
International Journal of Computer Applications (0975 – 8887)

Volume 47– No.24, June 2012

29

Performance Analysis of Parallel Speedup Techniques

for Shortest Path Queries in Networks of Random and

Planar Types

R.Kalpana
Department of CSE

Pondicherry Engineering College
Puducherry

P.Thambidurai
Phd,Perunthalaivar Kamarajar Institute of

Engineering & Technology
Karaikal

Puducherry

ABSTRACT

The essential elements of any network application system uses

shortest‐path algorithm mostly for problems of network

namely routing, viz. When seen in the light of the basic

requirement of such a system, to provide high quality path

identification or routing solutions fast, algorithms have to be

efficient. There are many speedup techniques and combined

speedup techniques available which find shortest path

efficiently in networks. Also parallelization is incorporated in

some of the speedup techniques, where the performance is

monitored in multicore processors. This paper deals with

comparison of parallelized speedup techniques with sequential

version of the same and finding performance improvement

achieved in parallelized speedup techniques with respect to

runtime and number of vertices visited during shortest path

computation. The techniques were tested in random and

planar types of graph networks, which may be suitable for

networks of the same type. Performance of parallelization has

good impact of speedup in random graph type of

networks(45% to 90% with respect to runtime and 25% to

830% with respect to vertices visited) than planar graph type

of networks.

General Terms

Algorithms, Parallel Programming

Keywords

Dijkstra‟s algorithm, Shortest path computation, Speedup

Techniques, Parallel Speedup.

1. INTRODUCTION
In the context of routing in scheduled vehicles like train,

buses, web search engines and navigation applications the

computation time is very important component. One of the

essential component of these applications is the shortest path

computation time. In these applications, different places are

considered as nodes and their distances are considered as edge

weight, which constitute a graph structure. The shortest path

queries for such applications were originally solved by

Dijkstra[1], Bellman-ford, and Johnson. Dijkstra‟s algorithm

implemented with Fibonacci heaps is still the fastest known

algorithm for the general case of arbitrary nonnegative edge

lengths, taking)log(nnmO  worst-case time. There are

several Speed up techniques available to improve the speed up

of shortest path computation with Dijkstra‟s algorithm[1],[2].

The basic speeds up techniques are bidirectional search[3],

goal directed search[4],[5], multilevel

approach[6],[7],[8],[9],[10], shortest-path container[11], arc

flags[12] and reach based method[13]. The basic speedup

techniques can also be combined in different flavors and their

performance were also improved. These basic speedup

techniques[14] and combined speedup techniques[15],[16]

cannot be always guaranteed to prove to be faster than the

original Dijkstra‟s algorithm. However it can be empirically

shown that they certainly improve the speedup of many of the

applications[2]. The shortest path problem has two phases of

implementation for applications where there is a need for

voluminous data sets. They are pre-processing phase and

shortest path computation phase. Pre-processing techniques

were identified to make the applications to work fast. It makes

to work fast in very large networks, where there is a need for

many 1 to n shortest path computations. The speed up factor is

found to be high in techniques where pre-processing the

network is done at the design phase of the network

itself[2],[15]. In the shortest path computation phase, actual

speedup techniques integrated with Dijkstra‟s algorithm

works to give the result in optimal time. When these speedup

techniques were parallelized it shows an improvement in

preprocessing time, runtime and number of vertices visited for

some of the techniques.

 All programs contain some regions that are suitable

for parallelization and other regions that are not. By using an

increasing number of processors, the time spent in the

parallelized parts of the program is reduced, but the sequential

section remains the same. Eventually the execution time is

completely dominated by the time taken to compute the

sequential portion, which puts an upper limit on the expected

speedup. This effect, known as Amdahl’s law[17], can be

formulated as

))1(/(

1

par
fP

par
f

S


 (1)

Where fpar is the parallel fraction of the code and P is the

number of processors. In the ideal case when all of the code

runs in parallel, fpar = 1, the expected speedup is equal to the

number of processors.

