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ABSTRACT 

The proposed last research entitled “An Effective Data 
Comparison of Graph Clustering Algorithms via Random 
Graphs” compared two mostly used algorithms for graph 
clustering i.e. restricted neighborhood search and markov 
clustering algorithms via random graph generators i.e. Erdos-
Renyi and power law graphs. This paper is an extension to our 
last research work. In this we have examined an efficient 

behavioral analysis of both algorithms via random graphs. 
This paper mainly shows the behavior of both the algorithms 
under certain parameters which we have used. Previously in 
case of Erdos-renyii we used graphs with 1000 nodes with 
variable edge densities, while in this paper we have modified 
the number of nodes from 1000 to 15000 with variable edge 
densities ranging from 0.1 to 0.5 while in case of Power-law 
we have variable number of nodes ranging from 1000 to 

15000. This paper also depicts as to which algorithm works 
more efficient, whether in case of Erdos-Renyi or Power-Law 
graphs. Our last research showed that in case of Erdos-Renyi 
graph run time of RNSC algorithm is better as compared to 
MCL for graph having nodes less than 2000 but as nodes keep 
on increasing the run time of RNSC increases drastically 
while run time of MCL doesn’t increase, so MCL is better in 
case of Erdos-Renyi graph having more than 2000 nodes and 
having high connectivity between the nodes [12] while in this 

paper it is clearly visible that both RNSC and MCL works 
better in case of Power-Law graph as compared to Erdos-
Renyi graph which clearly states that both algorithm shows 
some similar characteristics in graphs where edge 
connectedness is not very high for all vertices. Furthermore 
we studied the behaviour of RNSC in case of Erdos-Renyi 
individually also.  

General Terms 
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1. INTRODUCTION 
We had already discussed about clustering and the main 
purpose for comparing both the clustering algorithms in our 

last paper. The previous work dealt in comparing both 
algorithms on basis of some graphs while some set of analysis 
still remained untouched which we had tried to cover in this 
segment of our work. The theories regarding both the 
algorithms and the graph generators had already been 

discussed in previous segment. This work is not basically a 
comparison but it is more of a behaviour analysis of both the 
algorithms via more modified graphs. We have implemented 

this work on gcc compiler version 4.6 (which can be obtained 
by running gcc -version in terminal) on Ubuntu operating 
system and all the graphs used in this analysis were 
unweighted and undirected. 

2. PARAMETERS USED FOR 

COMPARISON 
The parameters we considered in this research work are all the 
same as what we used previously i.e. Edge Density [12],Run 
time [12], Graph Size [12] and Cluster Size [12] but we 
excluded Singleton Cluster from our analysis. The theory 

regarding all the parameters used in our analysis has already 
been discussed in the previous paper.                               

3. RESULTS AND DISCUSSIONS 

3.1 Results for RNSC 
This section contains all the results and discussions regarding 
behaviour of RNSC in case of Erdos-Renyi and Power-Law 
graphs. 

3.1.1  Number of Nodes vs RUN TIME in case of 

Erdos-Renyi only 
The table contains computed values of graph size and run time 
in case of Erdos-Renyi graph with varying nodes and edge 
densities. 
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Table 1:  Dataset for RNSC in case of Erdos-Renyi 

     

Discussion: Fig 1 shows a line graph representing Run Time 
versus graph size for a graph of nodes ranging from 1000 to 
15000 and edge densities ranging from 0.1 to 0.5. This graph 

clearly states the behaviour of RNSC. We have represented 
the run time of RNSC for graphs having variable nodes and 
edge densities where the symbol (e) in the graph denotes the 
edge density for Erdos-Renyi graph. It is clearly visible from 
the graph that as the number of nodes and edge density is 
increased the run time of all the graphs also increased but in a  
linearly fashion but in case of graph (e=0.5) i.e. highest edge 
density the run time increased drastically and then came down 

