
International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

18

A New Approach to CPU Scheduling Algorithm: Genetic

Round Robin

Maria Ulfah Siregar
Informatics Department,

Faculty of Science and Technology,

State Islamic University Sunan Kalijaga
Yogyakarta
Indonesia

ABSTRACT

CPU scheduling should preserve fairness and avoid processes

from do not ever obtain CPU. Modern operating system era

faces multitasking on computer operational environment. If

CPU scheduling is efficient, high computation could be done

correctly and system could be retained stable. One criterion

that must be achieved by scheduling algorithm is

minimization average waiting time for a set of processes in

gaining CPU allocation. There are several algorithms for CPU

scheduling; one of them is Round Robin. Round Robin

supplies quantum that is same for each of processes.

However, there is no standard for quantum. Inevitably, if

quantum is very high, response/waiting time for each process

could be high, and otherwise, there is an increasing CPU

overhead for context switching. This research concerns with

improving Round Robin performance. Our approach is to

combine Round Robin with Genetic algorithm. In this

approach, an individual is a quantum that will be iterated for

achieving best quantum that will produce minimal average

waiting time. We use integer number for representing a

chromosome with length three. Furthermore, we use roulette

wheel method for parent selection and steady state

replacement technique for survival selection. By using one

point crossover and flip mutation, this approach can result

better average waiting time than that were found in references

used.

General Terms

CPU Scheduling, Round Robin Algorithm, Genetic

Algorithm.

Keywords

Genetic Round Robin.

1. INTRODUCTION
One interesting topic in Operating System is CPU Scheduling.

This scheduling relates with CPU allocation to execute

processes in a computer system. CPU scheduling is a main

task of an operating system [1]. Scheduling should be done

correctly for keeping fairness and avoiding processes from do

not ever be allocated CPU (process starvation).

CPU scheduling is necessary, particularly in computer

networking system which is formed from group of

workstations and servers. Next, in this modern operating

system, multitasking computer is a goal and this is relied on

algorithm for CPU scheduling. The reason for this, CPU is an

effective or important part a computer [1].

Moreover, in this era, with help from VLSI (Very Large Scale

Integrated circuit), it is possible to produce high powered

processor [2]. This amazing power should be utilized so as it

is not useless. Along with the power of processor’s

computation, there is an increasing in applications which use

that power.

One criterion that should be fulfilled by scheduler is to

minimize average waiting time for whole of processes in

obtaining CPU allocation. There are several algorithms for

CPU scheduling; one of them is Round Robin (RR).

Basic concept in RR is a usage of time-sharing [3]. Each

process will obtain the same CPU time, namely quantum time,

which function as a limitation in processing time, generally in

range 1-100 millisecond. After quantum time for a process is

finished, the process will be stopped from its execution and

putted on the ready queue. Next, the next process will be

chosen to be executed. These steps will run several times until

all processes have been served completely by CPU.

Although there is a range value for quantum time, yet there is

no standard. Meanwhile, if the quantum time is very high,

time needed to response/wait (how much time it needed to be

served) is quite high. Moreover, if it very low, it makes

overhead for CPU.

Searching for the best quantum time has goal which is to

minimize average waiting time for a group of processes. It is

hope that each process can finish its job in a reasonable time.

The quicker a process finishes its job impacts in as many

processes that can be served by CPU. This will come to better

throughput of CPU for it always busy and never be in idle.

Based on introduction above, we think it is necessary for

finding the best quantum for achieving better average waiting

time, turnaround time and minimal context switch. We

propose a Genetic algorithm which is combined with

traditional Round Robin.

2. OBJECTIVES
Our research has goals as following:

1) to design and implement a system that can produce the

best quantum for come to optimum average waiting

time

2) to evaluate GA parameters which can result the best

solution

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

19

3. PREVIOUS RESEARCHES
Some researches that appropriate with our research are:

H.s. Behera, Sreelipa Curtis and Bijayalaxmi Panda [4] in

India proposed a new RR algorithm using a modified mean-

deviation. This is addressed to real time system and it is

proven that this algorithm is better than traditional RR,

SMDRR and SRBRR in which it can reduce context switch,

average waiting time and average turnaround time.