A new parallel approach called parallel profile search

algorithm for best connections between stations in public

transportation networks was designed and implemented in

multicore servers[18]. A good speedup in computation time

and settled nodes is achieved in public transportation

networks. Parallelism in sequential Dijkstra implementation

of general networks is exploited at the level of parallel edge

relaxations and parallel priority queuing in PRAM models and

Communication networks[19],[20],[21],[22]. Results of

shared-memory parallel variants of the multi-level overlay

graph construction necessary for HNR are discussed in [23]

and overlay graphs were experimented in eight core machines.

A high number of updates per time are desirable to keep the

replies to the shortest path queries as up-to-date as possible.

On multicore processors, the repeated precomputation step for

HNR takes roughly two minutes. The results of parallelized

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.24, June 2012

30

bidirectional search [24], parallelized landmarks[25],

parallelized bidirectional arc flags[26], and parallelized

multilevel arc flags[27] on multicore processors are

equivalently very good which aims for comparison of the

results of the speedup techniques

In this paper, the parallelized speedup techniques were

analysed individually, and experimented in random and planar

graphs. A comparative study was made for all the five

speedup techniques by considering sequential and parallel

version of the same technique with respect to the output

parameters runtime and vertices visited during shortest path

computation. The remainder of the paper is organized as

follows. Section 2 describes the parallelized speedup

techniques and the analysis of the same. . Section 3 describes

empirical evaluation of the sequential and parallel speedup

techniques using random and planar graph types using LEDA

library. Finally, Section 4 draws conclusions and gives

directions for future work

2. DESIGN OF PARALLELIZATION IN

SPEEDUP TECHNIQUES
The parallel version of the Dijkstra‟s algorithm with speedup

techniques were parallelized in its initialization phase and

update phase. This parallelization is achieved using OpenMP

constructs in the iterative statements (for loops). Depending

on the number of processors run in the system, the iterative

operations will be executed in parallel using multithreaded

approach. Each process Pi (1<=i<=k) (k being the number of

processors in the system) initializes the priority queue Q

partly. For large value of n, the operations of initialization

phase and update phase were shared by multiple processors.

This takes a time t which is less than the time achieved in

sequential speedup techniques. If the node size is very less,

then the time for communication between threads is eaten by

the computation time. Even then the worst case running time

of parallelized speedup techniques will be less than the time

achieved in sequential speedup techniques, which is less than

O(n+m log n). The various phases of each speedup technique

and different phase of the same which can be parallelized is

given in Table I.

2.1 Parallel Bidirectional Search
The sequential version of Bidirectional search, which

terminates when a node is marked permanent by both searches

i.e uperm or ruperm. The search is processed using two

priority queues Q and rQ. Bidirectional search involves

initialization phase, node selection phase and update phase.

Initialising the priority queue Q and reverse priority queue rQ

takes a running time of O(n) each for n nodes. In node

selection phase, it takes approximately n/2 comparisons for

selecting a minimum distance node from the priority queue.

The node selection will be ended when the perm node is

marked by any of the other search. In update phase it takes

O(n) for each variant of Bidirectional search. In both searches

the search tree expands with a branching factor b and the

distance from source to target is l in traditional Dijkstra, each

of the search will be having a complexity O(bl/2) and the total

search time of bidirectional search will be much less than

O(bl) in traditional Dijkstra which is equivalent to O(n+m log

n) with Fibonacci heaps. If each queue operation takes O(n+m

log n) time, the expected running time is O(+m log n).

The parallel version of the above algorithm has parallelized

initialization phase and update phase. This parallelization is

achieved using OpenMP constructs in the for loops.

Depending on the number of processor run in the system, the

iterative operations will be parallelly executed using

multithreaded approach. Each process Pi (1<=i<=k) (k being

the number of processors in the system) initializes the forward

priority queue Q and reverse priority queue rQ partly. For

large value of n, the operations of initialization phase and

update phase were shared by multiple processors and which

takes a time t which is less than the time achieved in

sequential bidirectional search. If the node size is very less the

time for communication between threads is eaten by the

computation time. Even then the worst case running time will

be less than the time achieved in in sequential bidirectional

search i.e part of O(n+m log n) or O(+m log n)

2.2 Parallelized Landmarks
With parallelized preprocessing, it is possible to gather

information about the graph that can be used to obtain

improved lower bounds. In [10], a small fixed sized subset L

⊆ V of “landmarks” is chosen in parallel. Then, for all nodes

v V , the distance d(v, l) to all nodes l ⊆ L is precomputed

and stored in parallel. The time for precomputation and

storage is certainly less than O(v) in sequential preprocessing.