as well and vice versa. This kind of behaviour we observed in 
our last work too. While the other graphs increased linearly 
with nodes. There was a sudden increase and fall in the run 
time of graph (e=0.2). This comparison of run time clearly 
shows that run-time of the RNSC increases sharply at the edge 
density of 25-50% i.e. half the edge pairs are connected. The 
number of moves is very high because the cost keeps 
fluctuating in this range due to diversification steps [12]. As 

the Edge-Density crosses 50%, the edge-connectivity of the 
graph increases and the diversification step has low effect on 
such high Edge-Density. So the run-time decreases, but still 
increases linearly as the Edge-Density increases [12].Thus run 
time of RNSC gets highly affected due to increase in edge 
density and thus performance is poor against highly connected 
graphs. 

 

 
 

 

Fig 1: A line graph representing Number of Nodes vs RUN 

TIME for Erdos-Renyi graph with varying nodes and edge 

densities. 

 

3.1.2 Number of Nodes vs Cluster Size in case of 

Erdos-Renyi only 
The table contains computed values of cluster size for Erdos-
Renyi graph with varying nodes and edge densities. 

 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

R
U

N
 T

IM
E

Number of Nodes(N)

NUMBER OF NODES vs RUN 
TIME

run time(e=0.1)

run time(e=0.2)

run time(e=0.3)

run time(e=0.4)

run time(e=0.5)

S.No

. 

Node

s 

Run 

Time 

e=0.1 

Run 

Time 

e=0.2 

Run 

Time   

e=0.3 

Run 

Time 

e=0.4 

Run 

Time 

e=0.5 

1. 1000 0.023 0.026 0.049 0.073 0.117 

2. 2000 0.102 0.202 0.357 0.481 0.622 

3. 3000 0.293 0.663 0.997 1.362 1.916 

4. 4000 0591 1.264 2.058 3.071 4.257 

5. 5000 1.024 2.674 3.947 6.109 8.859 

6. 6000 1.803 3.908 6.772 10.77 14.84 

7. 7000 2.831 5.98 10.28 16.85 25.46 

8. 8000 4.31 9.03 14.74 25.30 250.6 

9. 9000 5.732 13.02 23.71 38.63 57.91 

10. 1000
0 

8.915 17.70 32.58 51.96 84.15 

11. 1100

0 

10.80 22.72 46.14 74.67 103.8 

12. 1200
0 

14.62 30.95 58.36 95.03 139.1 

13. 1300
0 

17.85 50.18 73.84 126.9 62.87 

14. 1400

0 

23.14 34.63 91.25 161.5 236.4 

15. 1500
0 

26.96 60.32 115.5 205.3 281.3 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.3, June 2012  

35 

Table 2. Dataset for RNSC in case of Erdos-Renyi 

     

Discussion: Fig 2 shows a line graph representing cluster size 
versus graph size for a graph of nodes ranging from 1000 to 
15000 and edge densities ranging from 0.1 to 0.5. In previous 
paper Figure 5 showed a line graph representing Graph Size 
versus Cluster Size, where we analysed that as the number of 
nodes increased in the graph the number of clusters formed 
increase linearly, with the condition that the graph follows the 
same attribute like Edge-Density and connectivity. We saw 

that the number of clusters formed in the RNSC clustering is 
much higher than the MCL clustering for power-law graphs. 
From the graph we can easily analyse that cluster size also 
depends on the size of the graph and its edge density. The 
cluster size increased linearly with the graph size but as edge 
density is increased or the graph becomes more connected 
there is a sudden rise in cluster size. In case for graph (e=0.5) 
we see the same behaviour as the previous one i.e. cluster size 

increases drastically and then falls. While RNSC has a special 
feature of limiting the number of clusters which other 
algorithms do not have. We can limit the number of clusters in 
our case too. In the next comparison we will be comparing the 
behaviour of RNSC in case of Erdos-Renyi and Power-Law 
both.   
 

 

 

 

 

Fig 2: A line graph representing Number of Nodes vs 

Cluster Size for Erdos-Renyi graph with varying nodes 

and edge densities. 