Mehdi Neshat, Mehdi Sargolzaei, Adel Najaran and Ali Adeli

[5] in Iran used Fonseca and Fleming’s Genetic Algorithm

(FFGA) multiobjective optimization to yield an adaptive CPU

scheduling. This proposed algorithm is compared to seven

classical scheduling algorithms, which are FCFS, RR (either

equal or prioritized), SJF (pre-emptive and non-pre-emptive),

and Priority (pre-emptive and non-pre-emptive). The results

showed that this algorithm is more optimized than other

methods.

Supriya Raheja, Reena Dhadich and Smita Rajpal [6] in India

proposed a new RR algorithm using Linguistic Synthesis to

attain an optimum time quantum. This approach includes

Mamdani Fuzzy Inference System and produces LRRTQ

Fuzzy Inference System. Based on numerical analysis, this

algorithm shows the improvement in the performance of the

system by cutting off an unimportant context swithces and an

unreasonable turnaround time.

Debashree Nayak, Sanjeev Kumar Malla and Debashree

Debadarshini [7] in India conducted a research that tends to

improve RR scheduling using Dynamic Time Quantum. That

concept reduces context switching, average waiting time and

average turnaround time. Processes are arranged in ascending

order according their burst time. After that, median is

calculated to find an optimal burst time.

Sanjay Kumar Panda and Sourav Kumar Bhoi [8] in India

proposed an effective RR algorithm using Min-Max

dispersion measure of remaining CPU burst time. This

algorithm performs better than RR algorithm in terms of

average turnaround time, average waiting time and number of

context switches.

Vishnu Kumar Dhakad, Saroj Hiranwal and K. C. Roy [9] in

India proposed a new algorithm in scheduling which priority

driven according to burst time. Results show that this

algorithm can solve problem of fixed quantum and it support a

development of self-adaptive system.

Abbas Noon, Ali Kalakech and Seifedine Kadry [1] in

Lebanon proposed a new algorithm namely AN, a dynamic

quantum. An operating system should manage quantum

appropriately with burst time of a set of processes in ready

queue. This algorithm can improve performance of RR

algorithm.

Jeegar A. Trivedi and Priti Srinivas Sajja [2] in India has

goals how a RR algorithm can optimize a multitasking

environment by increasing throughput and decreasing waiting

time of a process. This objective is achieved by combining

RR method with Neuro Fuzzy approach.

Samih M. Mostafa, S. Z. Rida and Safwat H. Hamad [10] in

Egypt proposed usage of Integer Programming for finding

better quantum.

Rakesh Kumar Yadav, Abhishek K. Mishra, Navin Prakash

and Himanshu Sharma [11] in India proposed a new algorithm

which is a combination of RR and SJF (Shortest Job First)

algorithm. From experiments, results show that this

combination is better than pure RR.

In a reference entitled “Finding Time Quantum of Round

Robin CPU Scheduling Algorithm Using Fuzzy Logic” [12]

which is done in India, it is used a Fuzzy Logic method to

decide a value for a quantum which is neither high nor small

for obtaining reasonable response and good throughput

system.

Meanwhile, our proposed research relates with an integration

GA into RR. This has goal to find the best quantum time

which produces the best average waiting time. Therefore, we

contribute to propose a new approach to classic RR algorithm,

in which we combine GA and classic RR to yield Genetic RR

(GRR) algorithm. In line with terms in GA, quantum time will

be an individual and iterated to produce better average waiting

time. The uniqueness our algorithm is that the quantum time

does not defined by us, rather it will be created by our

proposed algorithm.

4. RESEARCH METHOD
In this research, an individual is a quantum time and decoded

by using integer representation to create one chromosome.

