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ABSTRACT 

The essential elements of any network application system uses 

shortest‐path algorithm mostly for problems of network 

namely routing, viz. When seen in the light of the basic 

requirement of such a system, to provide high quality path 

identification or routing solutions fast, algorithms have to be 

efficient. There are many speedup techniques and combined 

speedup techniques available which find shortest path 

efficiently in networks. Also parallelization is incorporated in 

some of the speedup techniques, where the performance is 

monitored in multicore processors. This paper deals with 

comparison of parallelized speedup techniques with sequential 

version of the same and finding performance improvement 

achieved in parallelized speedup techniques with respect to 

runtime and number of vertices visited during shortest path 

computation. The techniques were tested in random and 

planar types of graph networks, which may be suitable for 

networks of the same type. Performance of parallelization has 

good impact of speedup in random graph type of 

networks(45% to 90% with respect to runtime and 25% to 

830% with respect to vertices visited) than planar graph type 

of networks. 
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1. INTRODUCTION 
In the context of routing in scheduled vehicles like train, 

buses, web search engines and navigation applications the 

computation time is very important component. One of the 

essential component of these applications is the shortest path 

computation time. In these applications, different places are 

considered as nodes and their distances are considered as edge 

weight, which constitute a graph structure. The shortest path 

queries for such applications were originally solved by 

Dijkstra[1], Bellman-ford, and Johnson. Dijkstra‟s algorithm 

implemented with Fibonacci heaps is still the fastest known 

algorithm for the general case of arbitrary nonnegative edge 

lengths, taking )log( nnmO  worst-case time. There are 

several Speed up techniques available to improve the speed up 

of shortest path computation with Dijkstra‟s algorithm[1],[2]. 

The basic speeds up techniques are bidirectional search[3], 

goal directed search[4],[5], multilevel 

approach[6],[7],[8],[9],[10], shortest-path container[11], arc 

flags[12] and reach based method[13]. The basic speedup 

techniques can also be combined in different flavors and their 

performance were also improved. These basic speedup 

techniques[14] and combined speedup techniques[15],[16] 

cannot be always guaranteed to prove to be faster than the 

original Dijkstra‟s algorithm. However it can be empirically 

shown that they certainly improve the speedup of many of the 

applications[2]. The shortest path problem has two phases of 

implementation for applications where there is a need for 

voluminous data sets. They are pre-processing phase and 

shortest path computation phase. Pre-processing techniques 

were identified to make the applications to work fast. It makes 

to work fast in very large networks, where there is a need for 

many 1 to n shortest path computations. The speed up factor is 

found to be high in techniques where pre-processing the 

network is done at the design phase of the network 

itself[2],[15]. In the shortest path computation phase, actual 

speedup techniques integrated with Dijkstra‟s algorithm 

works to give the result in optimal time. When these speedup 

techniques were parallelized it shows an improvement in 

preprocessing time, runtime and number of vertices visited for 

some of the techniques.  

 All programs contain some regions that are suitable 

for parallelization and other regions that are not. By using an 

increasing number of processors, the time spent in the 

parallelized parts of the program is reduced, but the sequential 

section remains the same. Eventually the execution time is 

completely dominated by the time taken to compute the 

sequential portion, which puts an upper limit on the expected 

speedup. This effect, known as Amdahl’s law[17], can be 

formulated as 
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Where fpar is the parallel fraction of the code and P is the 

number of processors. In the ideal case when all of the code 

runs in parallel, fpar = 1, the expected speedup is equal to the 

number of processors. 

A new parallel approach called parallel profile search 

algorithm for best connections between stations in public 

transportation networks was designed and implemented in 

multicore servers[18]. A good speedup in computation time 

and settled nodes is achieved in public transportation 

networks. Parallelism in sequential Dijkstra implementation 

of general networks is exploited at the level of parallel edge 

relaxations and parallel priority queuing in PRAM models and 

Communication networks[19],[20],[21],[22]. Results of 

shared-memory parallel variants of the multi-level overlay 

graph construction necessary for HNR are discussed in [23] 

and overlay graphs were experimented in eight core machines. 

A high number of updates per time are desirable to keep the 

replies to the shortest path queries as up-to-date as possible. 