These distances can be used to determine a feasible potential.

For each landmark lL, a potential is defined. The potentials

for L landmarks will be calculated in parallel which is less

than the time required in sequential form of potential

calculation i.e O(L), L being the number of landmarks.

Doing the shortest path computation using landmarks in

Dijkstra reduces V – L nodes thereby the time O(V-L) will be

reduced for each instance. Landmarks in the graph usually

attract the search to themselves. Then the potential

calculation process for new s-t path will be faster as L V.

The total time for landmarked Dijkstra will be O(L+mlog L)

where LV, a set of landmarks. Doing the same with

multiple processors and sharing the preprocсessing phase,

landmark selection and initialization phase and update phase

reduce the time by O(V-L). The overall time O(L+mlog L)

will be shared by i processors.

2.3 Parallelized Multilevel Approach
As the graph is decomposed into l+1 levels it takes O(l+1)

time to decompose the graph. The subgraph at each level i

consists of Si nodes. If Si  V and the subgraph with Si

selected nodes consists of NSi nodes and MSi edges then

Dijkstra‟s algorithm is run on this subgraph to construct the

shortest path which takes a time T(i) of O(NSi+MSi log NSi)

time. It proceeds for all levels and for all subgraphs S1,S2,.

.Si,…Sl. The total time will be the sum of all the

plus time to find the shortest path for the new graph, which

comes out of additional edges. This time will be less than the

time achieved in traditional Dijkstra.

In parallel multilevel approach, especially in the

preprocessing phase the decomposition is carried out in

parallel. Assuming processors are involved then

each processor select Si nodes at each level i and form a

subgraph Gs when L=K. The special edges between levels are

constructed in parallel. If E be the number of additional edges

added then it takes O(E) time to construct sequentially. When

we do the same in parallel, k processors will share the job and

it takes a time of greater than O(E/k) for each processor.

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.24, June 2012

31

Table 1. Parallel regions in speedup techniques

 Technique sequential parallel

Bidirectional Initialization phase

Node selection phase

Update phase

Initialization phase - parallel

Node selection phase

Update phase – parallel

Landmark Landmark Selection

Djikstra : Initialization & node selection

Updation

Landmark Selection - parallel

Djikstra :Initialization & node selection

Updation - Parallel

Containers Container Construction

Updation

Djikstra :Initialization

Updation

Container Construction - parallel

Updation - parallel

Djikstra :Initialization

Updation - parallel

Overlay graphs Overlay level assignment

Djikstra :Initialization

Updation

Overlay level assignment - parallel

Djikstra :Initialization

Updation - parallel

Arc flags Assignflags :Initialization

Updation

Djikstra :Initialization

Updation

Assignflags :Initialization - parallel

Updation - parallel

Djikstra :Initialization

Updation - parallel

2.4 Parallelized Containers
The Geometric containers [14] help to reduce the search space

of Dijkstra‟s algorithm by enclosing a list of target nodes for

each edge inside a geometric object. The geometric

information associated with each edge is then used for

improving the performance of shortest path computations. Let

G= (V, E), w: E → R be a weighted graph. It is remembered

that a set of nodes C⊆ V is called a container. A container C

associated with an edge (u, v) is called consistent, if for all

shortest paths from u to t that start with the edge (u, v), the

target t is in C. In other words, C(u, v) is consistent, if S (u, v)

⊆ C(u, v), where S (u, v) represents the set of nodes x for

which the shortest u-x-path starts with the edge (u, v). Note

that further nodes may be part of a consistent container.

However, at least the nodes that can be reached by a shortest

path starting with (u, v) must be in C(u, v). The additional

nodes are referred as wrong nodes, since they lead the search

in the wrong way. The preprocessed information is used for

determining if a particular edge will be present on a shortest

path to a given target.

