
International Journal of Computer Applications (0975 – 8887)

 Volume 47– No.24, June 2012

11

Enhanced Type Safety in Java

Swadhin Kumar Barisal

Dept. of CSE, ITER
S’O’A University

Odisha, India

Gayatri Nayak
Dept. of CSE, ITER

S’O’A University
Odisha, India

Bighnaraj Naik
Dept. of IT, ITER
S’O’A University

Odisha, India

ABSTRACT

Java is known to be a strongly type safe language, but there

are some coding conventions and when these are used in

some applications like persistent storage through serialization

may generate unreliable or wrong output. Such cases should

be caught and modified as per requirement to produce a

modified safe program. This can be achieved by designing a

translator tool which can catch unsafe code segments and

produce a modified safe code segment. When a singleton class

is serialized it is necessary to include a special method from

serializable interface within it then only it gives us right

result. If this method is not there within the class then it

produces unpredictable results. Such results may violate type

safe property of object oriented programming. Here the

translator is designed using ANTLR which is going to check

availability of this method in the input java file. If this method

is not found then add the method and generate a type safe

program at output.The same translator can be applicable for

generics and their limitations. Here the translator is going to

trace if there are any unchecked warnings or runtime

exception then modify the input program to generate a safe

program at output. This will lead to minimize limitations of

java generics.

General Terms

Type safety, Design, Reliable data types, object oriented

languages

Keywords

Serialization, Java Generics, ANTLR

1. INTRODUCTION

Serialization [12] is used for persistent storage of Java objects

to a file, database, network, process or any other system.

Serialization flattens objects into serialized stream of bytes.

The ordered stream of bytes can then be read at a later time, or

in another environment, to recreate the original objects. So if

the original object could not be recreated then any operation

performed on it may break type-safety.

A language is type-safe if the only operations that can be

performed on data in the language are those sanctioned by the

type of the data. That is data should not be modified

accidentally or intentional. A Java object may read and

modify fields (and invoke methods) private to another object.

It may invoke operations not even defined for that object,

which is causing completely unpredictable results. Thus Java

security depends strongly on type-safety, which cannot be

completely compromised.

There are two ways in which the violation of type-safety may

be checked. First identify a necessary and sufficient

conditions on class loaders such that if all the class loaders

definable in a Java program satisfy this condition, then the

program will not have any "bridge" classes at run-time, and

hence will not exhibit this kind of type-spoofing. Thus one

may still informally argue that a particular Java program may

not exhibit this kind of type-spoofing, and one may design

Java programs in the future to satisfy this condition. Second

way is to design some mechanism to catch unsafe code

segments from the running application program.

These java generics was introduced in 2004 as java1.5.The

main purpose of generics was to give type-safety, avoid

repeated type castings [9] and also to Support polymorphism

of methods and classes. It is also necessary to see if there are

any other ways in which type-safety can be compromised in

Java.

Some java applications are there which are not properly

serializable unless some special care has been taken. Here the

1st example is serialization of singleton classes and user

defined EnumType classes. Secondly Java Generics has some

limitations where it fails to hold some object oriented

properties. Sometimes Generics gives unchecked warnings or

runtime class cast exceptions which does not give a clear idea

to debug it easily. So this should be more expressive to

programmer.

The implementation part shows serialization of singleton

classes and user defined EnumType classes where

deserialization process fails while reconstructing the objects

of such classes. That means our translator will check if such

type classes are there in our application and they are

implementing java.io.Serializable then that class has to be

checked for type-safety.

Secondly part shows introduction to generics and their

limitations. Here the translator is going to trace if there are

any unchecked warnings or runtime exception then modify the

input program to generate a safe program at output.

The second section deals with the prerequisites or concepts

required to understand each problem. In third section contains

definition of each problem and their solution methodology.

Fourth section contains results from experiment. Fifth section

contains analysis of results. Sixth part contains conclusion and

references.

2. PRILIMINARIES

Serialization [12] is a process of saving the current state of an

object to bytes of stream, and restoring the same object from

that stream whenever required. This stream representation

functions as a container for the object. The byte stream format

of the object includes a partial representation of the object's

internal structure, including variable types, names, and values.

