
International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

39

Minimal Task Allocation in Multiprocessors using

improved next-fit for RM scheduling

Muthu Kumar B

Amrita Vishwa Vidyapeethem
Coimbatore, India

Anju S Pillai
Amrita Vishwa Vidyapeethem

Coimbatore, India

ABSTRACT

Task-processor allocation in multiprocessors can be

accomplished efficiently for reducing the required number of

processors for the given task set, accounting reduced power

consumption with maximum processor utilization. This work

is based on next fit algorithm using Rate Monotonic

Algorithm (RMA) for a fixed priority system. The work

proposes a minimal task allocation algorithm for

multiprocessor environment. The proposed method reduces

the number of processors required for a given task set using

improved next fit algorithm and the same has been evaluated

and tested. The proposed algorithm gives better results when

there is large number of tasks in the system.

General Terms

Task-processor allocation algorithm, Fixed priority system,

Rate Monotonic, Scheduling, Improved Next-fit algorithm,

Task allocation.

Keywords

Multiprocessor systems, Task-processor allocation algorithm,

multiprocessor allocation, Rate Monotonic algorithm, Next fit

Algorithm, Improved Next-fit algorithm.

1. INTRODUCTION
Recent high-end technologies in embedded systems have lead

to the requirement of more efficient usage of processors with

zero loss. Traditional uniprocessor systems have become

outdated and are not able to cope up with the current

technological balance. To catch up with the improving

performance requirements, there is a need for multiprocessors.

Task allocation and scheduling is a challenging problem. The

scheduling part is evolved to its most efficient way and in the

allocation bin-packing [1] is one of the most efficiently used

algorithms. Though the distributed systems and

multiprocessors are highly advantageous over uniprocessors,

their scheduling algorithms [2] are not yet fully evolved to the

ultimate. In this paper, a motivation to design a heuristic

algorithm for decreasing the number of required processors,

thereby increasing processor utilization and reducing the

power consumption is dealt with. Many simple heuristics [3],

[4] algorithms and complex algorithms [5], [6] are proposed;

out of which the current work falls into the category of

complex algorithms.

Scheduling of multiprocessors can be basically implemented

in two ways: global scheduling [7] and partitioned scheduling.

In partitioned scheduling the task-processor allocation is done

so as to utilize the platform fully. Moreover scheduling is of

two types, static scheduling and dynamic scheduling. The

latter case uses Earliest Deadline First (EDF) algorithm for

total processor utilization, while the former case has its most

efficient usage of processors by applying RMA [8]. Static

scheduling has its optimal solution in uniprocessor and has

poor solutions in multiprocessor environment. Allocating the

tasks in an optimal way and scheduling using uniprocessor

algorithms will lead to a better scheduling in multiprocessors.

Many simple allocation algorithms [2], [3] are proposed. The

RMA has an upper bound [9] which makes it unsuitable for

complete processor utilization. This paper implements a bin-

packing algorithm with higher processor utilization and less

time complexity for allocating tasks among the shared

memory multiprocessor systems. The system has a static

scheduling algorithm (RM) which is implemented in a

multiprocessor system. In the first phase the next-fit for RM is

used to allocate tasks to the processors and the second phase

reallocates the tasks by partitioning. Often the processors are

described as bins. So the bin-packing is done by reallocation

of tasks. Thus, the bin-packing implemented in static

scheduling decreases the number of processors required to

allocate the tasks, enhancing maximum utilization of the

processors.

2. RELATED WORK
In the literature there are available many task allocation

algorithms for multiprocessor system. The performance of the

system is improved by using dynamically reconfigurable

accelerator cores. A heuristic algorithm to assign tasks to a set

of processing sites by balancing the load over different

processors is described in [10]. An Energy-efficient task

allocation and scheduling schemes with deterministic fault-

tolerance capabilities are proposed for

symmetric multiprocessor systems when executing tasks with

hard real-time constraints is described in [11]. This is

achieved by optimally balancing the workload in the system.

A novel lifetime reliability-aware task allocation and

scheduling algorithm based on simulated annealing technique

is presented [12] to estimate the lifetime reliability

of multiprocessor platforms when executing periodical tasks.

