
International Journal of Computer Applications (0975 – 8887)

Volume 47– No.23, June 2012

15

A 2LFQ Scheduling with Dynamic Time Quantum using

Mean Average

Rakesh K. Lenka

Student
CSED, MNNIT

Allahabad, India

Prabhat Ranjan
System Manager
CSED, MNNIT

Allahabad, India

ABSTRACT

The efficiency and performance of multitasking operating

systems essentially depends on the nature of CPU scheduling

algorithm. There are many algorithms available for CPU

scheduling. Each having its own deficiency and limitations.

One of the most well-known approaches for scheduling is the

Multi-level Feedback Queue (MLFQ). The MLFQ tries to

work in a two-fold manner. First, it tries to optimize

turnaround time as it is done by running shorter jobs first.

Unfortunately, the OS doesn’t generally have the knowledge

that how long a job will run for, exactly the knowledge that

algorithms like SJF (or SRTF) require. Second, MLFQ

attempts to make a system feel responsive to interactive users

(i.e. users sitting and staring at the screen, waiting for a

process to finish), and thus minimize response time. Well-

known algorithms like Round Robin also reduce response

time but are less suitable for turnaround time. In this paper,

we proposed a new approach for feedback scheduling

algorithm which helps to improve the efficiency of CPU. The

paper presents an approach called dynamic-time-quantum

2LFQ (Two-level Feedback Queue) scheduling. The idea is to

make the operating systems adjusts the time quantum

according to the burst time of set of waiting processes in the

ready queue.

Keywords

CPU scheduling, dynamic-time-quantum, scheduling

algorithm.

1. INTRODUCTION
A multiprogramming operating system allows more than one

process to be loaded into the executable memory at a time and

for the loaded process to share the CPU using time-

multiplexing. Part of the reason for using multiprogramming

is that the operating system itself is implemented as one or

more processes, so there must be a way for the operating

system and application processes to share the CPU. Another

main reason is the need for processes to perform I/O

operations in the normal course of computation. Since I/O

operations ordinarily require orders of magnitude more time

to complete than do CPU instructions, multiprogramming

systems allocate the CPU to another process whenever a

process invokes an I/O operation.

When more than one process is in the ready state and there is

only one CPU available, the operating system must decide

which process to run first. The part of operating system that

makes the choice is called short term scheduler or CPU

scheduler. The algorithm that it uses is called scheduling

algorithm [1]. There are several scheduling algorithms.

Different scheduling algorithms have different properties and

the choice of a particular algorithm may favor one class of

processes over another. Many criteria have been suggested for

comparing CPU scheduling algorithms and deciding which

one is the best algorithm. Some of the criteria include

Utilization/Efficiency: keep the CPU busy 100% of the time

with useful work, Throughput: maximize the number of jobs

processed per hour, Turnaround time: from the time of

submission to the time of completion - minimize the time

batch users must wait for output, Waiting time: Sum of times

spent in ready queue - minimize this, Response Time: time

from submission till the first response is produced - minimize

response time for interactive users, Fairness: make sure that

each process gets a fair share of the CPU.

There exist a different scheduling algorithms, each one of

these algorithms has advantages and disadvantages and as

follows: First-Come-First-Served (FCFS) : it is easy to

implement, but it ignores the service time request and all other

criteria that may influence the performance with respect to

turnaround or waiting time which is not suitable in real time

applications. This is mainly because one process can

monopolize CPU with long execution time that may hinder

many short processes to complete before deadline.

On the other hand, priority scheduling: allocates processes to

the CPU on the basis of an externally assigned priority and

run the highest-priority first. The key to the performance of

priority scheduling is in choosing priorities for the processes.

But it cause low-priority processes to starve and the solution

of this problem is aging operation. Another problem with

priority scheduling is deciding which process gets which

priority level assigned to it.

Shortest-Job-First (SJF): scheduling is giving the optimal,

providing the shortest average WT. The obvious problem with

this algorithm is that it is require precise knowledge of how

long a job or process will run and this information is not

usually available and unpredictable. The shortest remaining

time first (SRTF) scheduling algorithm is a preemptive

version to an older non-preemptive algorithm known as

shortest job first scheduling. Shortest job first scheduling runs

a process to completion before running the next one. The

queue of jobs is sorted by estimated job length, so that short

programs get to run first and not be held up by long ones. This

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.23, June 2012

16

minimizes average response time. The disadvantages of SRTF

scheduling algorithm is that long-burst (CPU-intensive)

processes are hurt with a long mean waiting time. In fact, if

short-burst processes are always available to run, the long-

burst ones may never get scheduled. Moreover, the

effectiveness of meeting the scheduling criteria relies on our

ability to estimate the CPU burst time.

