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ABSTRACT 

Fractals provide an innovative method for generating 3D 

images of real-world objects by using computational 
modelling algorithms based on the imperatives of self-
similarity, scale invariance, and dimensionality. Of the many 
different types of fractals that have come into limelight since 
their origin, the family of Mandelbrot Set fractals has eluded 
both mathematicians and computer scientists alike. And the 
„true‟ 3D realization of the Mandelbrot set has been a 
challenging centre piece of research with its limits extending 

only to that of the sky.   An earlier paper co-authored by us in 
2011 explained a method of realizing a „true‟ 3D simulation of 
the Mandelbrot set and the rendering of the same onto 3-
dimensional space. This paper takes a step further in using this 
variant of the Mandelbulb as input and outlines a method of 
the game-enabling of the same Mandelbulb by using 
direction-oriented vectors that are analogous in function to 
that of Support Vectors in the Support Vector Graphics (SVG) 

domain. A real-world application of the same can translate to 
examples of understanding an entire coast-line set to motion 
in space by adding 3D-animation enabled elevation to the 
corresponding fractal image.   
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1. INTRODUCTION 
A fractal is a rough or fragmented geometric shape that can be 
subdivided into parts, each of which is (at least 
approximately) a reduced size copy of the whole or in other 
words, is self-similar when compared with respect to the 
original shape. The term was coined by Benoit Mandelbrot in 
1975 and was derived from the Latin word “fractus” meaning 

“broken” or “fractional”. The primary characteristic properties 
of fractals are self-similarity, scale invariance and general 
irregularity in shape due to which they tend to have a 
significant detail even after magnification-the more the 
magnification the more the detail. In most cases, a fractal can 
be generated by a repeating pattern constructed by a recursive 
or iterative process. Natural fractals possess statistical self-
similarity whereas regular fractals such as Sierpinski Gasket, 

Cantor set or Koch curve contain exact self-similarity. A 3D 
rendering of the Mandelbrot set is popularly termed as the 
Mandelbulb. This paper takes a step further in game-enabling 
the Mandelbulb by adding variant input based velocity 
induction that sets the Mandelbulb in a dynamically 
controllable motion. It does this by using a dynamically set 

speed 2-tuple that acts as a Support Vector lever to kick-off 
the game-enablement. The source image of the 3D 
Mandelbulb is generated based on rotation of the Mandelbrot 
set away from the azimuthal or the z-axis, followed by an IFS-
based repeated execution and the rendering of the same in 3D. 

The game-enabling program was implemented using the 
Python Visual Development Kit and the Python Game API 
and rendered using the VIDLE GUI based on the algorithms 
presented in the following sections. The displayed output of 
the same based on a typical set of inputs is presented. The 
experimental results are shown in section 4 and concluding 
remarks in section 5.  

2. ABOUT MANDELBROT SET AND 3D 

MANDELBULB 
A brief description of Mandelbrot Set and the 3D Mandelbulb 

along with their properties followed by a description of game-
enabling the Mandelbulb based on adding variant support 
vectors  game-enabling on iterative function systems is 
presented in the paragraphs that follow. The Mandelbrot Set 
was invented by the French mathematician Benoit Mandelbrot 
in 1979, when he was working on the simple equation z = z2 + 
c. In this equation, z and c denote complex numbers. In other 
words, the Mandelbrot set is the set of all such complex 

numbers c, that iterating z = z2+c does not diverge. Hence, it 
is a connected set of points, which is bounded.  

An Iterated Function System (IFS) based on the maximum 
number of iterations and an initially defined region denoting 
the lower and upper limits of the bounded space, is iterated as 
many times as the maximum number of iterations. The 
resulting set of points can be span an indeterminable amount 
of space that is a function of the number of iterations 
involved. Then the set of all points for which the line spacing 

from the origin to that point in each of the co-ordinate 
directions is zero constitutes the Mandelbrot Set. Applying the 
set of affine transformations iteratively on each point in the 
starting region set, the resulting fractal is a self-similar shaped 
image that resembles an approximation to the original image. 
This effect is best visualized when rendered in 3D.  

To generate the Mandelbrot set graphically, the computer 
screen becomes the complex plane. Each point on the plane is 

tested into the equation z = z2+c. If the iterated z stayed 
within a given boundary forever, i.e., is convergent, the point 
is inside the set and the point is plotted black. If the iteration 
went of control, i.e., is divergent, the point was plotted in a 
colour with respect to how quickly it escaped. When testing a 
point in a plane to see if it is part of the set, the initial value of 
z is always zero. This is so because zero is the critical point of 
the equation used to generate the set. The true canonical form 
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of 3D Mandelbrot set is deemed to be non-existent as the 3D 
equivalent of the 2D complex plane is non-existent.  

However, using an nth power of a 3D hyper-complex number, 
a true 3D version of the same can be obtained and is often 
referred to as the Mandelbulb. This is obtained by using a 

rotation transformation away from the z-axis.  

The corresponding rotational matrix of the Mandelbulb is  

 

{x, y, z}^n = Rz(n θ)*Ry(-n*φ)*{r^n, 0, 0} 

 

where  

       r = SQRT(x²+y²+z²),  

       θ (theta) = ATAN2(y, x),  

       φ (phi) = ASIN(z/r) 

 

This does an azimuthal angle (phi) rotation away from the 

azimuthal axis (z-axis).  

The 3D version is obtained using the iteration z = zn + c 

where z and c are 3-dimensional hyper-complex numbers with 

the power mapping z → zn defined as stated above. For n > 3, 

the result is a 3-dimensional bulb-like structure with fractal 

surface detail and a number of "lobes" controlled by the 

parameter n. Multiple graphic renderings can be generated 

using n = 8.  