In [13], the authors propose an adaptive energy efficient task

allocation scheme for a multiprocessor System-on-Chip

(SoC). In the work, an offline task schedule is generated

which is prolonged to adapt the energy availability at run

time.

Normally, the optimizations are performed for each individual

task upon activation for better resource utilization. But, these

optimizations are sub-optimal from the system point of view.

A task allocation that considers the system level resource

management is proposed [14]. The proposed task allocator has

a run time self adaptability with respect to change in

application. Energy consumption is largely influenced by task

allocation algorithms especially in Network-on-Chip (NoC)

heterogeneous multiprocessor systems. An Integer Linear

Programming (ILP) approach is described [15] with

Simulated Annealing with Timing Adjustment (SA-TA)

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2012

40

heuristic to accelerate the optimization process. System on a

programmable chip design for a multicore embedded system

is proposed in [16]. The optimization criteria of

the task allocator is made to adapt itself according to the

relative scarcity of different types of resources, by

dynamically adjusting a set of parameters at run time is

described in [17]. By this approach the resource bottlenecks

can be effectively mitigated. The work uses self adaptability

in task allocation to obtain the desired performance.

The rest of the paper is arranged as follows: In section 3, the

multiprocessor environment used in this work is explained. In

section 4, task processor allocation and task scheduling is

introduced. In section 5, the proposed model of the algorithm

is given. In Section 6, the implementation of the proposed

method is described. In section 7 the results of improved next-

fit is given. Finally section 8 concludes with the results of the

proposed method.

3. MULTIPROCESSOR SYSTEM
The multiprocessor systems are of two types: distributed

multiprocessor systems and shared multiprocessor systems.

The distributed systems have their own memory and

individual processors but in the shared multiprocessor

systems, there is a common memory which is accessed by all

the processors. The system model in the current work is a

shared or common memory multiprocessor system. The

shared memory has the task allocation algorithm which

decides according to the given task set, the required number

of processors to be present in the system.

4. TASK-PROCESSOR ALLOCATION

4.1 Task Allocation
Task allocation is about allocating the given tasks to

minimum number of processors. There are many allocation

algorithms such as in static scheduling: utilization balancing,

next-fit algorithms and in dynamic scheduling: bin-packing,

focused addressing and bidding and buddy algorithms.

The advantage of allocation in dynamic scheduling based

algorithm is that it provides fault tolerant scheduling and

makes use of redundant processor if any of the processors fail

when executing a task or a job.

When it comes to static scheduling based allocations where

priorities are fixed, handling fault tolerant mechanisms are not

very possible. Because, it is a fixed scheduling based

algorithm. The next-fit algorithm is used for RM and is better

than utilization balancing algorithm but due to the upper

bound of RM, it does not pack the bin fully. The proposed

algorithm ensures that the bins are packed completely leading

to a reduction in number of processors or bins.

The bin-packing in RM has less number of required bins more

or less equal to bin-packing in EDF. So the disadvantage of

upper bound in RM is reduced by using an effective task

allocation algorithm in this work.

4.2 Task scheduling
Scheduling in multiprocessors is done by RM or EDF

according to the application for which the processor

employed. The RM is a static scheduling algorithm and the

priority assignment is based on the periods of the tasks. It is

fixed priority scheduling and when the task allocation is done,

RM will be executed in each processor similar to a

uniprocessor scheduling.

The RM requires the execution time or computation time and

time period of the task. Consider a task set given in Table 1.

Table 1. Task set for RM

Task Time Period Execution Time

A 3 1

B 6 1

C 9 2

The tasks are prioritized according to the shortest period first

in RM as in Fig.1. Task A is the highest priority task, Task B

the middle priority and Task C the least priority task.

Fig 1: Execution trace of the task set by RM

5. PROPOSED ALGORITHM MODEL
Given „n‟ number of tasks, where n is large. The proposed

algorithm has basically three phases. In phase one, task

allocation by next-fit algorithm is done. In phase two, the

algorithm checks whether the bins can be fully packed and if

not task reallocation is performed so as to completely fill the

bins. This overcomes the disadvantage of next-fit algorithm of

not packing the bins completely. In phase three, task splitting

is achieved for high utilization tasks. The tasks are split and

packed into the bins as close to the respective upper bounds of

the RM algorithm which may be implemented at the later

stage similar to uniprocessor scheduling.