Object to be serialized must be an instance of a class that

implements either the Serializable or Externalizable interface.

International Journal of Computer Applications (0975 – 8887)

 Volume 47– No.24, June 2012

12

2.1 Singleton Class

In some applications it may need to create a single instance of

a given class. This helps in memory management, and for

language like Java, in garbage collection. Single instance is

also necessary or desirable for technological or business

reasons. For an example; it may be required to create a single

instance of a pool of database connections.

For this one better approach is to use static members and

methods for the "singleton" functionality. So for these

elements, no instance is required. To create singleton class it

is necessary to make the class final with a private constructor

in order to prevent any instance of the class from being

created. The instance can also be made final so that no one

can change it at any time during its life time.

 1 final class Singleton implements Serializable{

 2 static Singleton instance = null;

 3 private Singleton() {…}

 4 public static Singleton getInstance() {

 5 if(instance == null) {

 instance = new Singleton();

 }

 6 return instance; }

 }

 OR

1 public final class Singleton implements Serializable{

2 static Singleton instance = new Singleton();

3 private Singleton() {…}

4 }

2.2 UserEnums

UserEnum means a user can create a class where its data

members can behave exactly as like enum type in current

java. This is as an old style declaration. But before java1.5

enum types were created in this way. These UserEnum

constants are serialized not in the same way as ordinary

serializable or externalizable objects. The serialized form of

UserEnum constant consists of fields like its name, field

values of the constant. While serializing an enum

constant, ObjectOutputStream writes the value returned by the

enum constant's name method and while deserilizing an enum

constant, ObjectInputStream reads the constant name from the

stream then at deserilization time the constant is obtained

when the java.lang.Enum.valueOf() method is called by

passing the constant's enum type and also the received

constant name as arguments.

class Move {

 public static final Move HORIZONTAL = new Move (1);

 public static final Move VERTICAL = new Move (2);

 private int value;

 private Move (int v) { value = v; }

}

2.3 Generics

Generics are found in java1.5.Java generics are implemented

by generating single byte code representation for all methods

and instances. This unique representation is done via type

erasure where type information is lost after compilation phase.

Because of this several surprising errors rises that have

nothing to do with programming. These errors may be found

while dealing with operations like subtype checking, subtype

assignments [1], method overloading and so on. But Java

generics supposed to provide the following benefits, but let us

see how far achieved.

 Type safety

 Less explicit casts

 More APIs

Type safety guarantee:

Definition: If your entire application has been compiled

without unchecked warnings, it is type safe.

 Here type-safety means that there will be no unexpected class

cast exception. That is if ClassCastException found then it

must be caused by an explicit cast in the code fragment. For

this reason implicit type castings are not to be added at

compile time of generic code to raise runtime exceptions,

because they would be difficult to understand and fix or

debug.

List rawList = new List();

rawList.add("strings"); // unchecked warning

3. PROBLEM FORMULATION

This section defines three problems and their proposed

solutions. The solution is provided with an implementation

code for the first problem only and rest two problems can be

implemented in same fashion.

3.1 Singleton Class Serialization

It is known that during serialization [12], an object is broken

into stream of bytes and again build back during

Deserialization process. But during Deserialization of

Singleton class it forms a new object instead of returning

original object. Thus gives unpredictable result. This is

happing because of static instance of singleton class. To avoid

this add a method called “ readResolve()” to this singleton

class which creates a bridge between serialization and

Deserialization process. That means readResolve() is used

for replacing the object read from the stream. So

readResolve() method does a single task that is when an

object is read, replace it with the singleton instance.

During deserialization, before returning, the jvm checks

whether readResolve method is implemented in class whose

object is being serialized. If yes, it would invoke the

readResolve() method and again checks if it returns true, then

the same instance would be returned, otherwise the one was

desterilized would be returned. So readResolve() acts as a

plugin method between serialization and Deserialization

process.

3.2 UserEnum Serialization

Usually enum constants are static and final objects of enum

class. So before the introduction of enum keyword in java,

people used to declare enum constants using normal class

having static final members. Therefore while serializing this

enum class it gives unpredictable result due to its static

reference members.

