
International Journal of Computer Applications (0975 – 888)

Volume 47– No.7, June 2012

46

A Clustering Approach for Task Assignment Problem

Vinay Kumar

School of Computer and
System Sciences

Jawaharlal Nehru University
New Delhi, INDIA

P. C. Saxena, PhD.
School of Computer and

System Sciences
Jawaharlal Nehru University

New Delhi, INDIA

C. P. Katti, PhD.
School of Computer and

System Sciences
Jawaharlal Nehru University

New Delhi, INDIA

ABSTRACT

The problem of task assignment in heterogeneous computing
system has been studied for many years with many versions.
We consider the problem in which tasks are to be assigned to
homogeneous and heterogeneous machines to minimize the
sum of the total computation and communication costs. In this

paper, we introduce a novel algorithm to solve task
assignment problem. It optimizes the assignment of cluster
according to the storage and load balancing constraints and
converts task assignment problem into a linear programming
problem under the constraints of memory availability and load
balancing on each machine. The aim of this work is to
increase throughput, maximize resource utilization and
fulfillment of user requirements.

General Terms

Distributed Computing, Heterogeneous Computing

Keywords

TaskAssignment Problem;Task Scheduling; Load Balancing.

1. INTRODUCTION
In recent years, work of network technology has made
distributed computing system an attractive alternative to

massively parallel machines [1]. To exploit the capability of
these systems for an effective parallelism, the tasks of an
application must be properly assigned to the machines. A
heterogeneous computing environment that consists of a
heterogeneous suite of machines and high-speed
interconnections provides a variety of architectural
capabilities, which perform an application that has diverse
computational requirements [2, 3, 4, and 5]. The performance
criterion for heterogeneous computing used in this paper is to

minimize the completion time, i.e., the overall execution time
of the application on the machine suite. Partitioning of tasks
and assigningto machines is an important issue in
homogeneous and heterogeneous environment. The problem
of task assignment in homogeneous and heterogeneous system
deals with finding proper assignment of tasks to machine in
order to optimize some performance metric such as the system
utilization and turnaround time. Task partitioning and

assigning problem are discussed in many papers e.g. [6, 7, 8,
9, 10].

In min-min heuristic [6], minimum completion time for each
unmapped tasks respect to all machines is calculated. A task is
then selected that has overall minimum computational time
and assigned to corresponding machines. The unmapped tasks
set U are updated and the process is repeated until all tasks are
mapped. Max-min [6] is very similar to min-min except that a

task is selected that has overall maximum computation time
instead of minimum computation time. Again U is updated
and process is repeated until U is empty. The rationale behind
suffrage [7] is that a task should be assigning a certain

machine that would “suffer” the most if not assigned to that

machine. For each task, its sufferage value is defined as the
difference between its best MCT (minimum computational
time) and second best MCT. Tasks with high sufferage value
take precedence. An improvement in suffrage heuristic is
Xsurffrage [8]. In this task suffrage value define on cluster
level not on task level to each task. It removes the chance of
late assignment of a task in suffrage heuristics.

It is well known that the problem of partitioning and assigning

of tasks is NP-Complete in general [11] and capacity of
machines forms an important part of scheduling algorithm. In
the given literature only minimization of communication cost
is considered. In this work, minimization of computational
cost is also considered with communication cost. We study
task assignment problem as an optimization problem with two
constraints one for storage that is available on machines and
other is load balancing for maximize utilization of machines.

2. ALGORITHM
Consider a job T that divided into m tasks 𝑡𝑖 (i=1,2,3....m) and

job T executed on n machines 𝑢𝑘 (k=1,2,3,...n). Suppose the

running cost of 𝑡𝑖 on 𝑢𝑘 is denoted by 𝑅𝑖𝑘 (1 ≤ i ≤ m, 1 ≤ k ≤

n) and is known a priori. If any task𝑡𝑖 not executable on 𝑢𝑘 ,

then running cost 𝑅𝑖𝑘 is taken as infinite. The communication

cost between 𝑡𝑖and 𝑡𝑗 is denoted by 𝐶𝑖𝑗 (1 ≤ i, j ≤ m). Thus 𝐶𝑖𝑗

is incurred only when 𝑡𝑖 and 𝑡𝑗 are executed on different

machines. Each machine has a fixed amount S of storage
available for the task in T. The storage requirement of task 𝑡𝑖
is represented by S(𝑡𝑖) and is known as priori. Assume that

