
International Journal of Computer Applications (0975 – 8887)

Volume 47– No.25, June 2012

35

An Improved Algorithm for Finding All Pair Shortest
Path

 Himanshu Garg Paramjeet Rawat
Dept. of Computer Science, Dept. of Computer Science,

RGGI, UP Technical University, IIMT Engg. College, UP Technical University

ABSTRACT

Floyd Warshall‘s Algorithm is a simple and widely used

algorithm to compute shortest path between all pairs of

vertices in an edge weighted directed graph. It can also be

used to detect the presence of negative cycles. Many

researchers have given many other approaches for finding all

pair shortest path but they reduced the complexity by using

complex data structures. In this paper, we suggests a

technique for finding shortest path based on Floyd Warshall‘s

algorithm with reduced time complexity and also by not

using complex data structures. We present an O(n
)3(

)

time algorithm for finding all pair shortest paths. Our

proposed algorithm is an improvement on the previous

algorithm whose best result was O(n
3

)

Keywords

Shortest paths, Floyd-Warshall algorithm, complexity.

1. INTRODUCTION
The shortest path problem is the problem of

finding path between two vertices (or nodes) in a graph, such

that the sum of the weights of its constituent edges is

minimized. An example of it can be, finding the quickest way

to get from one location to another on a road map. In this

case, the vertices represent locations and the edges represent

segments of road and are weighted by the time needed to

travel to that location.

The single source shortest path is one of the oldest classical

problems in algorithm theory. Given a positively weighted

directed graph ‗G‘, with a source vertex s, this problem asks

for finding the shortest path from ‗S‘ to all other vertices. So

it can be considered the mother of all routing problems.

Given a weighted directed graph G = (V, E, w) with two

special vertices, a source ‗s‘ and a target ‗t‘, we want to find

the shortest directed path from ‗s‘ to ‗t‘. In other words, we

want to find the path ‗P‘ starting at ‗s‘ and ending at ‗t‘

minimizing the function:

 w(p) =
pe

ew)(

Specifically, for every pair of vertices ‗u‘ and ‗v‘, we

need to compute the following information:

 dist(u, v) is the length of the shortest path (if any)

from u to v;

 pred(u, v) is the second-to-last vertex (if any) on the

shortest path (if any) from u to v.

Given a weighted digraph with a weight function w : ER, R

is the set of real numbers that determines the length of the

shortest path between all pairs of vertices in G. Given an

input, n*n matrix, ‗W‘ represents the edge weights of n

vertices; i.e., W= (ijw), where

Ejiandjiif

Ejiandjiif

jiif

jiwwij

,

,,

0

2. BACKGROUND AND RELATED

CONTEXT

Almost all developments concerning this problem have

evolved round the famous Dijkstra‘s algorithm, presented first

in 1959. The original version of this algorithm ran in

O(n
2

+m) time. The complexity has since then, been reduced

to O(m+nlog
2

n) using Fibonacci heaps (Fredman and Tarjan,

1987).

P K Singh, Rajendra Kumar Member, IACSIT and Vijay

Shankar Pandey [1] suggest The run time of the algorithm is

of order n
 2/5

), where n is the number of vertices present

in the graph.but this algorithm is only based on unweighted

and undirected garaph.my approach is based on weighted and

directed graph .as well as in the presence of negative weight.

Timothy M. Chan[10] suggest fast matrix multiplication to

obtain truly subcubic APSP algorithms for a large class of

"geometrically weighted" graphs, where the weight of an edge

is a function of the coordinates of its vertices. For example,

for graphs embedded in Euclidean space of a constant

dimension d, we obtain a time bound near O(n^{3-(3-

w)/(2d+4)}), where w < 2.376; in two dimensions, this is

O(n^{2.922}). Timothy M. Chan[7] suggest an O(n 3/log n)-

time algorithm for a real-weighted directed graph

with n vertices for the all-pairs-shortest-paths problem.

Further improvement by Tadao Takaoka [12] suggests a in

complexity to O(n3log log n/log n). Seth Pettie [13] suggests a

fundamental comparison-addition model that runs in

O(mn+n2log log n) time, where m and n are the number of

edges & vertices, respectively. Yijie Han[9] suggests another

approach for all pairs shortest path algorithm with time

complexity O(n3/ log n). Uri Zwick [11] suggest

a time algorithm for the All Pairs

Shortest Paths (APSP) problem for directed graphs with real

edge lengths.

There exist several other algorithms with a better worst

case runtime, but these algorithms are much more

complicated than the Floyd-Warshall algorithm and involve

complicated data structures. Therefore, in many cases the

Floyd-Warshall algorithm is still the best choice which has a

worst-case runtime of O(n
3

) for graphs with n vertices.

http://en.wikipedia.org/wiki/Path_(graph_theory)
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Weighted_graphs_and_networks

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.25, June 2012

36

2.1 Floyd Warshall Algorithm

Let
 p

ijm be the weight of a shortest path from vertex i to

vertex j with all intermediate vertices in the set

{1,2,3,………….,p }[6].

 1,min

0

111 pifmmm

pifw

m p

pj

p

ip

p

ij

ij

p

ij

Algorithm

1. n row[W]

2. 0M W

3. For p 1 to n

4. do for i 1 to n

5. do for j 1 to n

6. do
 p

ijm min

 111 , p

pj

p

ip

p

ij mmm

7. return
 nM

3. PROPOSED ALGORITHM
Our approach suggests that the complexity of the proposed

algorithm can be reduced to O(n
)3(

). Although, our

approach is based upon Floyd Warshall‘s Algorithm, but with

slight improvement.