Round robin (RR) scheduling is a preemptive version of first-

come, first-served scheduling. Processes are dispatched in a

first-in-first-out sequence but each process is allowed to run

for only a limited amount of time. This time interval is known

as a time-slice or quantum. If a process does not complete or

get blocked because of an I/O operation within the time slice,

the time slice expires and the process is preempted. Process

gets blocked because of an I/O operation, it is then preempted.

This preempted process is placed at the back of the ready list

where it must wait for the processes that were already on the

list to cycle through the CPU. Round robin scheduling is fair

in that every process gets an equal share of the CPU. It is easy

to implement and, if we know the number of processes on the

ready list, we can know the worst-case response time for a

process. The disadvantages of RR scheduling algorithm is

Giving every process an equal share of the CPU is not always

a good idea. For instance, highly interactive processes will get

scheduled no more frequently than CPU-bound processes.

In Multilevel Feedback Queue (MLFQ): processes are

scheduled according to their remaining CPU burst and they

are shifted down from queue to queue as they have some

remaining CPU burst. Every queue has unique time slice that

gradually increases from upper level queue to lower level

queue. So the CPU intensive jobs go down from upper queues

to lower queues gradually for getting completed. Thus, lower

priority queues are filled with CPU intensive jobs and as a

result these processes start to starve for getting CPU attention.

So then it will follow first come first serve scheduling among

these jobs. It can deliver excellent overall performance similar

to SJF or SRTF scheduling for turnaround time, while it can

also provide a responsive system for interactive jobs just like

Round Robin scheduling. Here interactive job means the jobs

which go for input and output operations frequently compare

to the jobs which are more focused on getting CPU cycles

which are considered as CPU intensive jobs. For this reason,

many systems, including BSD Unix derivatives, Solaris, and

Windows NT and subsequent versions use a form of MLFQ as

their base scheduler. Multi-level feedback queues are good for

separating processes into categories based on their need for a

CPU. They favor I/O bound processes by letting them run

often. Versions of this scheduling policy that increase the

quantum at lower priority levels also favors CPU bound

processes by giving them a larger chunk of CPU time when

they are allowed to run. The obvious problem with this

algorithm is that the priority scheme here is one that is

controlled by the system rather than by the administrator or

users. A process is deemed important not because it is, but

because it happens to do a lot of I/O. This scheduler also has

the drawback that I/O bound processes that become CPU

bound or CPU bound processes that become I/O bound will

not get scheduled well [2].

In this paper, a new algorithm is proposed to solve the

constant time quantum problem. The algorithm is based on

dynamic time quantum approach where the system adjusts the

time quantum according to the burst time of the existed set of

processes in the ready queue. The section 2 states the related

works done in this field. Section 3 describes the proposed

method in details. Section 4 discusses the simulation done in

this method, before concluding this paper in the last section.

2. RELATED WORKS
In past few years different approaches are proposed to

increase the performance of MLFQ scheduling in different

ways. Rami J. Matarneh [4], proposed a method to assign a

dynamic time quantum for the RR algorithm instead of fixed

time quantum, where the operating system itself can finds the

optimal time quantum without user intervention. Ajit. Singh,

proposed an approach for RR scheduling algorithm, which

helped to improve the CPU efficiency in real time and time-

sharing operating systems, the authors mentioned that their

results were strange through different experimental cases [5].

Rami J. Matarneh [6] founded that an optimal time quantum

could be calculated by the median of burst times for the set of

processes in the ready queue, unless if this median is less than

25ms. In such case, the quantum value must be modified to

25ms to avoid the overhead of context switch time [6].

In paper [7], Recurrent Neural Network has been used to

optimize the number of queues and quantum of each queue of

MLFQ scheduler to decrease response time of processes and

increase the performance of scheduling. In this paper the

proposed neural network takes inputs of the quantum of

queues and average response time. After getting the required

inputs, it takes the responsibility of finding relation between

the specified quantum changes with an average response

time. It can find the quantum of a specific queue with the help

of optimized quantum of lower queues. Thus, this network

fixed changes and specify new quantum, which overall

optimize the scheduling time.

Rakesh Mohanty [3] used the median approach and have

obtained good results. On the other hand, Helmy [12]

proposed a weighting technique for RR algorithm, as an

attempt to make a combination between the low scheduling

overhead of RR algorithms and favor short jobs. Higher

process weights means relatively higher quantum of time and

the small processes will be given more time, so that they will

be removed earlier from the RQ.