The solution to this problem is to use “readResolve()” method

.This method acts as a connecting bridge between serialization

and deserialization process to return actual object. The same

translator can be used to add readresolve() method if not

found in the class that implements serialization.

class Move implements Serializable {

 public static final Move HORIZONTAL = new Move (1);

 public static final Move VERTICAL = new Move (2);

International Journal of Computer Applications (0975 – 8887)

 Volume 47– No.24, June 2012

13

 private int value;

 private Move (int v) { value = v; }

private Object readResolve() throws ObjectStreamException {

 if (value == 1) return Move.HORIZONTAL;

 if (value == 2) return Move .VERTICAL;

 return null;

 }

 }

3.3 Generic Limitations

3.3.1 Type erasure limitations

Java generics are implemented by using type erasure

property [10], in which generic type parameters are simply

removed during compilation, which means type information is

not available to the JVM at runtime. Therefore serialization

property cannot be used by the user in case of generic

application programs.

2. Java generics also having a significant second Problem as it

degrade run-time performance severely. The reason behind

this is that the same block of code must work for all supported

type parameter instances [6]. In Java generics all type

parameter are converted to data as Object class references[7].

This means that all data going into storage must be up casted

to Object. This is a process that has almost no run-time

overhead. But when the same data is returned, it has to

be downcast to its own type that is converted from an Object

reference back to a reference to the correct type. This leads to

a much more significant run-time overhead.

3. The third problem says, if a generic class has static data,

then each generic type cannot have its own copy of that static

data, because Java keeps a single copy of the static data for all

generic types.

Sometimes these type erasure problems [10] (i.e. warning or

runtime classcastExceptions) can be suppressed by applying

reflection to generics. That is reflection can store data types

before generics loose type information during compilation.

Case1:

Method overloading not permitted if return type is same. In

java1.5 method overloading is not supported with generics but

java1.6 has. Still if return type is same in all method

signatures then java1.6 will show errors.

Code:

public class TestErasure {

 public static Object method(List<Object> list_o) {

 System.out.println("method(List<Object> list-of -

objects)");

 return null;

 }

 public static Object method(List<String> list_str) {

 System.out.println("method(List<String> list-of-

strings)");

 return null;

 }

public static void main(String[] args) {

 method(new ArrayList<Object>());

 method(new ArrayList<String>());

 }

}

Output: error: Method name clash “method(ArrayList<>)”

Solution: To overcome this, add extra dummy arguments in

method signatures where this dummy argument is nothing to

do with overloading. This can be done by this translator.

Case2: Generic at runtime

Due to erasure behavior of Generics in java, there is no sense

in checking generic information at runtime. That means

instanceof operator cannot be applied for generics. This can

be verified by looking in to the following example:

if (list instanceof List<String>){} //Illegal

Case3: Static data members

Java Generic classes cannot have references to their type

parameters from their static data members or methods. More

over it can be said that static types are not allowed in generics.

Following example says how this is illegal:

public TestClass<T>{

 private static T value; //Illegal

 public static void test_static(List<T> list_static){ //Illegal

 }

}

Case4: Generic exceptions

It is not allowed to define a generic type that extends some

Throwable class. The programmer may wish to handle

different parameterized versions of the same exception at

runtime.

The problem is that erasure does not allow it. JVM cannot

distinguish at runtime between Type < Double > and Type

<Integer>. They are both simply Type at runtime. Therefore

there is no sense in having generic exceptions.

try{

}catch(Type<Float>){

}catch(Type<Integer>){

}

Case5: Generic enums

Defining generic enums is not allowed: The reason for this to

be illegal is related to the static members limitation.

enum Direction <T>{ //Illegal

 EAST,WEST,NORTH,SOUTH;

 private T attribute;

 …………

 ………….

 }

}

3.3.2 Bounded wildcard limitations

Wildcards [3][4]are mainly used to suppress unchecked

warnings and for enhancement of type safe generics.