The minimum and maximum number of required processors

and the effective use of the two phases are formulated in

Table 2. It is seen that when both the phases are implemented

the algorithm offers the maximum effective output by

reducing the number of processors.

Table 2. Algorithm model results

Bin Packing Task Split Result

N N No reduction in bins

N Y
Reduction of bins in

less amount

Y N Better Reduction

Y Y
Maximum Reduction

of bins as possible

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2012

41

Fig. 2 elaborates the task allocation strategy by the proposed

algorithm.

Fig 2: Proposed allocation model

5.1 Phase one: Next-Fit Allocation
The next-fit allocation algorithm [18] is formulated for fixed

priority system which uses RM. It helps in fixed distribution

of the tasks when it is allocated to a particular processor or

bin. The scheduling then follows the RM.

When the tasks are to be fed into the multiprocessor

environment, it is to be divided into m classes, a task Ti

belongs to a CLASS j, so that 0 ≤ j < m.

1 1

12 1 2 1j ji

i

C

T

    

Where; Ci is the Computation time or execution time of a task

and Ti the time period of a task.

The tasks are divided into the following classes and each class

is based upon the utilization factor of the task (Ui=Ci/Ti). Each

class corresponds to a processor needed for allocating the

whole task set.

CLASS 1:
1 1

2 1
1 12 1 2 1C T   ƒ

CLASS 2:
1 1

3 2
2 22 1 2 1C T   ƒ

CLASS 3:
11

34
3 32 1 2 1C T   ƒ

CLASS 4:
1

4
4 40 2 1C T  ƒ

When the above allocation is done, the upper bound is also

checked so that it lies within the feasibility of RM scheduling.

If more tasks are assigned in the same CLASS, exceeding the

upper bound of scheduling, it is to be accommodated in a new

processor of the same CLASS. This algorithm has a

disadvantage that some processor will have less number of

tasks or even with single task, leading to more idle time.

Thus, in phase one the task allocation with next-fit algorithm

is done. The next phases will overcome the above mentioned

disadvantage.

5.2 Phase two: Bin-Packing of Lower

Utilization Tasks
After allocating the tasks, there are two phases introduced in

this minimal task allocation algorithm in which the second

phase is about checking the lower utilization tasks whether

they can be accommodated in the other processors not taking

into account the rules of next-fit algorithm. A processor can

accommodate tasks of different classes to only see that it

packs the bins [1] fully to the upper bound of RM according

to the number of tasks accommodated.

5.3 Phase three: Task-Splitting of Higher

Utilization Tasks
The previous phase eliminates the disadvantage of lower

utilization tasks and their class allocation strategy leaving to

eliminate the remaining higher utilization tasks which are

reallocated in this final phase of the allocation strategy.

The final phase involves the task splitting of higher utilization

tasks and allocating the tasks in possible remaining idle space

in other processors.

Shinpei Kato et.al. [19] have proposed a task splitting strategy

for multiprocessors. Unlike the traditional way of allocating

tasks to processors, in this strategy the tasks are split and the

partitioned tasks are executed in different processors. The

system model is a memory shared multiprocessor and the

code and data are shared by each processor. The tasks are

fixed and new tasks are not either added or deleted from the

present task set. The task splitting strategy adopted is

explained below:

First step of the task splitting strategy is that it checks for total

utilization of task in an arbitrary task set allocated by bin-

packing whether the utilization of the processor is within the

schedulable bound. If so, there is no need of task splitting.

If the above condition fails, it checks next whether there are

processors available to accommodate the partitioned tasks.

Then on successful availability of processors, the algorithm

splits the tasks and calculates the remaining utilization

(UREM), and the partitioned computation times: Ci‟, Ci‟‟, …

and the corresponding time periods: Ti, Ti+1…. It then checks

for the upper bound whether the addition of the task will make

the schedule infeasible. If the addition of a partitioned task

makes it to exceed the upper bound, the task is moved to the

next processor after checking the feasibility.