In this method it is advantages to have only a subset of the

neighbors „v‟ of a node „u‟ (those which belong to C(u,v)) are

visited and thereby the search space is reduced. Even the

simple bounding boxes reduce search space by a reasonable

percentage [14]. The locations are fit into mathematical model

eases down computation efficiency. There are many

strategies present for container creation. Choosing an

appropriate strategy for container creation itself is a time

consuming process. The quality of containers will be

minimized when the opted container is very large. These

issues also ensures from the mathematical models, where each

shape requires a different mathematical model.

2.5 Parallelized Arc flags
Arc Flags [15] is one in which we will partition the node set

in p regions with a function r: V −> {1,…, p}. Then an arc

flag, i.e. a p-bit-vector where each bit represents one region is

used as edge label. For an edge e, a region is marked in the p

bit-vector of e if it contains a node v with v S(e). Then the

overall space requirement for the preprocessed data is (p ·

m). But an advantage of bit vectors as edge labels is the

insight that the preprocessing does not need to compute all-

pairs shortest paths. Every shortest path from any node s

outside a region R to a node inside a region R has to enter the

region R at some point. As s is not a member of region R,

there exists an edge e = (u, v) such that r (u) r (v). It is

therefore sufficient, if the preprocessing algorithm regards

only the shortest paths to nodes v that are on the boundary of

a region. These paths can be determined efficiently by a

backward search starting at the boundary nodes. Usually, the

number of boundary nodes is by orders of magnitude smaller

than n. A crucial point for this type of edge labels is an

appropriate partitioning of the node set. Using a layout of the

graph, e.g. a grid, quad-trees or kd-trees is found to be a tough

task.

The preprocessing method using arc flag vector helps to

reduce the search space as there is no requirement to compute

all-pair shortest path between the vertices of the graph. And

also preprocessing requires only nodes present in the

boundary of a region for shortest path computation. Because

of this the execution time is reduced. Partitioning of the node

set plays a vital role in this method. i.e., Purely depends on the

partitioning strategy adapted. The additional space utilized for

storing the arc flag vector is not always compromising.

3. EXPERIMENTAL RESULTS
The speedup techniques were experimented on a PC with

Intel Core2Duo processor (2.83Ghz) with 4 GB RAM

running Ubuntu 10.04. Library of Efficient Date types and

Algorithms (LEDA)[28] was used for easy implementation

of various data types such as graphs, lists, priority queues,

arrays, etc. OpenMP[29] API Parallel programming

constructs are used for parallelizing the program.

 The main goal of this work is compare the speedup

techniques with respect to the computation time of the

algorithm and its number of nodes visited during the journey

of shortest path. The metrics like speedup based on runtime

of the algorithm and the number of vertices visited during

shortest path computation, which evaluates the natural

abstractions of the system were considered. The speedup

techniques were implemented and tested for random and

planar graphs with a node count of upto 50000. The random

graph can be considered for network applications or as a

model of real-world networks such as the Internet, social

networks or biological networks. The planar graphs can be

considered in applications like telecommunications - e.g

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.24, June 2012

32

spanning trees, Vehicle routing – e.g. planning routes on

roads without underpasses. For the nodes ranging from

10000 to 50000, the runtime and vertices visited during

shortest path computation are tabulated. Then the average

runtime and average number of nodes visited for each

speedup technique are recorded and subsequently the

speedup was calculated.

Fig 1: Comparison of runtime achieved by various

speedup techniques in random graphs

The range of runtime for each speedup technique is charted in

Figure 1. From the chart it is clear that parallelized speedup

techniques show a reduction in runtime and also in its range.

Better optimization is achieved with parallel processing

constructs. The speedup achieved is the ratio of the

performance of plain Dijkstra and the performance of Dijkstra

with the specific speedup techniques applied. Running times

are dependent on machine in which the algorithm is

implemented and implementation strategy adapted.

Despite their demerits, running times are important for sanity-

checking and complement efficiency to provide a better

understanding of practical performance of algorithms under

consideration. However, efficiency is closely correlated with

running time. Parallelized containers yield a major

performance improvement. The average runtime achieved in

random graphs are promising and the results of the same are

tabulated in Table 2.

Table 2. Runtime reduction in Random Graphs

% of Average Runtime

Reduction in Random Graphs

Landmarks 39%

Multilevel 47%

Containers 100%

Arc Flags 41%

When the arc flag initialization phase and update phase are

parallelized, the average runtime is reduced by 41% compared

to sequential arc flag method. In landmarks it gives a

reduction in runtime of 39% while parallelizing the landmark

selection and update phase. Overlays give a runtime reduction

of 47% and containers gives 99.9% reduction in runtime.