On multicore processors, the repeated precomputation step for 

HNR takes roughly two minutes. The results of parallelized 
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bidirectional search [24], parallelized landmarks[25], 

parallelized bidirectional arc flags[26], and parallelized 

multilevel arc flags[27]  on multicore processors are 

equivalently very good which aims for comparison of the 

results of the speedup techniques  

In this paper, the parallelized speedup techniques were 

analysed individually, and experimented in random and planar 

graphs. A comparative study was made for all the five 

speedup techniques by considering sequential and parallel 

version of the same technique with respect to the output 

parameters runtime and vertices visited during shortest path 

computation. The remainder of the paper is organized as 

follows. Section 2 describes the parallelized speedup 

techniques and the analysis of the same. . Section 3 describes 

empirical evaluation of the sequential and parallel speedup 

techniques using random and planar graph types using LEDA 

library. Finally, Section 4 draws conclusions and gives 

directions for future work 

2. DESIGN OF PARALLELIZATION IN 

SPEEDUP TECHNIQUES  
The parallel version of the Dijkstra‟s algorithm with speedup 

techniques were parallelized in its initialization phase and 

update phase. This parallelization is achieved using OpenMP 

constructs in the iterative statements (for loops). Depending 

on the number of processors run in the system, the iterative 

operations will be executed in parallel using multithreaded 

approach. Each process Pi (1<=i<=k) (k being the number of 

processors in the system) initializes the priority queue Q 

partly. For large value of n, the operations of initialization 

phase and update phase were shared by multiple processors. 

This takes a time t which is less than the time achieved in 

sequential speedup techniques. If the node size is very less, 

then the time for communication between threads is eaten by 

the computation time. Even then the worst case running time 

of parallelized speedup techniques will be less than the time 

achieved in sequential speedup techniques, which is less than  

O(n+m log n). The various phases of each speedup technique 

and different phase of the same which can be parallelized is 

given in Table I. 

 

2.1 Parallel Bidirectional Search 
The sequential version of Bidirectional search, which 

terminates when a node is marked permanent by both searches 

i.e uperm or ruperm. The search is processed using two 

priority queues Q and rQ. Bidirectional search involves 

initialization phase, node selection phase and update phase. 

Initialising the priority queue Q and reverse priority queue rQ 

takes a running time of O(n) each for n nodes. In node 

selection phase, it takes approximately n/2 comparisons for 

selecting a minimum distance node from the priority queue. 

The node selection will be ended when the perm node is 

marked by any of the other search. In update phase it takes 

O(n) for each variant of Bidirectional search. In both searches 

the search tree expands  with a branching factor b and the 

distance from source to target is l in traditional Dijkstra, each 

of the search will be having a complexity O(bl/2) and the total 

search time of bidirectional search will be much less than 

O(bl) in traditional Dijkstra which is equivalent to O(n+m log 

n) with Fibonacci heaps. If each queue operation takes O(n+m 

log n) time, the expected running time is O( +m log n). 

The parallel version of  the above algorithm has parallelized 

initialization phase and update phase. This parallelization is 

achieved using OpenMP constructs in the for loops. 

Depending on the number of processor run in the system, the 

iterative operations will be parallelly executed using 

multithreaded approach. Each process Pi (1<=i<=k) (k being 

the number of processors in the system) initializes the forward 

priority queue Q and reverse priority queue rQ partly. For 

large value of n, the operations of initialization phase and 

update phase were shared by multiple processors and which 

takes a time t which is less than the time achieved in 

sequential bidirectional search. If the node size is very less the 

time for communication between threads is eaten by the 

computation time. Even then the worst case running time will 

be less than the time achieved in in sequential bidirectional 

search i.e part of O(n+m log n) or O( +m log n) 

 

2.2 Parallelized Landmarks 
With parallelized preprocessing, it is possible to gather 

information about the graph that can be used to obtain 

improved lower bounds. In [10], a small fixed sized subset L 

⊆ V of “landmarks” is chosen in parallel. Then, for all nodes 

v  V , the distance d(v, l) to all nodes l ⊆ L is precomputed 

and stored in parallel. The time for precomputation and 

storage is certainly less than O(v) in sequential preprocessing. 

These distances can be used to determine a feasible potential. 

For each landmark lL, a potential is defined. The potentials 

for L landmarks will be calculated in parallel which is less 

than the time required in sequential form of potential 

calculation i.e O(L), L being the number of landmarks. 

Doing the shortest path computation using landmarks in 

Dijkstra reduces V – L nodes thereby the time O(V-L) will be 

reduced for each instance. Landmarks in the graph usually 

attract the search to themselves.  Then the potential 

calculation process for new s-t path will be faster as L V. 

The total time for landmarked Dijkstra will be O(L+mlog L) 

where LV, a set of landmarks. Doing the same with 

multiple processors and sharing the preprocсessing phase, 

landmark selection and initialization phase and update phase  

reduce the time by O(V-L). The overall time O(L+mlog L) 

will be shared by i processors.  

