
International Journal of Computer Applications (0975 – 8887)

Volume 47– No.22, June 2012

40

Conceptual and Semantic Measures for Cohesion in

Software Maintenance

Ashutosh Mishra Vinayak Srivastava
Computer Engineering Department Computer Engineering Department

 IT-BHU, Varanasi, UP, INDIA IT-BHU, Varanasi, UP, INDIA

ABSTRACT
In software maintenance, cohesion plays very major role to

determine the relationship among different software

attributes such as class, method, function-type etc. There

are many method have been used in this context such as

method based on syntactically keyword count in source

code. We have used the semantic value computation for the

specific keyword occurs in distinct common method within

the different classes for an open source code project. We

have also computed the conceptual relation metric to

analysis the cohesion for the method within their class.

Also, there is comparison between different semantic

values for the keyword of common method in this context.

Keywords
Software maintenance, cohesion, source code, semantic

value, conceptual relation matrix

1. INTRODUCTION
There are many different approaches that have been done

to measure cohesion in object-oriented software systems.

There are many metrics such as structural metrics [3]

which are able to relate object-oriented structural quality to

critical reliability, maintainability, and reusability process

attributes. They need appropriate measures of object-

oriented structure to begin to relate structure to process.

Also, [8] describes about necessity for a productive

software has been culminating and object-oriented design

technique which provides solution to this problem as it is

the most powerful mechanism for developing proficient

software systems. It is helpful not only in declining the cost

but also in the development of high quality software

systems. Software developers require accurate metrics for

developing efficient software system. Object-oriented

metrics plays a significant role pertaining to this aspect

because of their importance in the development of

successful software applications. Also, the assessment of

the current state of the art in metrics and object-oriented

software system quality is done. Further it contains short

descriptive taxonomy of the object-oriented Design and

metrics. Semantic metrics [7] describes about the

semantically-based metric for object-oriented systems,

called the Semantic Class Definition Entropy (SCDE)

metric, which examines the implementation domain

content of a class to measure class complexity. The domain

content is determined using a knowledge-based program

understanding system. The metric's examination of the

domain content of a class provides a more direct mapping

between the metric and common human complexity

analysis than is possible with traditional complexity

measures based on syntactic aspects (software aspects

related to the format of the code). Additionally, this metric

represents a true design metric that can measure

complexity early in the life cycles of software maintenance

and software development. The SCDE metric is correlated

with analyses from a human expert team, and is also

compared to syntactic complexity measures. Information

entropy-based metrics [1] gives the idea about Coupling of

a subsystem characterizes its interdependence with other

subsystems. A subsystem's cohesion, on the other hand,

characterizes its internal interdependencies. When used in

conjunction with other attributes, measurements of a

subsystem's coupling and cohesion can contribute to

software quality models. An abstraction of a software

system can be represented by a graph and a module

(subsystem) by a sub graph. Software design graphs depict

components and their relationships. The other metrics are

based on data mining [10], metrics for knowledge-base [9],

aspect-oriented [11] and distributed systems [4]. Semantic

metrics based on latent semantic indexing (LSI). The LSI

[5] has describes a new method for automatic indexing and

retrieval. The approach is to take advantage of implicit

higher-order structure in the association of terms with

documents (“semantic structure”) in order to improve the

detection of relevant documents on the basis of terms

found in queries. The particular technique used is a

singular-value decomposition, in which a large term by

document matrix is decomposed into a set of 100

orthogonal factors from which the original matrix can be

approximated by linear combination. Documents are

represented by 100 item vectors of factor weights. Queries

are represented as pseudo-document vectors formed from

weighted combinations of terms, and documents with

supra-threshold cosine values are returned [6]. Corpus-

based statistical methods are deployed for inducing and

representing aspects of the meanings of words and

passages reflective of their usage in large bodies of text.

LSI is based on a vector space model (SVM) Vector space

model (or term vector model) is an algebraic model for

representing text documents (and any objects, in general)

as vectors of identifiers, such as, for example, index terms.