 

3.1.3 Number of Nodes vs Cluster Size in case of 

Erdos-Renyi and Power-Law 
The table contains computed values of Cluster Size and 
Number of Nodes in case of Erdos-Renyi & Power-Law. 
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S.No

. 

Nodes 0.1 0.2 0.3 0.4 0.5 

1. 1000 639 518 455 413 391 

2. 2000 1051 849 729 660 607 

3. 3000 1378 1089 956 868 811 

4. 4000 1679 1316 1145 1055 1021 

5. 5000 1939 1507 1333 1280 1204 

6. 6000 2196 1727 1555 1453 1409 

7. 7000 2385 1925 1787 1642 1538 

8. 8000 2623 2126 2050 1836 6660 

9. 9000 2823 2347 2177 1987 1813 

10. 10000 3027 2564 2386 2154 1902 

11. 11000 3238 2790 2545 2254 2097 

12. 12000 3430 2960 2705 2383 2225 

13. 13000 3627 3403 2907 2545 2315 

14. 14000 3867 3308 3066 2595 2423 

15. 15000 4047 3585 3221 2749 2629 
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Table 3. Dataset for RNSC in case of Erdos-Renyi & 

Power-Law 

S.No Size of 

Graph 

Cluster Size 

Erdos-

Renyi(e=0.1) 

Cluster Size 

Power-

Law(alpha=2.5) 

1. 1000 391 701 

2. 2000 607 1414 

3. 3000 811 2115 

4. 4000 1021 2843 

5. 5000 1204 3545 

6. 6000 1409 4298 

7. 7000 1538 5125 

8. 8000 6660 6664 

9. 9000 1813 6204 

10. 10000 1902 7203 

11. 11000 2097 8061 

12. 12000 2225 8448 

13. 13000 2315 9341 

14. 14000 2423 9737 

15. 15000 2629 10972 

 

Discussion: Fig 3 shows a line graph representing Number of 
Nodes versus Cluster Size for RNSC in case of both Erdos-
Renyi and Power-Law graphs. The following graph depicts 
the behaviour of RNSC in case of both types of graphs i.e. 
Erdos-Renyi and Power-Law. The blue line represents cluster 

size for Erdos-Renyi while Red line represents cluster size for 
Power-Law. In case of Erdos-Renyi we have kept same edge 
density (e=0.1) for all graphs while in case of Power-Law the 
value of alpha is fixed to 2.5 for all the graphs. The cluster 
size for RNSC for Erdos-Renyi is same as what we discussed 
earlier i.e. Linear rise in the beginning and then sudden rise 
and fall in between 8000-10000 nodes while in case of Power-
Law the cluster size increased linearly throughout its course. 

Another reason may be the large number of singleton clusters. 
Singleton clusters result due to the fact that the cost of the 
cluster decreases sometime with singleton cluster for sparsely 
connected graphs like power-law graphs [12]. Thus behaviour 
of RNSC is better for Power-Law graphs in the course of 
cluster formation.  

 

 

 

 

Fig 3: A line graph representing Number of Nodes vs 

Cluster Size in case of Erdos-Renyi & Power-Law. 

 

3.1.4 Number of Nodes vs Run Time in case of 

Erdos-Renyi and Power-Law graphs 

 

The table contains computed values of run time in case of 
Erdos-Renyi & Power-Law graphs with varying graph size. 
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Table 4. Dataset for RNSC in case of Erdos-Renyi & 

Power-Law 

S.No Size of 

Graph 

Runtime(Erdos-

Renyi) 

Runtime (Power-

Law) 

