constructive Approximation,
vol. 5, pp. 3–31, 1989.[14] M.F. Barnsley and J.
Hutchinson, "New methods in fractal imaging,"

Proc. CGIV, (CGIV‟06), Sydney 2006.
[13] S. Nikiel, "An efficient fractal modeller (modification of

the IFS)," Proc. 4th Intl. Conf. Computer Graphics and
Visualization, (WSCG‟96), pp. 294–300, Plzen, 1996.

[14] J.J. VanWijk and D. Saupe, "Image-based rendering of
iterated function systems," Computers & Graphics, vol.
28, no. 6, pp. 937–943, 2004.

[15] D.M. Monro and F. Dudbridge, "Rendering algorithms

for deterministic fractals," IEEE Computer Graphics and
Applications, vol. 272, no. 17, pp. 32–41, 1995.

[16] Y.Q. Chen and G. Bi, "3D IFS fractals as real-time
graphics model," Computers & Graphics, vol. 21, no. 3,
pp. 367–370, 1997.

[17] Mandelbrot, M. 1982. The Fractal Geometry of Nature,
New York, NY: W.H. Freeman & Co.