It is used in information filtering, information retrieval,

indexing and relevancy rankings.

The basic objective of our work is to develop a new

approach by constructing a concept relation metric to

analysis the cohesion within the method. The rest of

matters in this paper are as follows: Section2 describes the

problem description; Section3 consists of class-method

content level analysis. Section4 describes about semantic

value computation. The concept relation matrix is

described in Section5. Conclusion of the work has been

described in Section6.

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.22, June 2012

41

2. PROBLEM DESCRIPTION
Software cohesion can be defined as a measure of the degree

to which elements of a module belong together [3]. The

conceptual cohesion has major significance in software

maintenance aspects [2]. In our work, we have made study of

source code of a program CAccessRepots, which have been

used by [12] and are available as open source. It is a small-

medium size program with 51 classes and 725 distinct

methods in total.

Here, we have made consideration about the class

and their respective methods analysis. Also, the class-class

and class- method and method–method level correlation and

conceptual correlation analysis have been done in our work.

In this work, we have filtered the common method within the

classes based on hierarchy level as shown in Figure 1. In each

level, we have set of common methods e.g. at level1 we have

taken 51 classes and each class are having their methods. In

this level we compare class1 (c1) method to class2 (c2)

method and filter out the common method between them.

Similarly, we fetch the common methods for class2 (c2) and

class (c3), class3 (c3) and class4 (c4)... class50 (c50) and

class51 (c51). The result of this level will again compare in

same fashion till we found the last level common-method

(cm) which is common to all classes. Here, we have taken the

values of leveln common method for our consideration as

they belongs to all classes and have most important as

number of times occurrence in source code. The number of

common-method in levlen is twenty one and we have

assumed those common-methods as cm1, cm2, cm3… cm21

just for simplicity. The relationship between method and cm𝑖

are shown in Table1.

 Now, in each common-method, we have compute

the specific keyword (𝐾𝑖) based on their occurrence in each

method. In our work, we have considered nineteen specific

keywords and count of their occurrence in each common-

method as shown in Table2.

 Software cohesion can be defined as a measure of

the degree to which elements of a module belong together

[8].Cohesion is also regarded from a conceptual point of

view. In this view, a cohesive module is a crisp abstraction

of a concept or feature from the problem domain, usually

described in the requirements or specifications.

3. CLASS-METHOD CONTENT LEVEL

ANALYSIS
In this section, we have discussed about the class and their

respective methods. In this context, we have 51 classes and

725 distinct methods in the considered project. We have done

the common methods level analysis to filter out the common

methods within the classes as shown in Figure 1. Based on

the different level analysis we have found that leveln is

having common methods belonging to all classes. The

number of those methods is 21. We have made few

assumptions for the methods.

Assumption (1): each method contains some percentage of the

methods from previous class. The keywords in each method

contain some percentage of keywords from all previous

methods; this relation can be represented follows:

For example: the relation between 𝑐𝑚2
,
 and 𝑐𝑚2 as

following:

𝑐𝑚2
, = α𝑐𝑚2 + (1- α) 𝑐𝑚1 (1)

Here, 𝑐𝑚2
,
is the total number of keyword in method2.

𝑐𝑚2 : The number of specific keyword in method 2.

𝑐𝑚1 : The total number of keyword for method 1.

And for method3

𝑐𝑚3
,
= α𝑐𝑚3 + (1- α) 𝑐𝑚2

,
 (2)

From equation (2)

𝑐𝑚3

,
 = α𝑐𝑚3+ (1- α) 𝑐𝑚2+(1− 𝑎)2𝑐𝑚1 (3)

In general:

𝑐𝑚𝑚

,
 = 𝛼(1− 𝛼𝑚−2

𝑖=0 + (1-α) m-1𝑐𝑚𝑚−(𝑚−1)

 (4)
For m=2, 3, 4…, n where, n is number of methods

Assumption2: Each keyword has a semantic value to the

particular method and it may be different from method to

another method. The keyword “CString” has the semantic

values 0.2581, 0.485, in cm2, cm6 etc. respectively. The

hierarchy of semantic value for the keyword represents the

importance of the keyword in corresponding common -

method.