 

2.3 Parallelized Multilevel Approach 
As the graph is decomposed into l+1 levels it takes O(l+1) 

time to decompose the graph. The subgraph at each level i 

consists of Si nodes. If Si   V and the subgraph with Si 

selected nodes consists of NSi nodes and MSi edges then 

Dijkstra‟s algorithm is run on this subgraph to construct the 

shortest path which takes a time T(i) of O(NSi+MSi log NSi) 

time. It proceeds for all levels and for all subgraphs S1,S2,. 

.Si,…Sl.  The total time will be the sum of all the  

plus time to find the shortest path for the new graph, which 

comes out of additional edges. This time will be less than the 

time achieved in traditional Dijkstra.  

In parallel multilevel approach, especially in the 

preprocessing phase the decomposition is carried out in 

parallel. Assuming  processors are involved then 

each processor select Si nodes at each level i and form a 

subgraph Gs when L=K. The special edges between levels are 

constructed in parallel. If E be the number of additional edges 

added then it takes O(E) time to construct sequentially. When 

we do the same in parallel, k processors will share the job and 

it takes a time of greater than O(E/k) for each processor. 
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Table 1.  Parallel regions in speedup techniques 

 

 

 

 Technique sequential parallel 

Bidirectional Initialization phase 

Node selection phase  

Update phase 

Initialization phase - parallel 

Node selection phase  

Update phase – parallel 

Landmark Landmark Selection 

Djikstra : Initialization & node selection 

Updation  

Landmark Selection - parallel 

Djikstra :Initialization & node selection 

Updation - Parallel  

Containers Container Construction  

Updation 

Djikstra :Initialization 

Updation  

Container Construction -  parallel 

Updation - parallel 

Djikstra :Initialization  

Updation  - parallel 

Overlay graphs Overlay level assignment 

Djikstra :Initialization 

Updation 

Overlay level assignment - parallel  

Djikstra :Initialization 

Updation - parallel 

Arc flags Assignflags :Initialization  

Updation 

Djikstra :Initialization 

Updation  

Assignflags :Initialization -  parallel 

Updation - parallel 

Djikstra :Initialization  

Updation  - parallel 

2.4    Parallelized Containers 
The Geometric containers [14] help to reduce the search space 

of Dijkstra‟s algorithm by enclosing a list of target nodes for 

each edge inside a geometric object. The geometric 

information associated with each edge is then used for 

improving the performance of shortest path computations. Let 

G= (V, E), w: E → R be a weighted graph. It is remembered 

that a set of nodes C⊆ V is called a container. A container C 

associated with an edge (u, v) is called consistent, if for all 

shortest paths from u to t that start with the edge (u, v), the 

target t is in C. In other words, C(u, v) is consistent, if S (u, v) 

⊆ C(u, v), where S (u, v) represents the set of nodes x for 

which the shortest u-x-path starts with the edge (u, v). Note 

that further nodes may be part of a consistent container. 

However, at least the nodes that can be reached by a shortest 

path starting with (u, v) must be in C(u, v). The additional 

nodes are referred as wrong nodes, since they lead the search 

in the wrong way. The preprocessed information is used for 

determining if a particular edge will be present on a shortest 

path to a given target. 

In this method it is advantages to have only a subset of the 

neighbors „v‟ of a node „u‟ (those which belong to C(u,v)) are 

visited and thereby the search space is reduced. Even the 

simple bounding boxes reduce search space by a reasonable 

percentage [14]. The locations are fit into mathematical model 

eases down computation efficiency.  There are many 

strategies present for container creation. Choosing an 

appropriate strategy for container creation itself is a time 

consuming process. The quality of containers will be 

minimized when the opted container is very large. These 

issues also ensures from the mathematical models, where each 

shape requires a different mathematical model.  

2.5 Parallelized Arc flags 
Arc Flags [15] is one in which we will partition the node set 

in p regions with a function r: V −> {1,…, p}. Then an arc 

flag, i.e. a p-bit-vector where each bit represents one region is 

used as edge label. For an edge e, a region is marked in the p 

bit-vector of e if it contains a node v with v  S(e). Then the 

overall space requirement for the preprocessed data is (p · 

m). But an advantage of bit vectors as edge labels is the 

insight that the preprocessing does not need to compute all-

pairs shortest paths. Every shortest path from any node s  

 

outside a region R to a node inside a region R has to enter the 

region R at some point. As s is not a member of region R, 

there exists an edge e = (u, v) such that r (u)  r (v). It is 

therefore sufficient, if the preprocessing algorithm regards 

only the shortest paths to nodes v that are on the boundary of 

a region. These paths can be determined efficiently by a 

backward search starting at the boundary nodes. Usually, the 

number of boundary nodes is by orders of magnitude smaller 

than n. A crucial point for this type of edge labels is an 

appropriate partitioning of the node set. Using a layout of the 

graph, e.g. a grid, quad-trees or kd-trees is found to be a tough 

task. 