Wildcards are using two keywords extends and super [8] to

give bounds for data types. Let us see some examples that

describe some sorts of ambiguity or do not give clear idea for

debugging.

Case1: Let’s assume there is a method that manipulates a list

of numbers as follows.

public void TestWC(List<Number> list_num){

International Journal of Computer Applications (0975 – 8887)

 Volume 47– No.24, June 2012

14

}

The problem here is that List<Integer> cannot be passed as

parameter. If it is needed to pass lists of subclasses of

Number, then use bounds as follows:

public <T extends Number>void TestWC(List<T> list_num){

}

So now it is easy to pass List<Integer>, List<Float> and so

on, but a new limitation is found. That is in last method one

can call list_num.add(new Integer(50)) or list_num.add(new

Float(5.2)), but for such bounded wildcard the compiler will

raise error, because it may not maintain the type

homogeneousness in the list. This means add Integers and

float types which may result violation of the type safety

guarantee. So this says that introducing wildcards do not make

java strongly type safe.

4. IMPLEMENTATION

The solution to first problem is implemented using ANTLR.

ANTLR is called Another Tool for Language Recognition.

ANTLR is a scanner and parser generator. Thus according to

our assumption it can scan the input java file and generate a

modified java file at output.

This ANTLR is run on a grammar file called java.g. That is

use java as our platform. The grammar file is written

according to java syntax conventions. Java.g file contains

grammar statements for both scanner(i.e. Lexer) and parser(i.e

Yacc). AntlrWorks is a GUI based tool as shown in

Fig1,which is having different grafical windows for

output,parse tree,stack trace and so on.

Fig 1: GUI of ANTLR

4.1 Serialization problem

The serialization problem is solved by checking availability of

“readResolve()” method in the class that implements

serialization from input file. If present just echo the same file

to output otherwise add the method to the class that

implements serialization and redirect to output which is

shown in Fig3.

4.1.1 Singleton serialization

Here two sample codes are given that shows how that is

modified and directed to output of ANTLR. The logic behind

this implementation is to search the “readResolve()” in the

class that implements serialization from input java file as in

Fig2. A singleton class has only one instance, so it’s very

simple to write readResolve() method returning only instance

name.

Input: Singleton.java

final class Singleton implements Serializable {

 static final long serialVersionUID = 7L;

 private Singleton() { }

 static final Singleton INSTANCE = new Singleton();

 public static void main(String args[]) throws IOException,

ClassNotFoundException{

 ByteArrayOutputStream bout = new ByteArrayOutputStream

(); ObjectOutputStream out = new ObjectOutputStream

(bout);

 Singleton e1 = Singleton.INSTANCE;

 out.writeObject(e1);

 out.flush ();

 ByteArrayInputStream bin = new ByteArrayInputStream

(bout.toByteArray ());

 ObjectInputStream in = new ObjectInputStream (bin);

 Singleton e2 = (Singleton) in.readObject ();

 System.out.println ((e2.equals(Singleton.INSTANCE)));

 }

}

Fig 2: Input file for ANTLR

Output:

final class Singleton implements Serializable {

 static final long serialVersionUID = 7L;

 private Singleton() { }

 static final Singleton INSTANCE = new Singleton();

 public static void main(String a[]) throws IOException,

ClassNotFoundException{

 ByteArrayOutputStream bout = new ByteArrayOutputStream

(); ObjectOutputStream out = new ObjectOutputStream

(bout);

 Singleton e1 = Singleton.INSTANCE;

 out.writeObject(e1);

 out.flush ();

 ByteArrayInputStream bin = new ByteArrayInputStream

(bout.toByteArray ());

 ObjectInputStream in = new ObjectInputStream (bin);

 Singleton e2 = (Singleton) in.readObject ();

 System.out.println ((e2.equals(Singleton.INSTANCE)));

 }

private Object readResolve() throws ObjectStreamException {

 return INSTANCE;

 }

}

International Journal of Computer Applications (0975 – 8887)

 Volume 47– No.24, June 2012

15

FIG 3: OUTPUT FILE FOR ANTLR

4.1.2 UserEnum serialization

In this case it is shown that how to implement readResolve()

method and add this after scanning input java file. The logic

is to scan how may enum constants are there in the UserEnum

class then write a switch case having exactly same number of

cases returning their corresponding instances. That is case1 is

to return 1st instance of enum and so on.