4. SEMANTIC VALUE COMPUTAION

Vector Space Model VSM has been widely used in

information retrieval, information filtering, information

indexing and relevancy ranking (Salton, Wong, & Yang,

1975; Tai, Ren, &Kita, 2002). In this section, we used the

VSM to compute Keywords‟ Semantic value by constructing

the Keyword-Method Matrix. In order to compute the

semantic values of the keywords in each common method of

source code file, every method passes through pre-processing

steps to find the keywords-method list. The next step to

selects the important keywords among all keywords in

keywords-method list to avoid the occurrence of unrelated

keywords in the final keyword-method list. The keywords (n)

and their occurrence frequency are represented in the matrix

A as follows:

A= K x Q keyword-method matrix consist of K rows

(keyword) and Q columns (method).

 This matrix represents one-row matrices and one-

column matrices and these represent the vector. The

Frobenius Norm of a matrix, also known as the Euclidean

Norm, is defined as the square root of the sum of the absolute

squares of its element, which is equal to the length of the

vector.

 fcm
j

= Ki
2n

i (5)

Where, fcm
j

 is the Euclidean norm for the j-th method cm.

The semantic value of the keyword in the j-th is calculated

using the occurrence of the keyword Ki and Euclidean norm

as following:

 Kwi=
ki

fcm
i (6)

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.22, June 2012

42

Here, keyword – method matrix is computed in Table2 using

the formula (5) and (6). This table consists of 19 keywords

and their semantic values for twenty one methods.

The keyword common to all method with their semantic

values are shown in Table2. The range of semantic value is

{0-1}, which represent the importance of the keywords in the

method e.g. the keyword “InvokeHelper” has semantic value

range minimum 0.2357 for cm1 and maximum of 0.3535 for

cm21. Similarly, the keyword “short” has semantic value „0‟

for all method cm1, cm2, cm3, cm4, cm6, cm7,cm9, cm10,

cm11,cm12, cm13, cm14, cm16, cm18, cm20 and cm21, it

means that this keyword in not important in those methods.

This keyword “short” is also having semantic values 0.485,

0.485, 0.25, 0.2773 and 0.25 for cm5, cm8, cm15, cm17 and

cm19 respectively. it means the keyword “short” has most

important in method cm5 and cm8 while it has low

importance in cm15 and cm19.

Fig 1: Hierarchy level of class and common-method

Table 1: 𝐂𝐌𝐢and common-method relationship

Fig 2: Class-method level hierarchy data

C1

C2

…

C3

C30

…

…

C50

C51

CM1-2

CM2-3

…

CM3-4

…

…

CM49-50

CM50-51

CM12 : CM23

…

…

…

…

...

…

…

…

…

…

…

…

…

…

…

…

…

…

.

.

…
..

…

…

…

…
CM (𝐿𝑛−1 − 𝐿𝑛)

Level1 Level2

Level3

…

Level

8

…

Level (n-1)

Level n

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.22, June 2012

43

The class-method level hierarchy of the actual data has been

shown in Figure2. We can simply correlate the Figure1 and

Figure2 logically. Here, numeric values shown in Figure2

represent the method_id of methods within the classes. Since,

there are 51 classes and 725 distinct method, we have shown

only last four levels. On comparing the both figure1-2, we

have the values of last level i.e. CM (𝐿𝑛−1 − 𝐿𝑛) are shown

as in Table1 for our consideration.

5. CONCEPT RELATION MATRIX

In this section, we have used another correlation matrix such

as Concept relation matrix using C.-M. Chen, [13] model has

been used to justify our keyword and common-method

analysis in the source code.

In Chen (2008) method, we have observed the following

facts:

 Vector space model is used to estimate the concept

relation degree between two course-wares in

multidimensional Euclidean space.