Every chromosome consists of three digit integers (genotype)

and each chromosome’s value (phenotype) is laid between 1

and 100. We use one point crossover operator and flip

mutation for reproduction offspring. Fitness is based on

average waiting time for a set of processes. Our system tends

to minimize average waiting time, so the fitness is formed as:

)(

1
)(

qawt
qfitness 

 (1)

Next, selecting of several pairs of individual which act as

parent in recombination (crossover) processes uses roulette

wheel method. We will select better individual to put into

mating pool. Next generation is built by using steady state

replacement method. In this method, size of population is

preserved the same. Therefore, there is a competition between

parents and children to survive. Iteration stops whether or not

it reaches its maximum value which is the number of

generation.

Our system uses Java language. Its user interface is figured

out in figure 1.

Set of processes will be iterated in GA cycle until it reaches

number of generation. Every burst time is inputted in dialog

as showed by figure 2.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

20

Fig 1: User interface of Genetic RR

Fig 2: Dialog window for inputting burst time

For each generation, we show its individual value (quantum

time) and its average waiting time. Moreover, the best

individual for each generation is figured out in XY chart.

5. RESULTS AND DISCUSSIONS
We conduct several experiments which can be divided into

two categories. The first is a comparison by using data which

are mentioned in lecturer hand-out. Second is comparison

with data from previous researches. For both of categories, we

assume that each process has the same arrival time.

Furthermore, each process is equal to each other. This section

consists of two subsections where each section is arranged to

each category of experiments.

5.1 Experiment with the First Category
For the first category, we have two data. Data 1 which are

obtained from [3] are depicted in figure 3. As can be seen

from figure 3, Data 1 consists of three processes.

Fig 3: Data 1

According to operating system lecturer hand-out, for these

data in traditional RR, quantum-time is defined as 4 ms. Its

Gannt chart is showed in figure 4.

Fig 4: Scheduling three processes of data 1

If we calculate, waiting time for P1 is 6 ms, P2 is 4, and P3 is 7

then its average waiting time is (6 + 4 + 7)/3 = 5.67 ms.

For each data in first category, we do experiments by using 16

schemas. Based on [13], crossover rate is typically in range

[0.6, 0.9]. We hope that 60% - 90% of chromosomes will go

through crossover [14]. Meanwhile, for mutation, its rate is

between 1/pop_size*L and 1/L [15], where L is length of

chromosome. We choose 0.8 and 0.9 as crossover rates, 0.033

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

21

(for smallest number of population, 10) and 0.33 as mutation

rates. The whole schemas are listed in table 1 below:

Table 1. Schemas of experiment with category 1

Schemas Parameters

Number of

generation

Number of

population

pc pm

I 10 10 0.8 0.033

II 50 50 0.8 0.033

III 100 50 0.8 0.033

IV 100 100 0.8 0.033

V 10 10 0.9 0.033

VI 50 50 0.9 0.033

VII 100 50 0.9 0.033

VIII 100 100 0.9 0.033

IX 10 10 0.8 0.33

X 50 50 0.8 0.33

XI 100 50 0.8 0.33

XII 100 100 0.8 0.33

XIII 10 10 0.9 0.33

XIV 50 50 0.9 0.33

XV 100 50 0.9 0.33

XVI 100 100 0.9 0.33

Table 2. Results of data 1

Schemas Values

Quantum time Average waiting time

I 8 8.33

II 3 5

III 3 5

IV 3 5

V 4 5.67

VI 3 5

VII 3 5

VIII 3 5

IX 11 10.33

X 3 5

XI 3 5

XII 3 5

XIII 1 5.67

XIV 3 5

XV 3 5

XVI 3 5

Each schema is done five times. The best result among five

experiments for each schema of data 1 is given in table 2.

As explanation for this experiment, here we give two figures,

which are figure 5 and figure 6. Both of them are for first

schema. Best quantum means quantum which can result the

best average waiting time.

Fig 5: Best quantum for each generation of schema 1

Fig 6: Input and output for an experiment of schema 1

Next is an experiment with data 2 (as showed by table 3).

Data 2 is obtained from [16]. On that book, value for quantum

time is 20 ms. Average waiting time resulted with traditional

RR is 73 ms. Gannt chart for this data can be seen in figure 7.

