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ABSTRACT 

Task-processor allocation in multiprocessors can be 

accomplished efficiently for reducing the required number of 

processors for the given task set, accounting reduced power 

consumption with maximum processor utilization. This work 

is based on next fit algorithm using Rate Monotonic 

Algorithm (RMA) for a fixed priority system. The work 

proposes a minimal task allocation algorithm for 

multiprocessor environment. The proposed method reduces 

the number of processors required for a given task set using 

improved next fit algorithm and the same has been evaluated 

and tested. The proposed algorithm gives better results when 

there is large number of tasks in the system.  

General Terms 

Task-processor allocation algorithm, Fixed priority system, 

Rate Monotonic, Scheduling, Improved Next-fit algorithm, 

Task allocation. 

Keywords 

Multiprocessor systems, Task-processor allocation algorithm, 

multiprocessor allocation, Rate Monotonic algorithm, Next fit 
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1. INTRODUCTION 
Recent high-end technologies in embedded systems have lead 

to the requirement of more efficient usage of processors with 

zero loss. Traditional uniprocessor systems have become 

outdated and are not able to cope up with the current 

technological balance. To catch up with the improving 

performance requirements, there is a need for multiprocessors. 

Task allocation and scheduling is a challenging problem. The 

scheduling part is evolved to its most efficient way and in the 

allocation bin-packing [1] is one of the most efficiently used 

algorithms. Though the distributed systems and 

multiprocessors are highly advantageous over uniprocessors, 

their scheduling algorithms [2] are not yet fully evolved to the 

ultimate. In this paper, a motivation to design a heuristic 

algorithm for decreasing the number of required processors, 

thereby increasing processor utilization and reducing the 

power consumption is dealt with. Many simple heuristics [3], 

[4] algorithms and complex algorithms [5], [6] are proposed; 

out of which the current work falls into the category of 

complex algorithms.    

Scheduling of multiprocessors can be basically implemented 

in two ways: global scheduling [7] and partitioned scheduling. 

In partitioned scheduling the task-processor allocation is done 

so as to utilize the platform fully. Moreover scheduling is of 

two types, static scheduling and dynamic scheduling. The 

latter case uses Earliest Deadline First (EDF) algorithm for 

total processor utilization, while the former case has its most 

efficient usage of processors by applying RMA [8]. Static 

scheduling has its optimal solution in uniprocessor and has 

poor solutions in multiprocessor environment. Allocating the 

tasks in an optimal way and scheduling using uniprocessor 

algorithms will lead to a better scheduling in multiprocessors. 

Many simple allocation algorithms [2], [3] are proposed. The 

RMA has an upper bound [9] which makes it unsuitable for 

complete processor utilization. This paper implements a bin-

packing algorithm with higher processor utilization and less 

time complexity for allocating tasks among the shared 

memory multiprocessor systems. The system has a static 

scheduling algorithm (RM) which is implemented in a 

multiprocessor system. In the first phase the next-fit for RM is 

used to allocate tasks to the processors and the second phase 

reallocates the tasks by partitioning. Often the processors are 

described as bins. So the bin-packing is done by reallocation 

of tasks. Thus, the bin-packing implemented in static 

scheduling decreases the number of processors required to 

allocate the tasks, enhancing maximum utilization of the 

processors.  

2. RELATED WORK 
In the literature there are available many task allocation 

algorithms for multiprocessor system. The performance of the 

system is improved by using dynamically reconfigurable 

accelerator cores. A heuristic algorithm to assign tasks to a set 

of processing sites by balancing the load over different 

processors is described in [10]. An Energy-efficient task 

allocation and scheduling schemes with deterministic fault-

tolerance capabilities are proposed for 

symmetric multiprocessor systems when executing tasks with 

hard real-time constraints is described in [11]. This is 

achieved by optimally balancing the workload in the system. 

A novel lifetime reliability-aware task allocation and 

scheduling algorithm based on simulated annealing technique 

is presented [12] to estimate the lifetime reliability 

of multiprocessor platforms when executing periodical tasks. 

In [13], the authors propose an adaptive energy efficient task 

allocation scheme for a multiprocessor System-on-Chip 

(SoC). In the work, an offline task schedule is generated 

which is prolonged to adapt the energy availability at run 

time.  