total storage demand by job T is less than the storage capacity
of system.
An optimal assignment of task 𝑡𝑖‟s to machines must

minimize the total cost of job T comprising of the running
cost of tasks. Further assignment must be such that the storage
requirement on a machine is less than the total capacity S.

Firstly the task assignment problem on homogeneous
machines is discussed then the extended for heterogeneous
machines. Suppose all machines are homogeneous i.e. they
have same computing power. The cost that can be minimized
is communication cost only in this system, running cost will
be same for job T.

2.1 Algorithm for Task Assignment

Problem
Construct the n disjoint cluster by partitioning of m tasks,
where each cluster has been associated to a distinct machine.
Let partitions of tasks P=(𝑃1, 𝑃2 , 𝑃3 ,… ..), where 𝑃1, 𝑃2 ,
𝑃3denote the cluster of tasks. The formation of tasks

assignment problem express as

Minimize 𝐶𝑖𝑗 [𝑡𝑖and 𝑡𝑗 are in separate cluster]

Overall partition P= (𝑃1, 𝑃2 , 𝑃3,… . .𝑃𝑛)

International Journal of Computer Applications (0975 – 888)

Volume 47– No.7, June 2012

47

 Subject to
i) Storage S(𝑃𝑟) ≤ S, ∀r=1,2,3....n(1)

ii) Load Balancing L(𝑃𝑟) ≤ L, ∀r=1,2,3....n

WhereS(𝑃𝑟) and L(𝑃𝑟) are storage and computational load on

cluster 𝑃𝑟 respectively.

In our proposed algorithm we give a procedure to generate all
feasible partition satisfying constraint i) and ii). Let 𝑍𝑎

(a=1,2,3....m) denotes the set of all partitions of tasks 𝑡1 , 𝑡2 ,

𝑡3 ……𝑡𝑎 . Clearly 𝑍1 = (𝑡1) is containing the partition that

have only one cluster made-up by 𝑡1 . To generate 𝑍𝑚 , the set

of all partitions of 𝑡1 , 𝑡2 , 𝑡3 ……𝑡𝑚 , we use an iterative

procedure PART, which derives 𝑍𝑎 from 𝑍𝑎−1for

a=2,3,4....m-1.
In procedure PART, let P=(𝑃1, 𝑃2 , 𝑃3 ,… . .𝑃𝑟) ∈ 𝑍𝑎−1.

Generate r new partitions to belong to 𝑍𝑎 from P, by adding

𝑡𝑎 to one cluster of P at a time. If r is less than total number of

machines, then generate another partition P' = (𝑃1, 𝑃2 ,
𝑃3,……𝑃𝑟 ,𝑃𝑟+1), where 𝑃𝑟+1 = (𝑡𝑎) and include it in 𝑍𝑎 .

Apply above steps for all clusters of 𝑍𝑎−1.

PART(𝑍𝑎−1, 𝑍𝑎)
1 begin𝑍𝑎← 𝛷

2 for each partitionP ∈ 𝑍𝑎−1do

3 begin let P be (𝑃1, 𝑃2 , 𝑃3 ,……𝑃𝑟)
4for i←1 to r do
5 beginP' = (𝑃1, 𝑃2 , 𝑃3,…… ,𝑃𝑖⋃ 𝑡𝑎 ,……𝑃𝑟),
6𝑍𝑎← 𝑍𝑎⋃P'

7end;

8 if r<n then
9 beginP' = (𝑃1, 𝑃2 , 𝑃3 ,……𝑃𝑟 , 𝑡𝑎)

10𝑍𝑎← 𝑍𝑎⋃P'

11end if;
12 end;
13 end of PART

An example of enumeration of all partition is given in Fig 1,
where a job is divided in 4 tasks and system has 2 machines.
The nodes in figure correspond to partitions. The collection of
nodes at (a-1)th level corresponds to set 𝑍𝑎 . A node is called

infeasible in the tree if any of the clusters in corresponding
partition violates the constraints i) and ii). By the property of
this tree we conclude as in next theorem.