Table 3. Data 2

Process Burst time

P1 53

P2 17

P3 68

P4 24

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

22

Fig 7: Gannt chart of data 2

Like data 1, we conduct five experiments for each schema and

we choose the best among the five. Our result is listed in table

4.

Table 4. Result of data 2

Schemas Values

Quantum time Average waiting time

I 83 65.25

II 27 65

III 27 65

IV 27 65

V 27 65

VI 27 65

VII 27 65

VIII 27 65

IX 92 65.25

X 27 65

XI 27 65

XII 27 65

XIII 27 65

XIV 27 65

XV 27 65

XVI 27 65

5.2 Experiment with the Second Category

In second category, we compare our algorithm with some of

algorithms which are proposed by researchers in our

references. Our experiments for second category differ from

first one. Here, we use schemas 16 only. The reason is

concluded from first category, for the 16th schemas, its

average waiting times is approximately better than other

schemas. Moreover, we do only once experiment for this

schema.

Data 3 which is obtained from Case 1 of Noon’s paper [1] is

figured out in figure 8. His algorithm is called AN. Here we

just concern with waiting time and our algorithm’s result is 50

ms for average waiting time. We can offer result that is the

same with AN.

Fig 8: Case 1 of Noon’s paper

Figure 9 shows us our result and it lists down the last

generation.

Fig 9: Input and output for case 1

Data in figure 10 is a case 2 in the same paper as previously.

For this data, again we get same result as AN, 32 ms.

Fig 10: Case 2 of Noon’s paper

Data in figure 11 is obtained from Trivedi’s paper [2]. Its

average waiting time is 69 ms. Our algorithm can achieve

better result which is 65 ms.

Fig 11: Data from Trivedi’s paper

Figure 12 shows our algorithm’s result.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

23

Fig 12: Our result for data in figure 11

Data for next experiment is showed in figure 13. Dhakad’s

result is 71 ms and ours is 62 ms. Our result is showed in

figure 14.

Fig 13: Data from Dhakad’s paper [4]

Fig 14: Input and output for data from figure 13

Our next experiment is with Yadav’s data. For data in figure

15, Yadav’s result is 39.2 ms. Our algorithm achieves better,

which is 30.2 ms.

Fig 15: Data from Yadav’s paper [6]

Figure 16 give result from our algorithm for Yadav’s data. As

mentioned earlier, for second category, we use last schema.

Fig 16: Input and output for data from figure 15

Next, we do experiment with data from [4]. Figure 17

describes the data.

Fig 17: Data from Behera, H.S. et.al

Our proposed algorithm’s result is shown in figure 18. As

comparison, Behera’s result is 62.4 ms, the same with us.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

24

Fig 18: Input and output from figure 17

From [7], we use data as described by figure 19. Here, the

sum of processes is five and assumed all the processes arrive

at the same time at 0 ms.

Fig 19: Data in increasing order of Nayak’s paper

Nayak’s result is 85.6 ms, whereas ours is 84 ms. Our result is

shown by figure 20. This result is much better than Nayak’s

one. The difference is 0.4 ms.

Fig 20: Input and output for figure 19

Our last experiment uses data from [6]. The data is given in

table 5 below. For this experiment, we yield much better

result than Raheja’s one. Raheja’s average waiting time is

11.8 ms which is worse than ours which is 9.5 ms. For the

explanation of our result, see figure 21 below.

Table 5. Data for last experiment

Process Burst time

P1 8

P2 5

P3 4

P4 7

Fig 21: Input and output for data in last experiment

6. CONCLUSION AND FUTURE WORK
Based on our experiments, we can conclude that, integration

GA into RR can achieve better result in terms of average

waiting time. For the 16th schema that we used in second

category, approximately this proposed algorithm can result

better than previous researchers. Meanwhile, for the first

category, our algorithm can produce quantum time which can

result better average waiting time than written in lecturer

hand-out. We may assume that better average waiting time is

usually achieved for large number of generation and/or

population.