In Basney [10], smoothed competitive analysis is applied to

multilevel feedback algorithm. Smoothed analysis is basically

mixture of average case and worst case analysis to explain the

success of algorithms. This paper analyses the performance of

multilevel feedback scheduling in terms of the time

complexity. Any performance enhancing approach can use

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.23, June 2012

17

this approach for performance analysis in terms of the time

complexity.

Mohanty and others also developed other algorithms in order

to improve the scheduling algorithms performance [8], [9] and

[11]. One of them is constructed as a combination of priority

algorithm and RR [8] while the other algorithm is much

similar to a combination between SJF and RR [9].

3. PROPOSED ALGORITHM
The proposed scheduling algorithm is based on dynamic time

quantum. The proposed architecture consists of 2 Queues as

shown in figure 1.This paper present a solution to the time

quantum problem by making the operating system adjusts the

time quantum according to the burst time of the set of

processes existed in the Queue-1. When the operating system

is installed for the first time, it begins with time quantum

equals to the burst time of the first dispatched process. The

next time quantum is determined dynamically after the end of

first time quantum. Repeatedly when a new process is loaded

into Queue-1 in order to be executed, the operating system

calculates the average of sum of the burst time of processes

found in ready queue including the newly arrived process. If

the CPU burst time of the process exceeds the dynamic time

quantum, processor will switch from that process and start

executing the next process in the Queue-1.The preempted

process added to Queue-2 in ascending order of their

remaining burst time. The processes in the Queue-2 can be

executed if there is no process left in Queue-1.

Fig. 1: Proposed Scheduling Model

3.1 Proposed Algorithm Pseudo Code
Algorithm 1: Pseudo code of the Proposed algorithm.

 1. New process Pi arrives

 2. Pi enters to Q-1 in ascending order of BT[i]

 3. Calculation of dynamic time quantum (DTQ)

 4. Assign the dynamic time quantum (DTQ) to all process

 5. While (Queue-1 != Empty)

 6. If (BT[i] <= DTQ)

 7. Allocate Pi to CPU till completion

 8. Else

 9. The process will occupy the CPU till DTQ

10. Set BT[j]= DTQ-BT[j]

11. Pj added to Queue-2 in the ascending order of BT[j]

12. While (Queue-1= Empty && Queue-2 != Empty)

13. Assign the process Pk to CPU till completion

14. Calculate RT, WT, TAT, CS

3.2 Proposed Algorithm Flowchart
The flowchart of proposed scheduling algorithm is shown in

figure 2.

4. SIMULATION RESULT
The proposed 2LFQ algorithm is implemented using C++. For

evaluation of the proposed approach two different cases with

random burst are considered. In first case we took a group of

five processes with burst time 20, 5, 8, 7, 14 are taken.

The obtained results are compared with the traditional

approaches like First-Come-First-Served, Shortest-Job-First,

Round Robin with time quantum 10 units. The comparison of

waiting time of the proposed algorithm with the existing

algorithm is shown in Table 1 and Figure 3. The comparison

of turnaround time of the proposed algorithm with the existing

algorithm is shown in Table 2 and Figure 3.

As a second case a group of four processes with burst time 20,

40, 60, 80 are randomly taken. The comparison of waiting

time, turnaround time, no of context switch of the proposed

algorithm with other research’s result presented in [4] and [5]

are shown in Table 3 and Figure 4. It is clearly observed from

the Table 1, Table 2 and Figure 3, the turnaround time,

waiting time and response time of the processes are optimum

for the proposed algorithm compared to all the other

fundamental algorithms. It is also clearly observed from the

Table 3 and Figure 4, the turnaround time, waiting time and

the number of context switch of the proposed algorithm are

minimum when compared with the results presented in [4]

and [5].