 The importance/weight of the k-th term in the i-th

courseware is calculated using TD-IDF algorithm.

 The relation r between i-th and j-th courseware with

total m terms in the course units are used to build the

concept relation matrix based on the weight of all

keywords in i-th and j-th courseware.

 The importance/weight of the term is calculated as

following:

𝑤𝑖𝑘= t𝑓𝑖𝑘 × log
N

𝑑𝑓𝑘
 (7)

Where, 𝑤𝑖𝑘 represents the importance/weight of the k-th

term in i-th courseware.

t𝑓𝑖𝑘 represents the term frequency of the k-th term in the

i-th course ware.

𝑑𝑓𝑘 is the document frequency in the k-th term.

The concept relation matrix for the i-th and j-th method can

be calculated using cosine-measure as following:

𝑟𝑖𝑗=
 𝑤 𝑖ℎ𝑤𝑗 ℎ
𝑚
ℎ=1

 𝑤𝑖ℎ
2𝑚

ℎ=1 𝑤𝑗 ℎ
2𝑚

ℎ=1

 (8)

Where, m is the total number union terms of the i-th and j-th

method.

In our work, the common-method at leveln i.e. CM at level

(𝐿𝑛−1 − 𝐿𝑛) will be 21 and the relationship between each

common-method with their 𝐶𝑀𝑖will be shown in Table1.

Table 2: Keyword-method semantic value

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.22, June 2012

44

Table 3: Keyword-method count

Table 4: Concept relation matrix for keyword and common method

The values of Table2 have been calculated by using formula

(5), (6) and data of Table3 e.g. the value of 𝑐𝑚1 of

“LPDISPATCH” keyword can be calculated as follows:

Step1:

fcm
1 = (K1

2 + K2
2+⋯+ K19

2)19
i=1

 = 148.492424049175

Step2:

 Kw1=
k1

fcm
1 =70/148.492424049175

 = 0.4714

In Table4, we have computed the concept relation matrix for

our keyword-method using Chen (2008) model. We have

computed those values by using formula (7), (8) and data of

Table3 e.g. the value of 𝐶𝑀1-𝐶𝑀1 can be calculated as

follows:

Step1:

𝑤𝑖𝑘= t𝑓𝑖𝑘 × log
N

𝑑𝑓𝑘

 = 70*log
21

150
= -59.771

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.22, June 2012

45

Step 2:

𝑟𝑖𝑗=
 𝑤 𝑖ℎ𝑤𝑗 ℎ
𝑚
ℎ=1

 𝑤𝑖ℎ
2𝑚

ℎ=1 𝑤𝑗 ℎ
2𝑚

ℎ=1

𝑟𝑖𝑗 =
 𝑤𝑖19𝑤𝑗19

19
ℎ=1

 𝑤𝑖19
219

ℎ=1 𝑤𝑗19
219

ℎ=1

For i = 1 and j = 1,

 𝑤𝑖19𝑤𝑗19
19
ℎ=1 =39474.03

 𝑤𝑖19
219

ℎ=1 𝑤𝑗19
219

ℎ=1 = 1558198669

39474.03

𝑟11=
39474.03

39474.03
 =1

Similarly, we can compute for all remaining row-column

values for Table4.

6. CONCLUSION
A heuristic method for class and method relationship

sequencing for software maintenance has been developed and

implemented using source code program and filtering

techniques. The semantic value of the keyword is obtained

based on the importance of the keywords in the method at the

different levels of extraction. These semantic values are used

to find the relation between the methods by computing

different semantic values for all methods. Another model

used the frequency appearance of the keywords, and these

methods ignored the importance of the keyword in different

method which we have kept in our computation of the

proposed heuristic method. Other researchers have assigned

the weights directly to the class-method whereas in our work,

we have assigned semantic values to the keywords in the

method. As a scope of future work, apart from taking the

common keywords between class-methods, the semantic

value of the important keywords in each class-method can be

considered to find the cohesion among the classes. The

computation of correlation matrix can be calculated with

other methods such as Hsieh and Wang (2010) and Sami and

Mishra (2011) to select the best computation method for the

purpose. This method is further utilized in perfective

maintenance task in determination of coupling of cohesion.