However, because of GA’s characteristic as stochastic

solution searching method, sometimes our algorithm results

badly. Therefore, for one data and schema it is better to do

more than once experiment. In other words, we should supply

repetition on the same data and schema.

In spite of weaknesses such as repetition in running algorithm

for more than one to infinite number of experiment, based on

our experiences, it took less time to run one experiment.

Therefore, although it runs more and more times, it will take

insignificant times. Furthermore, because of our proposed

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

25

algorithm approximately can yield better average waiting time

than other researches in our references, this proposed

algorithm should be developed more. So, it can not only

produce average waiting time, but also other parameters, such

as turnaround time, context switches and etc.

7. ACKNOWLEDGMENTS
We would thank to previous researchers who give us data for

experiments. Moreover, we would appreciate our head of

department for let us teach Operating System in previous

semester.

8. REFERENCES
[1] Noon, A. K. 2011. A new Round Robin based scheduling

algorithm for operating systems: Dynamic quantum

using the mean average. International Journal of

Computer Science Issues, 224-229.

[2] Trivedi, J.A. and Sajja, P.S. 2011. Improving efficiency

of Round Robin scheduling using Neuro Fuzzy approach.

International Journal of Research and Reviews in

Computer Science. 2: 308-311. .

[3] Sugiantoro, B. 2010. Handout for Operating System’s

Lecture. Yogyakarta: Handout’s lecture of Informatics

Department, Faculty of Science and Technology, State

Islamic University Sunan Kalijaga.

[4] Behera, H.S., Curtis, S. and Panda, B. 2012. Enhancing

the CPU Performance Using A Modified Mean-

Deviation Round Robin Scheduling Algorithm for Real

Time Systems. Journal of Global Research in Computer

Science. 3: 9-17.

[5] Neshat, M., Sargolzaei, M., Najaran, A. and Adeli, A.

2012. The New Method of Adaptive CPU Scheduling

Using Fonseca and Fleming’s Genetic Algorithm.

Journal of Theoretical and Applied Information

Technology. 37: 1-16.

[6] Raheja, S., Dhadich, R. and Rajpal, S. 2012. An

Optimum Time Quantum Using Linguistic Synthesis for

Round Robin CPU Scheduling Algorithm. International

Journal on Soft Computing. 3: 57-66.

[7] Nayak, D., Malla, S.K. and Debadarshini, D. 2012.

Improved Round Robin Scheduling using Dynamic Time

Quantum. International Journal of Computer

Application. 38: 34-38.

[8] Panda, S.K. and Bhoi, S.K. 2012. An Effective Round

Robin Algorithm using Min-Max Dispersion Measure.

International Journal on Computer Science and

Engineering. 4: 45-53.

[9] Dhakad, V.K., Hiranwal, S. and Roy, K.C. 2011.

Adaptive Round Robin scheduling using shortest burst

approach based on smart time slice. International Journal

of Computer Science and Communication. 2: 319-323.

[10] Mostafa, S.M., Rida, S.Z. and Hamad, S.H. 2010.

Finding time quantum of round robin CPU scheduling

algorithm in general computing systems using integer

programming. IJRRAS.

[11] Yadav, R.K., Mishra, A.K., Prakash, N. and Sharma, H.

2010. An improved Round Robin scheduling algorithm

for CPU scheduling. International Journal on Computer

Science and Engineering. 02: 1064-1066.

[12] Alam, B., Doja, M.N. and Biswas, R. 2008. Finding time

quantum of Round Robin CPU scheduling algorithm

using Fuzzy Logic. ICCEE. 795-798.

[13] Eiben, A.E. & Smith, J.E. 2007. Introduction to

Evolutionary Computing. Germany: Springer.

[14] Fadlisyah, Arnawan, and Faisal. 2009. Algoritma

Genetika. Yogyakarta: Graha Ilmu..

[15] Suyanto. 2008. Evolutionary Computation. Bandung:

Informatika.

[16] Silberschatzs, A., Galvin, P.B., Gagne, G. 200 9.

Operating System Concepts. Massachusetts: Addison

Wesley.