Theorem2.1- If a node P in tree is infeasible, and then all
nodes of the subtree with root P are also infeasible.

Proof - Suppose P = (𝑃1, 𝑃2 , 𝑃3,……𝑃𝑒) is infeasible, so we

must have either S(𝑃𝑖) > S or L(𝑃𝑖) > L for at least one i, 1 ≤ i

≤ e. Consider an arbitrary node P' = (𝑃′1, 𝑃′2 , 𝑃′3,……𝑃′𝑓)

of the subtree with root P. By definition we must have for f ≥

e , S(𝑃′𝑟) ≥ S(𝑃𝑟) and L(𝑃′𝑟) ≥ L(𝑃𝑟) ∀r=1,2,3....e. Thus if

S(𝑃𝑖) > S then S(𝑃′𝑖) > S and if L(𝑃𝑖) > L then L(𝑃′𝑖) > L,

showing P' is infeasible.
We will use this result in generating only feasible partitions.
In PART, nodes are generated from root to leaf, and generate
all possible partitions. In next algorithm, when we detect an
infeasible node during generation of tree, this node may be
deleted, thereby eliminating the subtree to be generated from
it. The next algorithm gives 𝑍𝑚 (set of all feasible

assignment) for our problem for homogeneous machines. In
this the running cost 𝑅𝑖𝑘 (1 ≤ k ≤ n) taking as 𝑅𝑖 .

Fig 1: Enumeration of all Partitions of 4 tasks and 2

machines

PROC
1 begin p← 𝑡1; S(P) ← S(𝑡1)

2 L(P) ← 𝑅1; 𝑍1← [P]

3 for a← 2 to m, do
4 begin𝑍𝑎← 𝛷

5 for each partitionP ∈ 𝑍𝑎−1do

6 begin let P be (𝑃1, 𝑃2 , 𝑃3 ,……𝑃𝑟)
7for i←1 to r do
8 begin 𝑃′𝑖← 𝑃𝑖⋃𝑡𝑎; S(𝑃′𝑖)← S(𝑃𝑖) +

S(𝑡𝑎); L(𝑃′𝑖)← L(𝑃𝑖) + 𝑅𝑎 ;

9 if S(𝑃′𝑖) ≤ S and L(𝑃′𝑖) ≤ L, then

10 beginP' ← (𝑃1, 𝑃2 , 𝑃3,…… ,𝑃′𝑖 ,……𝑃𝑟),
11𝑍𝑎← 𝑍𝑎⋃P'

12end;
13 if r<n then
14 beginP' = (𝑃1, 𝑃2 , 𝑃3,……𝑃𝑟 , 𝑡𝑎)

15𝑍𝑎← 𝑍𝑎⋃P'

16 end;
17 end;
18 end;
19 end;

 end PROC

An example of performing PROC is given in Fig2 and 3.
Suppose 𝑃3,3(node 3 on depth 3) does not satisfy storage

constrain i). Thus S(12) ≤S but S(124) > S, where S(124
)=S(12 ⋃ 4). For this case PROC code is not executed from

line 9 to line 12, as shown in Fig2. Further assume that
𝑃2,3(node 3 on depth 2) is violating the load balancing

constraint ii). Thus L(1) ≤L but L(13) >L, where L(13) = L(1)
+ 𝑅3. Statement in line 9 is not true, thus code is not

executed from line 9 to 12. The output is given in Fig 3

Fig 2: when storage constraint not satisfied

International Journal of Computer Applications (0975 – 888)

Volume 47– No.7, June 2012

48

Fig 3: when load balancing constraint not satisfied

Another example is given below for performing PROC with 5
tasks and 2 machines in Fig 4. In this figure enumeration of
all partition at last level can easily build by adding task 5. Let
𝑃3,4(node 4 on depth 3) does not satisfy storage constrain i).