Bidirectional search as it takes time for construction of

forward and reverse graphs the runtime is more for

parallelized approach. At the outset, the preprocessing based

methods are showing reduction in runtime.

Fig 2: Comparison of runtime achieved by various

speedup techniques in Planar Graphs

Planar Graphs belong to point to point network category.

When the same speedup techniques and parallelization of the

same is tested in planar graphs the results were worse. Only in

arc flags, while parallelizing the flag initialization and update

method a reduction in average runtime of 28% is achieved. In

other techniques the intermediate node strength is reduced

while constructing the planar graph itself.

Fig 3: Comparison of Vertices visited achieved by various

speedup techniques in Random Graphs

Another output metric is the average number of vertices

visited during the shortest path computation is charted in

Figure 3. In all, the performance is poor in parallelized

landmarks as the edge weights have to be calculated in

parallel during the search process. This additional effort

usually increases the running time or vertices visited per

visited edge by a little constant factor. Random graphs are

showing good results while parallelizing the speedup

techniques, which is tabulated in Table 3.

Table 3. Vertex Count Reduction in Random Graphs

% of Average Runtime

Reduction in Random

Graphs

Bidirectional 89%

Landmarks 19%

Multilevel 54%

Containers 82%

Arc Flags 54%

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.24, June 2012

33

Parallelizing bidirectional search in initialization phase and

update phase shows 89% reduction in number of vertices

visited, landmarks in landmark initialization and update phase

gives 19%, multilevel method in overlay construction and

update phase gives 54%, Containers in container construction

and update phase gives 82% and arc flags in flag assignment

and update phase give a reduction in percentage in vertices

visited during shortest path computation of 54%

Fig 4: Comparison of Vertices visited achieved by various

speedup techniques in Planar Graphs

The performance of parallelization is very poor in planar

graphs. As the graphs have point to point connections the

exact connection between the sites will be comparatively less

than that of random graphs. Hence it takes a longer time to

find the shortest path and also the number of nodes visited.

The speedup achieved is the ratio of the performance of plain

Dijkstra and the performance of Dijkstra with the specific

speedup techniques applied. The speedup was measured by

considering the system computation time and vertices visited

during shortest path computation in mind and by comparing

the speedup technique considered with Dijkstra‟a runtime.

The speedup is measured for both sequential and parallelised

speedup techniques. The relative performance gain in

parallelization is the percentage of increase in speedup of the

system. The percentage of increase or decrease in speedup

when parallelizing the speedup techniques is measured for

random and planar graphs and is recorded in the table Table 4.

TABLE 4. PERFORMANCE OF PARALLELIZATION FOR SPEEDUP

WITH RESPECT TO RUNTIME

% in Random %in Planar

Arc flag 69.7270567 40.6140145

Container 45.7674365 -2.3253493

Bi-dir -8.55313961 -9.59731999

Landmark 65.0182334 -33.6062573

Overlay 90.9976444 -7.66501065

The performance gain is high in random graphs than planar

graphs as the update phase takes less time in random graphs

than planar graphs due to its internal graph structure. In

bidirectional search it shows a decrease in gain as the

processing of shortest path computation switches between

forward graph and reverse graph.

Fig 5: Performance gain in Speedup with respect to

runtime

In planar graphs, except arc flags the other speedup

techniques show a decrease in performance gain due to its

internal structure. Arc flags show good results both in

random(69%) and planar graphs(40%). It is because of the

advantage of shortest path search space pruning effect of arc

flag technique due to flag vectors.

TABLE 5. :PERFORMANCE OF PARALLELIZATION FOR

SPEEDUP WITH RESPECT TO VERTEX COUNT

% in Random %in Planar

Arc flag 120.167981 -95.9654179

Container 456.033324 -99.1631799

Bi-dir 830.567686 -98.70317

Landmark 24.2957173 -89.3229167

Overlay 120.167981 -95.9654179

The percentage of increase or decrease in speedup with repect

to vertices visited when parallelizing the speedup techniques

is measured for random and planar graphs and is recorded in

the table Table 5. The best performance is achieved in random

graphs than planar graphs with respect to vertices visited

during shortest path computation. Here bidirectional

search(830%) gives very high performance gain as the two

searches narrow down the search process fastly in random

graphs.