Normally, the optimizations are performed for each individual 

task upon activation for better resource utilization. But, these 

optimizations are sub-optimal from the system point of view. 

A task allocation that considers the system level resource 

management is proposed [14]. The proposed task allocator has 

a run time self adaptability with respect to change in 

application. Energy consumption is largely influenced by task 

allocation algorithms especially in Network-on-Chip (NoC) 

heterogeneous multiprocessor systems. An Integer Linear 

Programming (ILP) approach is described [15] with 

Simulated Annealing with Timing Adjustment (SA-TA) 
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heuristic to accelerate the optimization process. System on a 

programmable chip design for a multicore embedded system 

is proposed in [16]. The optimization criteria of 

the task allocator is made to adapt itself according to the 

relative scarcity of different types of resources, by 

dynamically adjusting a set of parameters at run time is 

described in [17]. By this approach the resource bottlenecks 

can be effectively mitigated.  The work uses self adaptability 

in task allocation to obtain the desired performance.  

The rest of the paper is arranged as follows: In section 3, the 

multiprocessor environment used in this work is explained. In 

section 4, task processor allocation and task scheduling is 

introduced. In section 5, the proposed model of the algorithm 

is given. In Section 6, the implementation of the proposed 

method is described. In section 7 the results of improved next-

fit is given. Finally section 8 concludes with the results of the 

proposed method.  

3. MULTIPROCESSOR SYSTEM 
The multiprocessor systems are of two types: distributed 

multiprocessor systems and shared multiprocessor systems. 

The distributed systems have their own memory and 

individual processors but in the shared multiprocessor 

systems, there is a common memory which is accessed by all 

the processors. The system model in the current work is a 

shared or common memory multiprocessor system. The 

shared memory has the task allocation algorithm which 

decides according to the given task set, the required number 

of processors to be present in the system. 

4. TASK-PROCESSOR ALLOCATION 

4.1 Task Allocation 
Task allocation is about allocating the given tasks to 

minimum number of processors. There are many allocation 

algorithms such as in static scheduling: utilization balancing, 

next-fit algorithms and in dynamic scheduling: bin-packing, 

focused addressing and bidding and buddy algorithms. 

The advantage of allocation in dynamic scheduling based 

algorithm is that it provides fault tolerant scheduling and 

makes use of redundant processor if any of the processors fail 

when executing a task or a job. 

When it comes to static scheduling based allocations where 

priorities are fixed, handling fault tolerant mechanisms are not 

very possible. Because, it is a fixed scheduling based 

algorithm. The next-fit algorithm is used for RM and is better 

than utilization balancing algorithm but due to the upper 

bound of RM, it does not pack the bin fully. The proposed 

algorithm ensures that the bins are packed completely leading 

to a reduction in number of processors or bins.  

The bin-packing in RM has less number of required bins more 

or less equal to bin-packing in EDF. So the disadvantage of 

upper bound in RM is reduced by using an effective task 

allocation algorithm in this work. 

4.2 Task scheduling 
Scheduling in multiprocessors is done by RM or EDF 

according to the application for which the processor 

employed. The RM is a static scheduling algorithm and the 

priority assignment is based on the periods of the tasks. It is 

fixed priority scheduling and when the task allocation is done, 

RM will be executed in each processor similar to a 

uniprocessor scheduling. 

The RM requires the execution time or computation time and 

time period of the task. Consider a task set given in Table 1. 

Table 1. Task set for RM 

Task Time Period Execution Time 

A 3 1 

B 6 1 

C 9 2 

 

The tasks are prioritized according to the shortest period first 

in RM as in Fig.1. Task A is the highest priority task, Task B 

the middle priority and Task C the least priority task. 

 

 

Fig 1: Execution trace of the task set by RM 

5. PROPOSED ALGORITHM MODEL 
Given „n‟ number of tasks, where n is large. The proposed 

algorithm has basically three phases. In phase one, task 

allocation by next-fit algorithm is done. In phase two, the 

algorithm checks whether the bins can be fully packed and if 

not task reallocation is performed so as to completely fill the 

bins. This overcomes the disadvantage of next-fit algorithm of 

not packing the bins completely. In phase three, task splitting 

is achieved for high utilization tasks. The tasks are split and 

packed into the bins as close to the respective upper bounds of 

the RM algorithm which may be implemented at the later 

stage similar to uniprocessor scheduling. 