Thus S(3) ≤S but S(34) > S, where S(34)=S(3 ⋃ 4), as shown

in Fig 5. Further assume that 𝑃2,4(node 4 on depth 2) is

violating the load balancing constraint ii). Thus L(2) ≤L but
L(23) >L, where L(23) = L(2) + 𝑅3. The output is given in Fig

6.

Fig 4: Enumeration of all Partitions of 5 tasks and 2

machines

Fig 5: when storage constraint not satisfied

Fig 6: when load balancing constraint not satisfied

In other case, when all machines are heterogeneous then they
do not have the same computing speed. In this case, cost
function is to be optimized by including running costs along

with the communication cost between machines. Some
different types of solutions of Task Assignment Problem for
heterogeneous environment are discussed in recent years [12,
13]. A hybrid meta-heuristic approach for heterogeneity
version of this problem is also presented by Sanz, Yao and Xu

[14].

The Task Assignment problem for heterogeneous
environment is stated as:
Minimize 𝛽𝑟 + 𝛽𝑐, where 𝛽𝑟 is the running cost and 𝛽𝑐 is the

communication cost over all feasible assignment subject to
storage constraints of equation (1).

This problem for heterogeneous machines is NP-Complete in

general. We use results of previous problem to solve this
optimization problem. In the case of homogeneous machines,
the partition of tasks corresponds to a single assignment, but
in this we take partition of tasks corresponds to a well-defined
subset of assignments. Let P denote a partition of tasks in T
and subset 𝑃∗denote the collection of assignment

corresponding to P. Then

𝑃∗= {𝑃𝑖: 𝑃𝑖 is an assignment derived by associating different
machines to cluster in P}

All elements of the set 𝑃∗are either feasible or infeasible. The

communication cost between machines is same for each

element 𝑃𝑖, because no two clusters are associated to the same
machine. If the earlier proposed algorithm applied here, then
the collection of all feasibleassignment will be in the form of
disjoint subsets𝑃∗. The optimal assignment from this

collection could be determined in two stages
a) Determine the best assignment in each subset𝑃∗.
 b) Compare all such locally best assignments to find out
optimal assignment.

First stage may be formulated as the well-known classical
assignment problem as

 Let P = (𝑃1, 𝑃2 , 𝑃3,……𝑃𝑒), consider a cluster 𝑃𝑗 ∈ 𝑃.

Define a variable 𝑌𝑗𝑘 as follows

𝑌𝑗𝑘=1, if 𝑃𝑗 is associated to machine 𝑢𝑘

𝑌𝑗𝑘=0, otherwise

Let Y be the vector of 𝑌𝑗𝑘 , 1 ≤ j ≤ e, 1 ≤ k ≤ n

The problem is to find an assignment in 𝑃∗, which has a

minimum running cost. Running cost represent by RC as

RC(Y) = 𝑌𝑗𝑘 { 𝑅𝑎𝑘𝑧𝑎∈𝑝𝑗
}𝑛

𝑘=1
𝑒
𝑗=1

Thus problem can be express as

Minimize RC(Y)
 Subject to

 𝑖) 𝑌𝑗𝑘
𝑒
𝑗=1 ≤ 1, ∀k = 1,2,3…..n.

 𝑖𝑖) 𝑌𝑗𝑘
𝑛
𝑘=1 = 1, ∀j = 1,2,3…..e.

 𝑖𝑖𝑖) 𝑌𝑗𝑘 = 0 or 1, ∀k = 1,2,3...n and ∀j = 1,2,3…..e.