7. REFERENCES

[1] Allen, E.B., Khoshgoftaar T.M., and Chen Y., 2001.

Measuring Coupling and Cohesion of Software

Modules: An Information-Theory Approach,”. In

Proceedings of Seventh IEEE Int‟l Software Metrics

Symp.

[2] Andrian Marcus, member,IEEE computer society, Denys

P. 2007 Using the conceptual cohesion of classes for

fault prediction in object-oriented system.

[3] Bieman, J., and Kang, B.-K. ,1995. Cohesion and Reuse

in an Object-Oriented System. Proceedings of Symp.

Software Reusability.

[4] Counsell,S., Swift,S. and Tucker,A., 2005. Object-

Oriented Cohesion as a Surrogate of Software

Comprehension: An Empirical Study, Proc. Fifth IEEE

Int‟l Workshop Source Code Analysis and

Manipulation.

[5] Deerwester, S., Dumais, S.T., Furnas, G.W.,Landauer,

T.K. and Harshman, R., 1990. Indexing by Latent

Semantic Analysis, J. Am. Soc. Information Science,

vol. 41, pp. 391-407.

[6] Dumais,S.T., 1991. Improving the Retrieval of

Information from External Sources, Behavior Research

Methods, Instruments, and Computers, vol. 23, no. 2,

pp. 229-236.

[7] Etzkorn,L.H.,Gholston, S., and Hughes,W.E., 2002. A

Semantic Entropy Metric, J. Software Maintenance:

Research and Practice, vol. 14, no. 5, pp. 293-310.

[8] Briand,L.C.,Daly, J.W., and st,J. Wu¨, 1998. A Unified

Framework for Cohesion Measurement in Object-

Oriented Systems, Empirical Software Eng., vol. 3, no.

1, pp. 65-117.

[9] Kramer,S., and Kaindl,H., 2004. Coupling and Cohesion

Metrics for Knowledge-Based Systems Using Frames

and Rules, ACM Trans. Software Eng. and

Methodology, vol. 13, no. 3, pp. 332-358.

[10] Montes de Oca, C., and Carver, D.L., 1998.

Identification of Data Cohesive Subsystems Using Data

Mining Techniques, Proc. 14th IEEE Int‟l Conf.

Software Maintenance, pp. 16-23.

[11] Zhao,J., and Xu,B., 2004. Measuring Aspect Cohesion,

Proc. Seventh Int‟l Conf. Fundamental Approaches to

Software Eng., pp. 54-68.

[12] Kanellopoulos, Y. and Tjortjis, C., 2004. Data Mining

Source Code to Facilitate Comprehension: Experiments

on Clustering Data Retrieved from C++ Program,

Proceedings of the 12th IEEE International Workshop

on Program Comprehension (IWPC‟04).

[13] Chen, C.-M., 2008. Intelligent web-based learning

system with personalized learning path guidance.

Computers & Education, 51(2), 787–814.

[14] Chen, P.-I., Lin, S.-J., & Chu, Y.-C., 2011. Using

Google latent semantic distance to extract the most

relevant information. Expert Systems with Applications,

38(6), 7349–7358.

[15] Shirabad,J. S., Lethbridge T. C. and Matwin, S., 2003.

Mining the Maintenance History of Legacy Software

System, Proceedings of the International Conference on

Software Maintenance (ICSM‟03), IEEE.

[16] Hsieh, T.-C., and Wang, T.-I. (2010). A mining-based

approach on discovering courses pattern for constructing

suitable learning path. Expert Systems with

Applications, 37(6), 4156–4167.

[17] Al-Radeai, M.,Sami and Mishra R.,B (2011). A heuristic

method for learning path sequencing for intelligent

tutoring system in E-learning. Int. J. of Intelligent

Information System, vol. (7), Issue (4).