The minimum and maximum number of required processors 

and the effective use of the two phases are formulated in 

Table 2. It is seen that when both the phases are implemented 

the algorithm offers the maximum effective output by 

reducing the number of processors. 

Table 2. Algorithm model results 

Bin Packing Task Split Result 

N N No reduction in bins 

N Y 
Reduction of bins in 

less amount 

Y N Better Reduction 

Y Y 
Maximum Reduction 

of bins as possible 
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Fig. 2 elaborates the task allocation strategy by the proposed 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Proposed allocation model 

5.1 Phase one: Next-Fit Allocation 
The next-fit allocation algorithm [18] is formulated for fixed 

priority system which uses RM. It helps in fixed distribution 

of the tasks when it is allocated to a particular processor or 

bin. The scheduling then follows the RM. 

When the tasks are to be fed into the multiprocessor 

environment, it is to be divided into m classes, a task Ti 

belongs to a CLASS j, so that 0 ≤ j < m. 

1 1

12 1 2 1j ji

i

C

T

       

Where; Ci is the Computation time or execution time of a task 

and Ti the time period of a task. 

The tasks are divided into the following classes and each class 

is based upon the utilization factor of the task (Ui=Ci/Ti). Each 

class corresponds to a processor needed for allocating the 

whole task set.  

CLASS 1: 
1 1

2 1
1 12 1 2 1C T   ƒ  

CLASS 2: 
1 1

3 2
2 22 1 2 1C T   ƒ  

CLASS 3: 
11

34
3 32 1 2 1C T   ƒ  

CLASS 4: 
1

4
4 40 2 1C T  ƒ  

When the above allocation is done, the upper bound is also 

checked so that it lies within the feasibility of RM scheduling. 

If more tasks are assigned in the same CLASS, exceeding the 

upper bound of scheduling, it is to be accommodated in a new 

processor of the same CLASS. This algorithm has a 

disadvantage that some processor will have less number of 

tasks or even with single task, leading to more idle time. 

Thus, in phase one the task allocation with next-fit algorithm 

is done. The next phases will overcome the above mentioned 

disadvantage.  

5.2 Phase two: Bin-Packing of Lower 

Utilization Tasks 
After allocating the tasks, there are two phases introduced in 

this minimal task allocation algorithm in which the second 

phase is about checking the lower utilization tasks whether 

they can be accommodated in the other processors not taking 

into account the rules of next-fit algorithm. A processor can 

accommodate tasks of different classes to only see that it 

packs the bins [1] fully to the upper bound of RM according 

to the number of tasks accommodated. 

5.3 Phase three: Task-Splitting of Higher 

Utilization Tasks 
The previous phase eliminates the disadvantage of lower 

utilization tasks and their class allocation strategy leaving to 

eliminate the remaining higher utilization tasks which are 

reallocated in this final phase of the allocation strategy. 

The final phase involves the task splitting of higher utilization 

tasks and allocating the tasks in possible remaining idle space 

in other processors.  

Shinpei Kato et.al. [19] have proposed a task splitting strategy 

for multiprocessors. Unlike the traditional way of allocating 

tasks to processors, in this strategy the tasks are split and the 

partitioned tasks are executed in different processors. The 

system model is a memory shared multiprocessor and the 

code and data are shared by each processor. The tasks are 

fixed and new tasks are not either added or deleted from the 

present task set. The task splitting strategy adopted is 

explained below: 

First step of the task splitting strategy is that it checks for total 

utilization of task in an arbitrary task set allocated by bin-

packing whether the utilization of the processor is within the 

schedulable bound. If so, there is no need of task splitting. 

If the above condition fails, it checks next whether there are 

processors available to accommodate the partitioned tasks. 