1. 1000 0.117 0.053 

2. 2000 0.622 0.12 

3. 3000 1.916 0.232 

4. 4000 4.257 1.085 

5. 5000 8.859 0.542 

6. 6000 14.84 0.797 

7. 7000 25.46 1.891 

8. 8000 250.66 29.478 

9. 9000 57.91 0.981 

10. 10000 84.151 2.33 

11. 11000 103.893 5.036 

12. 12000 139.16 2.427 

13. 13000 62.873 9.53 

14. 14000 236.4 2.91 

15. 15000 281.332 18.425 

 
Discussion: Fig 4 shows a line graph representing Number of 

Nodes versus run time for Erdos-Renyi and Power-Law 

graphs. In case of Erdos-Renyi the run time keeps on 

increasing exponentially because the run-time of the 

algorithm is inversely proportional to Tabu length i.e. the run 

time increases with the decrease in tabu length. Therefore for 

lesser run time large tabu length should be used. As the tabu-

length increases the number of moves which cannot be 

retraced increases, so there are fewer choices to make for the 

next move, thus the run-time decreases [13]. If the graph size 

is less then the run-time will be smaller. So as we decrease the 

maximum number of cluster which can be done in case of 

RNSC the run-time increases. While in case of Power-Law 

graph the run time stays a lot low. 

 

Fig 4: A LINE graph representing Graph Size vs Run 

Time in case of Erdos-Renyi & Power-Law 

 

3.2 Results for MCL Graph 
This section contains all the results and discussions regarding 
behaviour of MCL in case of Erdos-Renyi and Power-Law 
graphs. 

 

3.2.1 Number of Nodes vs Cluster Size 
The table contains computed values of Cluster Size and 
Number of Nodes in case of Erdos-Renyi & Power-Law 
graphs. 
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Table 5. Dataset for MCL in case of Erdos-Renyi & 

Power-Law 

S. 

No. 

Numbe

r of  

Nodes 

Cluster Size 

(Erdos-

Renyi(e=0.1) 

Cluster Size 

Power-

Law(α=2.5) 

 

1. 1000 248 16 

2. 2000 

677 19 

3. 3000 

1297 15 

4. 4000 

2174 18 

5. 5000 3220 14 

 

Discussion: Figure 5 show a line graph representing graph 
size versus cluster size for both Erdos-Renyi and Power-Law 
graphs. More clusters can be seen in case of Erdos–Renyi as 
compared to Power-Law graph.  

 

 

Fig 5: A line graph representing Number of Nodes vs 

Cluster Size in case of Erdos-Renyi & Power-Law. 

 

3.2.2 Number of Nodes vs Run Time 
The table contains computed values of Run Time and Number 
of Nodes in case of Erdos-Renyi & Power-Law. 

Table 6. Dataset for MCL in case of Erdos-Renyi & 

Power-Law 

S. 

No. 

Number 

of  

Nodes 

Run Time 

Erdos-

Renyi(e=0.1) 

Run Time 

Power-

Law(α=2.5) 

1. 1000 127.377 3.82 

2. 2000 
2592.35 11.928 

3. 3000 
3254.026 12.844 

4. 4000 16583.961 12.898 

5. 5000 9617.616 14.806 

 

Discussion: Fig 6 shows a line graph representing run time 
versus graph size for both Erdos-Renyi and Power-Law 
graphs. The pruning feature of MCL helps it to sustain a better 

performance than RNSC in case of run time, but performance 
of MCL is quite poor in case of strongly connected graphs. 
The graph clearly shows the behaviour of MCL in case of 
both graphs.  

 

 

Fig 6: A line graph representing Number of Nodes vs Run 

Time in case of Erdos-Renyi & Power-Law. 
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4. CONCLUSIONS AND FUTURE 

WORK 
On analyzing the whole scenario we came to the result that 
both algorithms have some advantages and disadvantages 
depending on what state and situation they are being applied. 
Run Time of MCL was better in case of Power-Law graph 
while Cluster Size was more in case of Erdos-Renyi, on the 

other hand RNSC showed better results mainly in case of 
Power-law graph. So the future work may be integrating the 
best parts of both the algorithms so that the performance may 
be enhanced. In our integration we may use Genetic algorithm 
so that heuristic approach of RNSC may be minimized too. 
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