Constraint i) tells that at most one cluster is associated to a
machine. Constraint ii) ensures that each cluster is associated
to one and only one machine. This linear integer programming

problem can be solve by 0-1 technique like branch and bound
method [15, 16]. The complexity of homogeneous and
heterogeneous machines case depends upon the stringency of
constraints that are taken in optimization problem.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.7, June 2012

49

3. CONCLUSION
In this paper we have proposed a simple model for analysis of

task assignment problem in homogeneous and heterogeneous
environment. We consider memory availability and load
balancing on each machine to solve task assignment problem.
The objective considered in proposed algorithm is to
minimize computational cost of tasks and communication cost
between machines. Firstly, algorithm has been discussed for
homogeneous machines then for heterogeneous machines.
The general case is known be NP-Complete, however, the

proposed system here could be a benchmark for evolution of
other heuristics algorithms. Future work can be extended by
considering other constraints like data availability on
machines, dependency of tasks, different bandwidth between
machines etc.

4. ACKNOWLEDGMENTS
This research is supported by Capacity Buildup Fund,
JNU, New Delhi, INDIA

5. REFERENCES
 [1] Foster I and Kesselman C (editors), (1999), The Grid:

Blueprint for a Future Computing Infrastructure, Morgan
Kaufmann Publishers, USA.

[2] M. M. Eshaghian, ed., Heterogeneous Computing, Artech
House, Norwood, MA, 1996.

[3] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L Wang,
„„Heterogeneous computing: Challenges and
opportunities,‟‟ IEEE Computer, Vol. 26, No. 6, June
1993, pp. 18-27.

[4] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y.
A. Li, „„Heterogeneous computing,‟‟ in Parallel and
Distributed Computing Handbook, A. Y. Zomaya, ed.,
McGraw-Hill, New York, NY, 1996, pp. 725-761.

[5] H. J. Siegel, H. G. Dietz, and J. K. Antonio, „„Software
support for heterogeneous computing,‟‟ in The Computer
Science and Engineering Handbook, A. B. Tucker, Jr.,
ed., CRC Press, Boca Raton, FL, 1997, pp. 1886-1909.

[6] Braun R, Siegel H, Beck N, Boloni L, Maheswaran M,

Reuther A, Robertson J, Theys M, Yao B, Hensgen D
and Freund R, (2001), A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent Tasks

onto Heterogeneous Distributed Computing Systems,
International Journal of Parallel and Distributed
Computing, Vol.61(6): 810-837.

[7] Maheswaran M, Ali S, Siegel H.J, Hensgen D. and Freund
R. F,(1999), Dynamic Matching and Scheduling of a

Class of Independent Tasks onto Heterogeneous
Computing Systems, International Journal of Parallel and
Distributed Computing,Vol. 59(2):107-131.

[8] Casanova H, Legrand A, Zagorodnov D and Berman
F,(2000), Heuristics for Scheduling Parameter Sweep
Applications in Grid Environments, In. Proc. Of the 9th
heterogeneous Computing Workshop: 349-363,
Cancun,Mexico.

[9] Stone H S, (1977), Multiprocessor Scheduling with the aid
of network flow algorithms, IEEE Trans. Software
Eng.3:85-93.

[10] Stone H S, Bukhara S H,(1978), Control of distributed
Processes, Computer: 97-106.

[11] Rewini H. E, Lewis T, and Ali H, (1994), Task
Scheduling in Parallel and Distributed Systems, ISBN:
0130992356, PTR Prentice Hall.

[12] Hinma Kang, Hong He and Hui-Min Song, “Task
Assignment in hetrogeneous computing systems using an
effective iterated greedy algorithm”,Journal of System
and Software 84(6), pp 985-992, 2011.

[13] Peng-Yeng Yin, Yung-Pin Cheng and Benjamin B.M.
Shao, “Metaheuristic algorithms for Task Assignment in
distributed computing system: A comparative and
integrative approach”, The Open Artificial Intelligence

Journal, pp. 16-26(11), 2009.

[14] S. Salcedo-Sanz, X. Yao and Y.Xu, “Hybrid meta-
heuristic algorithms for Task Assignment in
heterogeneous computer systems”, Computers &
Operations Research, vol. 33, no. 3, pp. 820-835, 2006.

[15] I. S. Hillier and G. J. Lieberman, “Introduction to
Operations Research (4th Ed)”, CBS publications and
distributors, 1985.

[16] H. A. Taha, “Operations Research: An Introduction”,

Prentice Hall Inc, New Jersey, 1997.