Then on successful availability of processors, the algorithm 

splits the tasks and calculates the remaining utilization 

(UREM), and the partitioned computation times: Ci‟, Ci‟‟, … 

and the corresponding time periods:  Ti, Ti+1…. It then checks 

for the upper bound whether the addition of the task will make 

the schedule infeasible. If the addition of a partitioned task 

makes it to exceed the upper bound, the task is moved to the 

next processor after checking the feasibility. 

In this phase of the algorithm the tasks with higher utilizations 

are considered one by one in the decreasing order of the 

utilization for task splitting. The tasks are partitioned into 

appropriate numbers depending upon the available idle time in 

Tasks 

Next-fit 

Check 

Highest 

utilization for 

Bin-Packing 

 

Stop 

Bin-

Packing 

Task-

Splitting 

 

                          

Check Bin-

Packing 

 

N 

N 

Y 

Y 
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the processors. Let a task τi be partitioned into τi‟ and τi‟‟ 

which is the last possible task for splitting, then, there is no 

need to calculate for upper bound for the new processor Pm+1 

because there is only τi‟‟ portion to be assigned and it always 

will meet the deadline. When the task τi is split into τi‟ and τi‟‟ 

its corresponding computation time is changed as Ci‟ and Ci‟‟, 

with time period Ti‟ and Ti‟‟. The tasks τi‟ and τi‟‟ does not 

really mean that the task τi is split but stands for a pseudo 

codes which reserve the processor time in Pm and Pm+1. The 

task splitting strategy is described in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig 3: Task Split Strategy 

 

6. IMPLEMENTATION OF THE 

MODEL WITH AN EXAMPLE 
Table 3. Task set 

TASKS COMPUTATION 

TIME 

TIME 

PERIOD 

UTILIZATION 

 

τ1 3 4 0.75 

τ2 4 6 0.6667 

τ3 6 10 0.6 

τ4 7 14 0.5 

τ5 6 15 0.4 

τ6 5 18 0.2778 

τ7 4 22 0.1818 

τ8 3 25 0.12 

τ9 5 30 0.1667 

τ10 10 35 0.2857 

τ11 18 40 0.45 

τ12 21 42 0.5 

τ13 11 45 0.2444 

τ14 4 50 0.08 

τ15 8 53 0.1509 

τ16 20 58 0.3448 

τ17 41 62 0.6612 

τ18 20 65 0.3077 

τ19 15 72 0.2083 

τ20 14 75 0.1867 

 

The table 3 consists of a set of synthetically generated tasks 

by UUnifast algorithm [19] and is implemented by the 

proposed method. The UUnifast algorithm [19] generates 

tasks of uniform distribution with O(n) complexity. In phase 

one, by using next-fit algorithm; the tasks are allocated to the 

four defined classes. But, when the assigned tasks in a 

particular class fail to meet the upper bound criteria, 

additional processors are added in the system with the same 

class. Thus, finally for the above 20 tasks in the system, there 

are 7 processors required in class 1, 3 processors in class 2, 1 

processor in class 3 and 2 processors in class 4. Therefore the 

next-fit algorithm for scheduling the above tasks with RM 

policy requires 13 processors totally. It can be noted that out 

of these 13 processors many processors have large idle time. 

These details are summarized in table 4.  

Table 4. Next-fit allocation 

Tasks allocated Total 

Utilization 

τ1 – Class 1 0.75 

τ2 – Class 1 0.6667 

τ3 – Class 1 0.6 

τ4 – Class 1 0.5 

τ5, τ6 – Class 2 0.6778 

τ7, τ8, τ9, τ14, τ15 – Class 4 0.6994 

τ11 – Class 1 0.45 

τ12 – Class 1 0.5 

τ13, τ19 – Class 3 0.4527 

τ10, τ16 – Class 2 0.6305 

τ17 – Class 1 0.6612 

τ18– Class 2 0.3077 

τ20 – Class 4 0.1867 

 

The processors are not fully utilized up to the upper bound of 

feasibility by RM. They are feasible with RM but require a 

large number of processors. This disadvantage can be 

overcome by eliminating the lower and higher utilization 

tasks. The lower utilization tasks are directly packed into the 

processors available with more ideal time irrespective of 

classes. 