In this phase of the algorithm the tasks with higher utilizations

are considered one by one in the decreasing order of the

utilization for task splitting. The tasks are partitioned into

appropriate numbers depending upon the available idle time in

Tasks

Next-fit

Check

Highest

utilization for

Bin-Packing

Stop

Bin-

Packing

Task-

Splitting

Check Bin-

Packing

N

N

Y

Y

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2012

42

the processors. Let a task τi be partitioned into τi‟ and τi‟‟

which is the last possible task for splitting, then, there is no

need to calculate for upper bound for the new processor Pm+1

because there is only τi‟‟ portion to be assigned and it always

will meet the deadline. When the task τi is split into τi‟ and τi‟‟

its corresponding computation time is changed as Ci‟ and Ci‟‟,

with time period Ti‟ and Ti‟‟. The tasks τi‟ and τi‟‟ does not

really mean that the task τi is split but stands for a pseudo

codes which reserve the processor time in Pm and Pm+1. The

task splitting strategy is described in Fig. 3.

Fig 3: Task Split Strategy

6. IMPLEMENTATION OF THE

MODEL WITH AN EXAMPLE
Table 3. Task set

TASKS COMPUTATION

TIME

TIME

PERIOD

UTILIZATION

τ1 3 4 0.75

τ2 4 6 0.6667

τ3 6 10 0.6

τ4 7 14 0.5

τ5 6 15 0.4

τ6 5 18 0.2778

τ7 4 22 0.1818

τ8 3 25 0.12

τ9 5 30 0.1667

τ10 10 35 0.2857

τ11 18 40 0.45

τ12 21 42 0.5

τ13 11 45 0.2444

τ14 4 50 0.08

τ15 8 53 0.1509

τ16 20 58 0.3448

τ17 41 62 0.6612

τ18 20 65 0.3077

τ19 15 72 0.2083

τ20 14 75 0.1867

The table 3 consists of a set of synthetically generated tasks

by UUnifast algorithm [19] and is implemented by the

proposed method. The UUnifast algorithm [19] generates

tasks of uniform distribution with O(n) complexity. In phase

one, by using next-fit algorithm; the tasks are allocated to the

four defined classes. But, when the assigned tasks in a

particular class fail to meet the upper bound criteria,

additional processors are added in the system with the same

class. Thus, finally for the above 20 tasks in the system, there

are 7 processors required in class 1, 3 processors in class 2, 1

processor in class 3 and 2 processors in class 4. Therefore the

next-fit algorithm for scheduling the above tasks with RM

policy requires 13 processors totally. It can be noted that out

of these 13 processors many processors have large idle time.

These details are summarized in table 4.

Table 4. Next-fit allocation

Tasks allocated Total

Utilization

τ1 – Class 1 0.75

τ2 – Class 1 0.6667

τ3 – Class 1 0.6

τ4 – Class 1 0.5

τ5, τ6 – Class 2 0.6778

τ7, τ8, τ9, τ14, τ15 – Class 4 0.6994

τ11 – Class 1 0.45

τ12 – Class 1 0.5

τ13, τ19 – Class 3 0.4527

τ10, τ16 – Class 2 0.6305

τ17 – Class 1 0.6612

τ18– Class 2 0.3077

τ20 – Class 4 0.1867

The processors are not fully utilized up to the upper bound of

feasibility by RM. They are feasible with RM but require a

large number of processors. This disadvantage can be

overcome by eliminating the lower and higher utilization

tasks. The lower utilization tasks are directly packed into the

processors available with more ideal time irrespective of

classes.

UP = CP / TP

Up < UTotal

No Task Split

needed

TASK SPLIT

UREM

Ci‟, Ci‟‟, Ti, Ti+1

UUB

m < M

i < N

Algorithm

Fails

If Tasks exceed

upper bound it

goes to next

processor which

can accommodate

m = m + 1

Y

Y Y
N N

N

A

END
A

B

B

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2012

43

Table 5. Bin packing reallocation

Tasks allocated Total Utilization

τ1 0.75

τ2 0.6667

τ17 0.6612

τ3, τ19 0.8083

τ4, τ10 0.7857

τ5, τ16 0.7448

τ12, τ6 0.7778

τ11, τ18 0.7577

τ13, τ20, τ7 0.6129

τ 9, τ8, τ14, τ15 0.5176

The lower utilization tasks are now allocated to the bins

regardless of the classes and 10 processors are required in the

second phase of implementation of the proposed algorithm.