The rotational matrices of the 3D Mandelbulb can be defined 

as  

Rx(θ)   =   matrix[(1   0    0), (0 cos(θ) - sin(θ)), (0 sin(θ) 

cos(θ))], 

Ry(θ)   =   matrix[(cos(θ)   0    sin(θ)), (0 1 0), (-sin(θ) 0 

cos(θ))], 

Rz(θ)   =   matrix[(cos(θ)   -sin(θ) 0), (sin(θ) cos(θ) 0), (0 0 1)] 

  

The expanded trigonometric form of the same is given below.  

{x, y, z}^n = rn{a1cos(nθ) – a2sin(nθ), a1sin(nθ) + a2cos(nθ), 

 xsin(nφ)/rxy} 

 

The corresponding equation for n=2 is as follows: 

 

{x, y, z}2 = {x2 – y2 – (x4 – 6x2y2 + y4)z2 / r4xy, 2xy(1 – 

2(x2 – y2)z2/r4xy), 2xz}. 

3. METHOD OF GAME-ENABLING 

THE MANDELBULB 
A step-by-step description of the method used to game-enable 

the Mandelbulb is outlined in the following steps: 

1. Adding a support vector property that is input-

variant to a chosen 3D Mandelbulb fractal 

image.  

2. The support vector consists of a 2-tuple speed 

vector [sx, sy] corresponding to the [horizontal, 

vertical] velocities that sets the Mandelbulb in 

motion (simultaneously) in either direction. 

3. Setting the reference frame of motion wherein 

the Mandelbulb games through driven by the 

added support vector.  

4. Using brit-and-flip graphics functionality to 

dynamically contain the Mandelbulb within the 

boundaries of the frame-of-motion.  

5. The dynamic variables involved in this method 

are: 

a. The speed vector 2-tuple. 

b. The referential frame-of-motion itself.  

c. The back ground colour. 

d. The maximum time period that allows 

the Mandelbulb to game in motion. 

 

The program runs as a Windows console application using the 
VIDLE GUI, with the 3D Mandelbulb being input as a colour-

mapped JPEG image obtained by projecting the Mandelbrot 
set onto the 3D plane, using MATHLAB 3D Image Rendering 
software. The game-enabling was achieved using the Python 
Visual Development Kit and the Python Game API also called 
pygame. The flex-based gaming-in-motion is as depicted in 
Figure 2.  

The pygame() is a Python-enabled Visual Graphics API that is 
Open-source and compatible with OpenGL algorithms and 

other  standard Graphics libraries. This eased the 
implementation of the routines for constructing the initial 
reference frame-of-motion and the subsequent velocity-
induced support vectors that set the Mandelbulb in motion-
driven gaming in a very flexible and efficient fashion. 
Additional details and other related techniques for further 
research can be found in the books as in [3], [4], and the 
publications [5]-[8]. 

4. EXPERIMENTAL RESULTS  
This section depicts the results obtained by applying above 
described method(s) to implement the Mandelbulb game-
enabling based on the defined variant parameters, and the 
subsequent gaming-in-action is captured as a Video Clip in 
AVI format. The program was written in the Python 

programming language, the Python-based 3D “visual” 
Graphics library VPython, and the Python Game API called 
pygame.  It runs as a Windows console application using the 
VIDLE GUI, with the 3D Mandelbulb being input as a colour-
mapped JPEG image obtained by projecting the Mandelbrot 
set onto the 3D plane, using MATHLAB 3D Image Rendering 
software.  

The flex-based gaming-in-motion is as depicted in Figure 2. 

That contains an embedded AVI Object of the corresponding 
Video Clip.  

Figure 1 shows the „true‟ 3D simulated Mandelbulb fractal 
image that is used as primary input source for the game-
enabling process. Figure 2 shows the flex-version of the 
motion-based output of the game in action. 
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Fig. 1: The ‘true’ 3D simulated Mandelbulb fractal image 

that is used as primary input source for the game-enabling 

process. 

 

gameEnablingMandelbulb.avi
 

Fig. 2: The embedded link to the flex-version Video Clip of 

the motion-based output of the Mandelbulb in action. 

Double-clicking the image activates the video clip. 

 

5. CONCLUSION 
The 3D version of the Mandelbrot set termed as Mandelblub 
gives an idea about the nature and mathematical aspect of the 
Mandelbrot formula. Though the authors mentioned in their 
earlier communication that a true 3D version of Mandelbrot 
set is not created so far [2], the JPEG image of the 3D 

Mandelbulb used as the input source is one obtained by an 
pragmatic attempt  made to create a 3D version of Mandelbrot 
set based on rotation away from the azimuthal or the z-axis. It 
is to be noted that there are many such Mandelblub made by 
researchers from time to time. However none of them truly 
represents the 3D version of Mandelbrot set. This image is an 
interim result of an ongoing work. This paper presents an 
extension of the Mandelbulb by enabling it to be used in 3D 

Games in a flexible manner opens the doors for an entirely 
different domain of fitting the infinite subversions in the finite 
world - where the so-termed infinitely dimensional 
Mandelbulb (a zoomed-in version of the Mandelbrot set that 
tends to extend to infinity), namely the Mandelbrot Set and 
the Mandelbulb, is algorithmically interpolated by way of 
theory and experimentation, to be dynamically set to motion 
by adding the support vector as the extra lever. A real-world 
Imagineering of the same can translate to examples like an 

entire coast-line set to dance in space by adding 3D-animation 
enabled elevation to the corresponding fractal image. 
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