Figure 6. Performance gain in Speedup with respect to runtime

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.24, June 2012

34

It shows always in drecrease in performance gain for speedup

with respect to vertices visited as the planar graph structure

plays an important role. Parallelization will not provide a

good impact in planar type of netwroks. For these types of

networks it is suggested to have the seqeuntial version of the

speedup technique than parallelized version.

4. CONCLUSION
The performance of the speedup techniques for Dijkstra‟s

algorithm like Bidirectional Search, Goal directed

Search,based on landmarks, Arcflags, Containers and

Multilevel technique were implemented in sequential and

parallel using muticore architecture and parallel programming

constructs and the results were compared and analysed.

Important metrics for evaluation of the techniques like

average percentage of reduction in runtime and the average

number of vertices visited during shortest path computation

were considered and compared. Additionally relative

performance gain in parallelization is recorded for random

and planar graphs with respect to runtime and vertices visited.

Arc flags provide good results in random and planar graphs

with respect to runtime and the number of vertices visited

during shortest path computation. In general planar graphs

give a gain in percentage for arc flags in runtime and in the

rest it shows poor results for performance gain.

The performance of the system can be verified in real world

graphs like time table information systems, etc., As arc flags

give better results the same can be combined with other

speedup techniques in dynamic time dependent networks.

5. REFERENCES
 [1] DIJKSTRA, E. W. (1959) „A note on two problems in

connection with Graphs‟, In Numerische Mathematik,

Vol. 1, Mathematisch Centrum, Amsterdam, The

Netherlands, pp.269–271.

 [2] Frank Schulz, Dorothea Wagner, and Weihe, K. (2000)

„Dijkstra‟s algorithm on-line: An empirical case study

from public railroad transport‟, ACM Journal of

Experimental Algorithmics, Vol. 5.

 [3] I. Phol. (1971) „Bi-directional Search‟, In Machine

Intelligence, volume 6, pp 124-140. Edinburgh Univ.

Press, Edinburgh

 [4] Andrew V.Goldberg and Chris Harrelson. (2005)

„Computing the Shortest Path: A* Search Meets Graph

Theory‟, In Proc. 16th Annual ACM-SIAM Symposium

on Discrete Algorithms.

 [5] Andrew V. Goldberg and Renato F. Wernecky. (2005)

„Computing Point-to-Point Shortest Paths from External

Memory‟, In Proc. Of The Seventh Workshop on

Algorithm Engineering and Experiments (ALENEX05).

 [6] Frank Schulz, Dorothea Wagner, & Christos Zaroliagis.

(2002) „Using multi-level graphs for timetable

information in railway systems‟, In Proc. 4th Workshop

on Algorithm Engineering and Experiments. LNCS

2409, Springer-Verlag, New York. pp43- 59.

[7] Sanders, P. and Schultes. D. (2005) „Highway hierarchies

hasten exact shortest path queries‟, In the Proceedings

European Symposium on Algorithms.

 [8] Sanders, P. and Schultes, D. (2006) „Engineering highway

hierarchies‟, In the Proceedings of the 14th European

Symposium on Algorithms. LNCS,vol. 4168. Springer,

New York. Pp.804–816.

[9] Schultes. D and Sanders. P. (2007) „Dynamic highway-

node routing‟, In Proceedings of the 6thWorkshop on

Experimental and Efficient algorithms,LNCS. Springer,

New York pp.66–79.

 [10] Martin Holzer, Frank Schulz and Dorothea Wagner.

(2008) „Engineering Multilevel Overlay Graphs for

Shortest-Path Queries‟, ACM Journal of Experimental

Algorithmics, Vol.13, Article No.2.5, September.

 [11] Dorothea Wagner and Thomas Willhalm.

(2005)„Geometric Containers for Efficient Shortest-Path

Computation‟, ACM Journal of Experimental

Algorithmics, Vol.10, Article No.1.3, pp.1-30.