Input:

class Move implements Serializable {

 public static final Move HORIZONTAL = new Move (1);

 public static final Move VERTICAL = new Move (2);

 private int value;

 private Move (int v)

 { value = v; }

 }

Output:

class Move implements Serializable {

 public static final Move HORIZONTAL = new Move (1);

 public static final Move VERTICAL = new Move (2);

 private int value;

 private Move (int v) { value = v; }

 protected Object readResolve() throws

ObjectStreamException { if (value == 1) return

Move.HORIZONTAL;

 if (value == 2) return Move.VERTICAL;

 return null;

 }

}

5. RESULTS AND ANALYSIS

In case of serialization problem it works properly and gives us

correct output. The translator is now capable enough to add

“readResolve()” method in the class that implements

serialization. This has been implemented for singleton class

and working properly. In the same way readResolve() method

can be designed and put in to UserEnum class.

Talking about java generics for type erasure problems,

reflection can be used to keep track of type information. For

generics, it can be said that due to type erasure and bounded

wildcards, generics are not much more expressive to the

programmer. It looks puzzle and ambiguous to the

programmer while implementing generic applications.

Sometimes this type erasure problems (i.e. warning or runtime

classcastExceptions) can be suppressed by applying

reflection to generics. That is reflection can store data types

before generics loose type information during compilation.

6. CONCLUSION

To sum up, this translator is a better than Lex-Yacc and its

performance is also better and more user friendly. It helps in

translating or creating safe java program that are put into

serialization process. It automatically catches all serializable

classes and particularly serializing singleton classes.

For generics, it can be said that due to type erasure and

bounded wildcards, generics are not much more expressive to

the programmer. It looks puzzle and ambiguity to the

programmer while implementing generic applications.

Sometimes this type erasure problems (i.e. warning or runtime

classcastExceptions) can be suppressed by applying

reflection to generics. Thus generics is said to be complete

type safe when it is free from unchecked warnings and run

time ClassCastExceptions. The same can be solved by

extending the capability of the translator.

International Journal of Computer Applications (0975 – 8887)

 Volume 47– No.24, June 2012

16

7. REFERENCES
[1] Stephanie C. Weirich and Liang Huang. 2005. A Design

for Type-Directed Programming in Java .ELSEVIER.

[2] Renaud Pawlak. Carlos Noguera and Nicolas Petitprez.

May-2006. A Systèmes communicants. Technical Report.

[3] Mads Torgersen, Erik Ernst, Christian Plesner Hansen,

Peter von der Ah´, Gilad Bracha and Neal Gafter.2004.

Adding Wildcard to java programming Language. In

Journal of object oriented programming . Published by

ETH Zurich, New York.

[4] Maurizio Cimadamore, Mirko Viroli . 16 july 2008. On

the reification of Java wildcards. ELSEVIER.

[5] Nabilel Boustani and Jurriaan Hage. 2003. Improving

Type Error Messages for Generic Java . ACM Press.

[6] Eric E. Allena and Robert Cartwrightb. 2006. Safe

instantiation in Generic Java. ELSEVIER.

[7] Bruno De Fraine.july 2009. Range Parameterized

Types:Use-site Variance without the Existential

Questions. Genova Italy.

[8] Halm Reusser and Peter Sommerlad. 2009. Refactoring

towards Java generics.

[9] Kimb B. Bruce, Angela Schuett and Robert Van

Gent.2003. A Type-Safe Polymorphic object oriented

language. ACM Transactions on program languages and

Systems .

[10] Jaime Nino. May 2007. The Cost of Erasure in Java

Generics Type System. ACM Transactions.

[11] Ole Agesen, Stephen N. reund and John C.

itchell.1997.Adding Type Parameterization to the Java

Language. ACM Conf.

[12] David Willians, RanchHand.2009. Serialization and

Deserialization of java enums.