The preprocessing method using arc flag vector helps to 

reduce the search space as there is no requirement to compute 

all-pair shortest path between the vertices of the graph. And 

also preprocessing requires only nodes present in the 

boundary of a region for shortest path computation. Because 

of this the execution time is reduced. Partitioning of the node 

set plays a vital role in this method. i.e., Purely depends on the 

partitioning strategy adapted. The additional space utilized for 

storing the arc flag vector is not always compromising.  

3. EXPERIMENTAL RESULTS  
The speedup techniques were experimented on a PC with 

Intel Core2Duo processor (2.83Ghz) with 4 GB RAM 

running Ubuntu 10.04. Library of Efficient Date types and 

Algorithms (LEDA)[28] was used for easy implementation 

of various data types such as graphs, lists, priority queues, 

arrays, etc. OpenMP[29] API Parallel programming 

constructs are used for parallelizing the program. 

 The main goal of this work is compare the speedup 

techniques with respect to the computation time of the 

algorithm and its number of nodes visited during the journey 

of shortest path. The metrics like speedup based on runtime 

of the algorithm and the number of vertices visited during 

shortest path computation, which evaluates the natural 

abstractions of the system were considered. The speedup 

techniques were implemented and tested for random and 

planar graphs with a node count of upto 50000. The random 

graph can be considered for network applications or as a 

model of real-world networks such as the Internet, social 

networks or biological networks. The planar graphs can be 

considered in applications like telecommunications - e.g 
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spanning trees, Vehicle routing – e.g. planning routes on 

roads without underpasses. For the nodes ranging from 

10000 to 50000, the runtime and vertices visited during 

shortest path computation are tabulated. Then the average 

runtime and average number of nodes visited for each 

speedup technique are recorded and subsequently the 

speedup was calculated. 

 
Fig 1: Comparison of runtime achieved by various 

speedup techniques in  random graphs 

The range of runtime for each speedup technique is charted in 

Figure 1. From the chart it is clear that parallelized speedup 

techniques show a reduction in runtime and also in its range.  

Better optimization is achieved with parallel processing 

constructs. The speedup achieved is the ratio of the 

performance of plain Dijkstra and the performance of Dijkstra 

with the specific speedup techniques applied. Running times 

are dependent on machine in which the algorithm is 

implemented and implementation strategy adapted.  

Despite their demerits, running times are important for sanity-

checking and complement efficiency to provide a better 

understanding of practical performance of algorithms under 

consideration. However, efficiency is closely correlated with 

running time. Parallelized containers yield a major 

performance improvement. The average runtime achieved in 

random graphs are promising and the results of the same are 

tabulated in Table 2. 

Table 2. Runtime reduction in Random Graphs 

 

% of Average Runtime 

Reduction in Random Graphs 

Landmarks 39% 

Multilevel 47% 

Containers 100% 

Arc Flags 41% 

When the arc flag initialization phase and update phase are 

parallelized, the average runtime is reduced by 41% compared 

to sequential arc flag method. In landmarks it gives a 

reduction in runtime of 39% while parallelizing the landmark 

selection and update phase. Overlays give a runtime reduction 

of 47% and containers gives 99.9% reduction in runtime. 

Bidirectional search as it takes time for construction of 

forward and reverse graphs the runtime is more for 

parallelized approach. At the outset, the preprocessing based 

methods are showing reduction in runtime. 

 

 

Fig 2: Comparison of runtime achieved by various 

speedup techniques in Planar Graphs 

Planar Graphs belong to point to point network category. 

When the same speedup techniques and parallelization of the 

same is tested in planar graphs the results were worse. Only in 

arc flags, while parallelizing the flag initialization and update 

method a reduction in average runtime of 28% is achieved. In 

other techniques the intermediate node strength is reduced 

while constructing the planar graph itself. 

 

Fig 3: Comparison of Vertices visited achieved by various 

speedup techniques in Random Graphs 

Another output metric is the average number of vertices 

visited during the shortest path computation is charted in 

Figure 3. In all, the performance is poor in parallelized 

landmarks as the edge weights have to be calculated in 

parallel during the search process. This additional effort 

usually increases the running time or vertices visited per 

visited edge by a little constant factor. Random graphs are 

showing good results while parallelizing the speedup 

techniques, which is tabulated in Table 3. 