 [12] Mohring, R. H., Schilling, H., Schutz, B.,Wagner. D.,

and Willhalm, T. (2006) „Partitioning graphs to speed up

Dijkstra‟s algorithm‟, ACM Journal of Experimental

Algorithmics, Vol.11, Article No.2.8, pp.1-29.

 [13] GUTMAN, R.J. (2004) „Reach-based routing: A new

approach to shortest path algorithms optimized for road

networks‟, In Proceedings of the Sixth Workshop on

Algorithm Engineering and Experiments and the First

Workshop on Analytic Algorithmics and Combinatorics.

 [14] Dorothea Wagner and Thomas Willhalm. (2007) „Speed-

Up Techniques for Shortest-Path Computations‟, In

Proc. STACS 2007, LNCS , Springer-Verlag, New York.

pp43- 59.

 [15] Holzer, M, Schulz. F, Wagner and Willhalm. T. (2006)

„Combining speed-up techniques for shortest-path

computations‟, ACM Journal of Experimental

Algorithmics, Vol.10, Article No.2.5, pp.1-18.

 [16] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis

Schieferdecker, Dominik Schultes, & Dorothea Wagner.

(2010) „Combining hierarchical and goal-directed speed-

up techniques for Dijkstra's algorithm‟, ACM Journal of

Experimental Algorithmics, Vol. 15, Article No. 3.

 [17] The Advanced Computing Systems Association (2000)

„Amdahl‟s law & Parallel Speedup‟,

http://www.usenix.org/publications/library/proceedings/a

ls00/2000papers/papers/full_papers/brownrobert/brownr

obert_html/node3.html

 [18] Daniel Delling, Bastian Katz and Thomas Pajor,

“Parallel Computation of Best Connections in Public

Transportation Networks” , In: 24th International

Parallel and Distributed Processing Symposium

(IPDPS'10), pages 1-12., IEEE Computer Society, 2010.

 [19] R. C. Paige and C. P. Kruskal, “Parallel algorithms for

shortest path problems,” 1985, pp. 553–556.

[20] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E.

Tarjan, “Relaxed heaps: An alternative to Fibonacci

heaps with applications to parallel computation,” Comm.

ACM, vol. 31, no. 11, pp. 1343–1354, 1988.

[21] K. M. Chandy and J. Misra, “Distributed computation on

graphs: Shortest path algorithms,” Comm. ACM, vol. 25,

no. 11, pp. 833–837, 1982.

 [22] K. V. S. Ramarao and S. Venkatesan, “On finding and

updating shortest paths distributively,” J. Algorithms,

vol. 13, pp. 235–257, 1992.

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.24, June 2012

35

[23]Dominik Schultes, Johannes Singler, Peter Sanders.

(2008)„Parallel Highway Node Routing‟, A Technical

Report, Feburuary.

algo2.iti.kit.edu/schultes/hwy/parallelHNR.pdf

 [24]R.Kalpana, P.Thambidurai, Arvind Kumar, R.

Parthasarathy, and Praful Ravi. (2010), „Exploiting

Parallelism in Bidirectional Dijkstra for Shortest-Path

Computation‟, in the Proceedings of International

conference on Computers, Communication and

Intelligence at , Vellammal college of Engg., &

Tech.,Madurai, India, pp. 351-356, July.

[25]R.Kalpana, P.Thambidurai,(2010), „Optimization of

Landmark preprocessing with Mulitcore Systems‟,

Journal of Computing, Vol.2, Issue.8, pp.102-108,

August.

[26]R.Kalpana, P.Thambidurai (2011), „Optimizing shortest

path queries with parallelized Arc flags‟, in the

Proceedings of IEEE International conference on Recent

trends in Information Technology, MIT Campus,Anna

University, Chennai, India, June.

 [27]R.Kalpana, P.Thambidurai (2011), „Parallelized

Multilevel Arc Flags Improve Speedup In Shortest Path

Queries‟, , in the Proceedings of the IEEE International

Conference on Process Automation, Control and

Computing, CIT, Coimbatore, July 2011.

[28] „The OpenMP - API specification for parallel

programming‟, available at http://www.openmp.org

 [29] Algorithmic Solutions Software GmbH (1995)

„LEDA‟, available at http://www.algorithmic-

solutions.com