The next phase is to eliminate the idle time created by the

higher utilization tasks. The higher utilization tasks cannot be

packed as the lower utilization tasks; because the idle time of

other processors may not be feasible to accommodate due to

the upper bounds of RM. Hence the tasks are split using the

task split strategy explained in section 5.3 and packed in

different processors. The task τi is split into τi1 and τiN and

allocated in different processors according to the feasibility.

Table 6. Task split reallocation

Tasks allocated Total

Utilization

τ2, τ14 0.8283

τ17, τ12 0.8283

τ3, τ19 0.8083

τ4, τ10 0.7857

τ5, τ16, τ15 0.7796

τ12, τ6 0.7778

τ11, τ18, τ16 0.7747

τ13, τ20, τ7, τ13 0.7567

τ9, τ8, τ14, τ15, τ11 0.7433

The number of processors after the higher utilization task is

checked and split (τ11 to τ16) into six parts so that it can be

allocated within the feasibility of RM in 9 processors. The

utilization which is improved than the previous phase nearing

to the upper bound is shown above. The same set of tasks

when implemented using bin-packing and scheduled with

EDF which has an upper bound of 100% requires a minimum

of 8 processors. The improved next-fit algorithm minimizes

the number of processors approximately equal to EDF feasible

scheduling.

7. RESULTS
The improved next fit algorithm gives better result when

implemented with large number of tasks. After eliminating the

least utilization tasks by bin-packing and high utilization tasks

by task split, the required numbers of processors have

considerably reduced with the proposed algorithm.

Fig 4: Minimal processors comparison

It is seen that there is shoot of 1.1 times in total utilization rate

by using improved next-fit algorithm than standard next-fit

algorithm. Thus, by implementing the proposed algorithm,

minimum number of processors is only used. Fig.4 depicts the

reduction in number of required processors, which decreases

drastically with larger number of tasks in the system.

Fig 5: Tasks Vs Utilization

The improved next fit algorithm works efficiently with large

number of tasks. By figure 5 it is observed that the utilization

of the total system is increased by each phase, finally resulting

in an improved utilization rates with maximum elimination of

idle time of processors.

Table 7. Improved next-fit results

Number of

tasks/Algorithm

20 40 60

Standard Next-fit 92.37% 88.36% 93.2%

Improved Next-fit 98.42% 96.32% 98.35%

Fig 6: Standard Next-fit Vs Improved Next-fit

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2012

44

8. CONCLUSION
In this paper, an improved next-fit task allocation algorithm is

proposed. The algorithm is tested for the particular task set

and it is proved that it reduces the required number of

processors by 1.44 times than using the standard next-fit

algorithm. Also, the total processor utilization is improved by

1.1 times than when using standard next-fit algorithm,

eliminating maximum idle time. The RM inspite of being the

optimal scheduling algorithm for fixed priority system has the

disadvantage of upper bounds for feasibility, which is

minimized in the multiprocessor environment by the use of

the improved next-fit algorithm. For optimal performance

evaluation, the proposed algorithm is to be tested with large

number of task sets.

9. REFERENCES
[1] WANG Tao and LIU Da-Xin. “The Performance

Evaluation of Rate Monotonic Tasks Assignment

Algorithms on Multiprocessor,” Computer Science,

China, Vol.34, pp.272-276, 2007.

[2] A. Abraham, R. Buyya, and B. Nath. Nature‟s heuristics

for scheduling jobs on computational grids. In The 8th

IEEE International Conference on Advanced Computing

and Communications (ADCOM 2000), India, 2000.

[3] S.K. Dall and C.L. Liu, “On a Real-Time Scheduling

Problem,”Operations Research, vol. 6, no. 1, pp. 127-

140, 1978.

[4] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son, “New

Strategies for Assigning Real-Time Tasks to

Multiprocessor Systems,” IEEE Trans. Computers, vol.

44, no. 12, pp. 1429-1441, Dec. 1995.

[5] D. Peng, K. Shin, and T. Abdelzaher, “Assignment and

Scheduling Communicating Periodic Tasks in distributed

Real-Time Systems,” Trans. Software Eng., vol. 23, no.