Table 3. Vertex Count Reduction in Random Graphs 

 

% of Average Runtime 

Reduction in Random 

Graphs 

Bidirectional 89% 

Landmarks 19% 

Multilevel 54% 

Containers 82% 

Arc Flags 54% 
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Parallelizing bidirectional search in initialization phase and 

update phase shows 89% reduction in number of vertices 

visited, landmarks in landmark initialization and update phase 

gives 19%, multilevel method in overlay construction and 

update phase gives 54%, Containers in container construction 

and update phase gives 82% and arc flags in flag assignment 

and update phase give a reduction in percentage in vertices 

visited during shortest path computation of 54% 

 
Fig 4: Comparison of Vertices visited achieved by various 

speedup techniques in Planar Graphs 

The performance of parallelization is very poor in planar 

graphs. As the graphs have point to point connections the 

exact connection between the sites will be comparatively less 

than that of random graphs. Hence it takes a longer time to 

find the shortest path and also the number of nodes visited. 

The speedup achieved is the ratio of the performance of plain 

Dijkstra and the performance of Dijkstra with the specific 

speedup techniques applied. The speedup was measured by 

considering the system computation time and vertices visited 

during shortest path computation in mind and by comparing 

the speedup technique considered with Dijkstra‟a runtime. 

The speedup is measured for both sequential and parallelised 

speedup techniques.  The relative performance gain in 

parallelization is the percentage of increase in speedup of the 

system. The percentage of increase or decrease in speedup 

when parallelizing the speedup techniques is measured for 

random and planar graphs and is recorded in the table Table 4. 

TABLE  4. PERFORMANCE OF PARALLELIZATION FOR SPEEDUP 

WITH RESPECT TO RUNTIME 

 

% in Random %in Planar 

Arc flag 69.7270567 40.6140145 

Container 45.7674365 -2.3253493 

Bi-dir -8.55313961 -9.59731999 

Landmark 65.0182334 -33.6062573 

Overlay 90.9976444 -7.66501065 

The performance gain is high  in random graphs than planar 

graphs as the update  phase takes less time in random graphs 

than planar graphs due to its internal graph structure. In 

bidirectional search it shows a decrease in gain as the 

processing of shortest path computation switches between 

forward graph and reverse graph.   

 
Fig 5: Performance gain in Speedup with respect to 

runtime 

In planar graphs, except arc flags the other speedup 

techniques show a decrease in performance gain due to its 

internal structure. Arc flags show good results both in 

random(69%) and planar graphs(40%). It is because of the 

advantage of shortest path search space pruning effect of arc 

flag technique due to flag vectors.  

TABLE  5. :PERFORMANCE OF PARALLELIZATION FOR 

SPEEDUP WITH RESPECT TO VERTEX COUNT 

 

% in Random %in Planar 

Arc flag 120.167981 -95.9654179 

Container 456.033324 -99.1631799 

Bi-dir 830.567686 -98.70317 

Landmark 24.2957173 -89.3229167 

Overlay 120.167981 -95.9654179 

 

The percentage of increase or decrease in speedup with repect 

to vertices visited when parallelizing the speedup techniques 

is measured for random and planar graphs and is recorded in 

the table Table 5. The best performance is achieved in random 

graphs than planar graphs with respect to vertices visited 

during shortest path computation. Here bidirectional 

search(830%) gives very high performance gain as the two 

searches narrow down the search process fastly in random 

graphs.  

  

Figure 6. Performance gain in Speedup with respect to runtime  
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It shows always in drecrease in performance gain for speedup 

with respect to vertices visited as the planar graph structure 

plays an important role. Parallelization will not provide a 

good impact in planar type of netwroks. For these types of 

networks it is suggested to have the seqeuntial version of the 

speedup technique than parallelized version. 

4. CONCLUSION 
The performance of the speedup techniques for Dijkstra‟s 

algorithm like Bidirectional Search, Goal directed 

Search,based on landmarks, Arcflags, Containers and 

Multilevel technique were implemented in sequential and 

parallel using muticore architecture and parallel programming 

constructs and the results were compared and analysed. 

Important metrics for evaluation of the techniques like 

average percentage of reduction in runtime and the average 

number of vertices visited during shortest path computation 

were considered and compared. Additionally relative 

performance gain in parallelization is recorded for random 

and planar graphs with respect to runtime and vertices visited. 

Arc flags provide good results in random and planar graphs 

with respect to runtime and the number of vertices visited 

during shortest path computation. In general planar graphs 

give a gain in percentage for arc flags in runtime and in the 

rest it shows poor results for performance gain.  

The performance of the system can be verified in real world 

graphs like time table information systems, etc., As arc flags 

give better results the same can be combined with other 

speedup techniques in dynamic time dependent networks.  
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