Algorithm

1. n W (rows)

2. M
 0
 W

3. initialize counter to 0

4. counter=counter+1

5. do M
)(p
 m

)(pij

6. for i 1 to n

7. do j 1 to n

8. do if (i== counter || j== counter)

9. M
)(p
[i][j] M

)1(p
[i][j]

10. else if (M
)1(p

[counter][j]+M
)1(p

[i][counter]< M
)1(p

[i][j])

11. M
)(p
[i][j]

M
)1(p

[counter][j]+M
)1(p

[i][counter]

 12. else M
)(p
[i][j] M

)1(p
[i][j]

 13. return M

4. RESULT ANALYSIS
For proving that our algorithm is better than the original

Floyd‘s Warshall Algorithm, we have considered three

different matrices i.e. 5x5, 10x 10 and 15x15. Then, we have

executed both the algorithms on these matrices and found that

our algorithm performs better.

To prove the above said statement, suppose we have a n*n

size of matrix, where n=5, we will have 5*5 matrix. So there

are 6 different matrix that we have to calculate. Suppose the

name of matrix is ‗M‘, so we will have to find the values of

M0, M1, M2, M3, M4 and M5 matrix. All these matrix will

be of size 5*5. According to Floyd Warshall algorithm, the

algorithm statement through which we calculate the matrix

positions, should run approx 125 times. But with our

approach, it will run approx 81 times and the result of

matrices obtained after running both the algorithm are same.

Likewise, we considered another matrix 10x10 in which the

algorithm run‘s approx 1000 times but with our algorithm it

runs for approx 810 times. And for 15x15, Floyd Warshall

runs 3375 times and our algorithm runs 2940 times.

The above information is represented with the help of a graph

given below:

0

500

1000

1500

2000

2500

3000

3500

4000

5x5 10x10 15x15

Floyd

Warshal

Propose

d

Alorithm

Fig. 1 Matrices Number Of Execution

According to the above figure, we can see that Floyd Warshall

runs longer then our proposed algorithm. Hence the

complexity is decreased using our approach.

5. CONCLUSION

In this paper, we described an O(n
)3(

) running time

algorithm to compute all pairs shortest paths in an weighted

and directed graph. At present we have considered only

weighted and directed graph but in future we will consider

unweighted and undirected graph for reducing the all-pair

shortest path complexity.

6. REFERENCES
[1] P K Singh, Rajendra Kumar Member, IACSIT and Vijay

Shankar Pandey,‖An Efficient Algorithm for All Pair

Shortest Paths‖, International Journal of Computer and

Electrical Engineering, Vol.2, No.6, December, 2010

[2] Stefan Hougardy , ―The Floyd-Warshall Algorithm on

Graphs with Negative Cycles ―,Information

Processing Letters 110 (2010), 279-281

[3] Udaya Kumar Reddy K. R, and K. Viswanathan Iyer,

―All-pairs shortest-paths problem for unweighted graphs

in O(n
2

log n) time‖, International Journal of

Computational and Mathematical Sciences 3:5 2009

[4] Yijie Han, ―An O(n
3

 log log n/ log
2

 n) time algorithm

for all pairs shortest paths‖, Manuscript, 2009.

[5] Wikipedia. Floyd-Warshall algorithm — Wikipedia, The

Free Encyclope-dia, 2009. [Online; accessed 20-

November-2009].

[6] Gary J. Katz1,2 and Joseph T. Kider Jr1 , ―All-Pairs

Shortest-Paths for Large Graphs on the GPU―,Graphics

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.25, June 2012

37

Hardware (2008) David Luebke and John D. Owens

(Editors)

[7] Timothy M. Chan, ―All-pairs shortest paths with real

weights in O(n
3

/ log n) Time‖, Algorithmica, 50:236–

243, 2008.

[8] Yijie Han,‖ An O(n
3

(log log n/ log n)
4/5

) time algorithm

for all pairs shortest paths‖, Algorithmica, 51:428–434,

2008.

[9] Yijie Han, ―A note of an O(n
3

/ log n) time algorithm for

all pairs shortest paths‖, Information Processing Letters,

105:114–116, 2008.

[10] Timothy M. Chan, ―More algorithms for all-pairs shortest

paths in weighted Graphs‖, In STOC07, pages 590–598,

2007.

[11] Uri Zwick, ―A slightly improved sub-cubic algorithm for

the all pairs shortest paths problem with real edge

lengths‖, Algorithmica, 46:181–192, 2006.

[12] Tadao Takaoka, ―An O(n
3

 log log n/ log n) time

algorithm for the all-pairs shortest path problem‖,

Information Processing Letters, 96:155–161, 2005.

[13] Seth Pettie, ―A new approach to all-pairs shortest paths

on real-weighted Graphs‖, Theoretical Computer

Science, 312:47–74, 2004.

[14]Tadao Takaoka, ―A new upper bound on the complexity

of the all pairs shortest path problem‖, Information

Processing Letters, 43:195–199, 1992.

[15] Thomas H Cormen, Charles E Leiserson, Ronald L

Rivest, Clifford Stein, ‖Introduction To Algorithms‖

MIT. Press, Mcgraw-Hill Book Company, ISBN 0-262-

03141-8, 1990.

[16] Michael L. Fredman, ―New bounds on the complexity of

the shortest path Problem‖ ,SIAM Journal on

Computing, 5(1):83–89, 1976.

[17] Tadao Takaoka, ―A faster algorithm for the all-pairs

shortest path problem and its application‖ In K.-Y. Chwa

and J.I. Munro, Springer-Verlag LNCS Vol 3106, pp

278–289.

http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Thomas+H+Cormen%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Charles+E+Leiserson%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Ronald+L+Rivest%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Ronald+L+Rivest%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Ronald+L+Rivest%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Clifford+Stein%22