 Table 1. WT for individual process and average WT for

each scheduling method

PROCESS

ID

WAITING TIME

BT FCFS SJF RR PROPOSED

1 25 0 34 44 34

2 5 25 0 10 12

3 8 30 12 15 17

4 7 38 5 23 25

5 14 45 20 40 32

AVG 11.8 27.6 14.5 26.4 24

Table 2. TAT for individual process and average TAT for

each scheduling method

PROCESS

ID

TAT

BT FCFS SJF RR PROPOSED

1 25 25 59 69 59

2 5 30 5 15 17

3 8 38 20 23 25

4 7 45 12 30 32

5 14 59 34 54 46

AVG 11.8 39.4 26 38.2 35.8

Table 3. Results Comparison

 RR METHOD[4] METHOD[5] PROPOSED

TAT 120 112.5 114 112.5

WT 70 77.5 83 62.5

CS 9 6 7 5

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.23, June 2012

18

0

5

10

15

20

25

30

35

40

FCFS RR

WT

TAT

 Fig. 3: Results comparison of case 1

0

20

40

60

80

100

120

RR Method

[4]

Method

[5]

Proposed

WT

TAT

CS

 Fig. 4: Results comparison of case 2

 Fig. 2: Proposed Scheduling Flowchart

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.23, June 2012

19

5. CONCLUSION
Since selection of optimal time quantum is an important issue

in most of the scheduling algorithms that are based on Round

Robin technique, our approach attempts to answer this

important issue by using dynamic time quantum instead of

fixed time quantum, where the operating system itself finds

the time quantum without user intervention. The approach

2LFQ extends the performance of feedback scheduling

algorithm by minimizing the response time and overall

turnaround time of the system. It may concluded from the

simulation study come so far that the number of context

switch is also minimum compared to other approaches.

We are now working on the behavior of the 2LFQ scheduling

by varying the number of process with random burst. Hence

in future the proposed algorithm will be implemented and can

be tested in open environment.

6. REFERENCES
[1] Silberschatz, A., P.B. Galvin and G. Gagne, 2004,

“Operating Systems Concepts”, 7th Edn., John Wiley

and Sons, USA., ISBN: 13: 978-0471694663, pp. 944.

[2] Tanebaun, A.S., 2008, “Modern Operating Systems”, 3rd

Edn., Prentice Hall, ISBN: 13: 9780136006633, pp.

1104.

[3] Rakesh Mohanty, H. S. Behera, Debashree Nayak,”A

New Proposed Dynamic Quantum with Re-Adjusted

Round Robin Scheduling Algorithm and Its Performance

Analysis”, International Journal of Computer

Applications (0975 – 8887), Volume 5– No.5, 2010.

[4] Rami J. Matarneh, "Self-Adjustment Time Quantum in

Round Robin Algorithm Depending on Burst Time of the

Now Running Processes", American Journal of Applied

Sciences 6 (10): 1831-1837, 2009.

[5] Ajit. Singh, P. Goyal, S. Batra, "An Optimized Round

Robin Scheduling Algorithm, for CPU Scheduling",

IJCSE, Vol. 02, No. 07, 2010.

[6] Rami J. Matarneh, “Self-Adjustment Time Quantum in

Round Robin Algorithm Depending on Burst Time of the

Now Running Processes”, American Journal of Applied

Sciences, Vol 6, No. 10, 2009.

[7] Becchetti, L., Leonardi, S. and Marchetti S.A. (2006),

“Average-Case and Smoothed Competitive Analysis of

the Multilevel Feedback Algorithm” Mathematics of

Operation Research Vol. 31, No. 1, February, pp. 85–

108.

[8] Rakesh Mohanty, H. S. Beheram Khusbu Patwarim

Monisha Dash, M. Lakshmi Prasanna , “Priority Based

Dynamic Round Robin (PBDRR) Algorithm with

Intelligent Time Slice for Soft Real Time Systems”,

(IJACSA) International Journal of Advanced Computer

Science and Applications, Vol. 2, No.2, February 2011.

[9] Rakesh Mohanty, H. S. Behera, Khusbu Patwari,

Monisha Dash, “Design and Performance Evaluation of a

New Proposed Shortest Remaining Burst Round Robin

(SRBRR) Scheduling Algorithm”, In Proceedings of

International Symposium on Computer Engineering &

Technology (ISCET), Vol 17, 2010.

[10] Basney, Jim and Livny, Miron (2000), “Managing

Network Resources in Condor”, 9th IEEE Proceedings of

the International Symposium on High Performance

Distributed Computing, Washington, DC, USA.

[11] Rakesh Mohanty, H. S. Behera, Debashree Nayak, “A

New Proposed Dynamic Quantum with Re-Adjusted

Round Robin Scheduling Algorithm and Its Performance

Analysis”, International Journal of Computer

Applications (0975 – 8887), Volume 5– No.5, August

2010.

[12] Helmy, T. and A. Dekdouk, Burst round robin as a

proportional-share scheduling algorithm. IEEEGCC,

King Fahed University, 2007.

http://eprints.kfupm.edu.sa/1462.