12, pp. 745-758, Dec. 1997.

[6] Satoshi Fujita, ”A Branch-and-Bound Algorithm for

solving the Multiprocessor Scheduling Problem with

Improved Lower Bounding Techniques,” in IEEE

Transactions on computers, Vol.60, No.7, July 2011.

[7] S.K. Baruah and J. Goossens, “Rate-Monotonic

Scheduling on Uniform Multiprocessors,” IEEE Trans.

Computers, vol. 52, no. 7, pp. 966-970, July 2003.

[8] C.L. Liu and J.W. Layland, “Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment,”

J. ACM, vol. 20, no. 1, pp. 46-61, 1973.

[9] Jose´ M. Lo´pez, Jose´ L. Dı´az, and Daniel F. Garcı´a,

“Minimum and Maximum utilization bounds for

multiprocessor Rate Monotonic scheduling,” IEEE

Transactions on Parallel and Distributed Systems,

Vol.15, No.7, 2004.

[10] BEAUVAIS, Jean-Pime; DEPLANCHE, Anne-Marie; ,

"A Task Allocation Algorithm In a Multiprocessor Real-

Time System," Parallel Processing, 1993. ICPP 1993.

International Conference on , vol.2, no., pp.130-133, 16-

20 Aug. 1993.

[11] Wei, T.; Mishra, P.; Wu, K.; Liang, H.; , "Fixed-Priority

Allocation and Scheduling for Energy-Efficient Fault

Tolerance in Hard Real-Time Multiprocessor

Systems," Parallel and Distributed Systems, IEEE

Transactions on , vol.19, no.11, pp.1511-1526, Nov.

2008.

[12] Lin Huang; Feng Yuan; Qiang Xu; , "Lifetime reliability-

aware task allocation and scheduling for MPSoC

platforms," Design, Automation & Test in Europe

Conference & Exhibition, 2009. DATE '09. , vol., no.,

pp.51-56, 20-24 April 2009.

[13] Tongquan Wei; Yonghe Guo; Xiaodao Chen; Shiyan

Hu;, "Adaptive task allocation for multiprocessor

SoCs," Quality Electronic Design (ISQED), 2010 11th

International Symposium on , vol., no., pp.538-543, 22-

24 March 2010.

[14] Jia Huang; Raabe, A.; Buckl, C.; Knoll, A.; , "Runtime

adaptive allocation of dynamically mixed tasks on a

heterogeneous MPSoC platform," Design and

Architectures for Signal and Image Processing (DASIP),

2010 Conference on , vol., no., pp.34-41, 26-28 Oct.

2010.

[15] Jia Huang; Buckl, C.; Raabe, A.; Knoll, A.; , "Energy-

Aware Task Allocation for Network-on-Chip Based

Heterogeneous Multiprocessor Systems," Parallel,

Distributed and Network-Based Processing (PDP), 2011

19th Euromicro International Conference on , vol., no.,

pp.447-454, 9-11 Feb. 2011.

[16] Suganya, K.; Nagarajan, V.; , "Efficient run-time task

allocation in reconfigurable multiprocessor System-on-

Chip with Network-on-Chip," Computer,

Communication and Electrical Technology (ICCCET),

2011 International Conference on , vol., no., pp.12-17,

18-19 March 2011.

[17] Jia Huang; Raabe, A.; Buckl, C.; Knoll, A.; , "A

workflow for runtime adaptive task allocation on

heterogeneous MPSoCs," Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2011 , vol.,

no., pp.1-6, 14-18 March 2011.

[18] Sudharshan K Dhall, ”Approximation algorithms for

scheduling Time-critical jobs on Multiprocessor

systems,” University of oklahoma, by CRC press,2004.

[19] Shinpei Kato and Nobuyuki Yamasaki, “Real Time

Scheduling with Task Splitting on Multiprocessors,” in

8th IEEE International conference on Embedded and

Real-Time computing systems and Applications, RTCSA

2007.

[20] Enrico Bini and Giorgio C.Buttazzo, “Measuring the

Perfomance of Schedulability Tests,” in Springer

science, Real-Time systems, 30, pp.145-147, 2005.