UP = CP / TP 

 

Up < UTotal 

 

No Task Split 

needed 

 

TASK SPLIT 

UREM 

Ci‟, Ci‟‟, Ti, Ti+1 

 

UUB 

 

m < M 

 

i < N 

 

Algorithm 

Fails 

 

If Tasks exceed 

upper bound it 

goes to next 

processor which 

can accommodate 

m = m + 1 
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END 
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Table 5. Bin packing reallocation 

Tasks allocated Total Utilization 

τ1 0.75 

τ2 0.6667 

τ17 0.6612 

τ3, τ19 0.8083 

τ4, τ10 0.7857 

τ5, τ16 0.7448 

τ12, τ6 0.7778 

τ11, τ18 0.7577 

τ13, τ20, τ7 0.6129 

τ 9, τ8, τ14, τ15 0.5176 

 

The lower utilization tasks are now allocated to the bins 

regardless of the classes and 10 processors are required in the 

second phase of implementation of the proposed algorithm.  

The next phase is to eliminate the idle time created by the 

higher utilization tasks. The higher utilization tasks cannot be 

packed as the lower utilization tasks; because the idle time of 

other processors may not be feasible to accommodate due to 

the upper bounds of RM. Hence the tasks are split using the 

task split strategy explained in section 5.3 and packed in 

different processors. The task τi is split into τi1 and τiN and 

allocated in different processors according to the feasibility.  

Table 6. Task split reallocation 

Tasks allocated Total 

Utilization 

τ2, τ14 0.8283 

τ17, τ12 0.8283 

τ3, τ19 0.8083 

τ4, τ10 0.7857 

τ5, τ16, τ15 0.7796 

τ12, τ6 0.7778 

τ11, τ18, τ16 0.7747 

τ13, τ20, τ7, τ13 0.7567 

τ9, τ8, τ14, τ15, τ11 0.7433 

 

The number of processors after the higher utilization task is 

checked and split (τ11 to τ16) into six parts so that it can be 

allocated within the feasibility of RM in 9 processors. The 

utilization which is improved than the previous phase nearing 

to the upper bound is shown above. The same set of tasks 

when implemented using bin-packing and scheduled with 

EDF which has an upper bound of 100% requires a minimum 

of 8 processors. The improved next-fit algorithm minimizes 

the number of processors approximately equal to EDF feasible 

scheduling. 

7. RESULTS 
The improved next fit algorithm gives better result when 

implemented with large number of tasks. After eliminating the 

least utilization tasks by bin-packing and high utilization tasks 

by task split, the required numbers of processors have 

considerably reduced with the proposed algorithm. 

 

Fig 4: Minimal processors comparison 

It is seen that there is shoot of 1.1 times in total utilization rate 

by using improved next-fit algorithm than standard next-fit 

algorithm. Thus, by implementing the proposed algorithm, 

minimum number of processors is only used. Fig.4 depicts the 

reduction in number of required processors, which decreases 

drastically with larger number of tasks in the system.  

 

Fig 5: Tasks Vs Utilization  

The improved next fit algorithm works efficiently with large 

number of tasks. By figure 5 it is observed that the utilization 

of the total system is increased by each phase, finally resulting 

in an improved utilization rates with maximum elimination of 

idle time of processors.  

Table 7. Improved next-fit results 

Number of 

tasks/Algorithm 

20 40 60 

Standard Next-fit 92.37% 88.36% 93.2% 

Improved Next-fit 98.42% 96.32% 98.35% 

 

 

Fig 6: Standard Next-fit Vs Improved Next-fit 
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8. CONCLUSION 
In this paper, an improved next-fit task allocation algorithm is 

proposed. The algorithm is tested for the particular task set 

and it is proved that it reduces the required number of 

processors by 1.44 times than using the standard next-fit 

algorithm.  Also, the total processor utilization is improved by 

1.1 times than when using standard next-fit algorithm, 

eliminating maximum idle time. The RM inspite of being the 

optimal scheduling algorithm for fixed priority system has the 

disadvantage of upper bounds for feasibility, which is 

minimized in the multiprocessor environment by the use of 

the improved next-fit algorithm. For optimal performance 

evaluation, the proposed algorithm is to be tested with large 

number of task sets. 
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