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ABSTRACT 

Software reliability assessment is increasingly important in 

developing and testing new software products. Logarithmic 

Poisson Execution Time Model (LPETM) is a software 

reliability model which predicts the expected failures and 

hence related reliability quantities better than existing 

software reliability models. It uses Non-Homogeneous 

Poisson Process(NHPP) with a mean value function that is 

dependent on exponentially falling fault detection rate. The 

well known sequential Probability Ratio Test(SPRT) 

procedure of statistical science is adopted for this model in 

order to decide upon the reliability / unreliability of developed 

software. The model is evaluated by using 6 Data Sets. 

General Terms 
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1. INTRODUCTION 
In the analysis of software failure data we often deal with 

either inter failure times or number of recorded failures in a 

given time interval. If it is further assumed that the average 

number of recorded failures in a given time interval is directly 

proportional to the length of the interval and the random 

number of failure occurrences in the interval is explained by a 

Poisson process then we know that the probability equation of 

the stochastic process representing the failure occurrences is 

given by a homogeneous Poisson process with the expression 
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          (1.1) 

Stieber (1997) observes that if classical testing strategies 

are used (no usage testing), the application of software 

reliability growth models may be difficult and reliability 

predictions can be misleading. However, he observes that 

statistical methods can be successfully applied to the failure 

data. He demonstrated his observation by applying the well-

known sequential probability ratio test (SPRT) of Wald 

(1947) for a software failure data to detect unreliable software 

components and compare the reliability of different software 

versions. In this paper we consider a popular SRGM – 

proposed by Goel and Okumoto(1979) and adopt the principle 

of Stieber (1997) in detecting unreliable software components 

in order to accept/reject a developed software. For brevity we 

denote the SRGM as GOM. The failure intensity is linearly 

decreasing in its mean value function. The theory proposed by 

Stieber (1997) is presented in Section 2 for a ready reference. 

Extension of this theory to the   LPETM is presented in 

Section 3. The procedure for parameter estimation is 

presented in section 4. Application of the decision rule to 

detect unreliable software components with respect to the 

proposed SRGM is given in Section 5. 

 

2. WALD'S SEQUENTIAL TEST FOR A 

POISSON PROCESS 
The sequential probability ratio test (SPRT) was 

developed by A.Wald at Columbia University in 1943. Due to 

its usefulness in development work on military and naval 

equipment it was classified as „Restricted‟ by the Espionage 

Act ( Wald, 1947). A big advantage of sequential tests is that 

they require fewer observations (time) on the average than 

fixed sample size tests. SPRTs are widely used for statistical 

quality control in manufacturing processes. An SPRT for 

homogeneous Poisson processes is described below. 

Let {N(t),t 0} be a homogeneous Poisson process with 

rate „‟.  In our case, N(t)=number of failures up to time „ t‟ 

and „ ‟  is the failure rate (failures per unit time ). Suppose 

that we put a system on test (for example a software system, 

where testing is done according to a usage profile and no 

faults are corrected) and that we want to estimate its failure 

rate „ ‟. We cannot expect to estimate „ ‟   precisely. But we 

want to reject the system with a high probability if our data 

suggest that the failure rate is larger than 1 and accept it with 

a high probability, if it‟s smaller than0 (0 <0 <1 ) . As 

always with statistical tests, there is some risk to get the 

wrong answers. So we have to specify two (small) numbers 

„α‟ and „β‟, where „α‟ is the probability of falsely rejecting the 

system. That is rejecting the system even if λ ≤ 0. This is the 

"producer‟s" risk. β is the probability of falsely accepting the 

system .That is accepting the system even if  λ ≥ 1. This is 

the “consumer‟s” risk. With specified choices of 0 and 1 

such that 0 <0 <1, the probability of finding N(t)  failures in 

the time span (0,t ) with 1,0 as the failure rates are 

respectively given by 

   (2.1) 

   (2.2) 

The ratio  at any time‟t‟ is considered as a measure of 

deciding the truth towards   or , given a sequence of 

time instants say    and the 
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corresponding realizations.   

of N(t).  Simplification   of   gives 

 

 

The decision rule of SPRT is to decide in favor of , in 

favor of   or to continue by observing the number of 

failures at a later time than 't' according as  is greater than 

or equal to a constant say A, less than  or equal to a constant 

say B or in between the constants  A and B. That is, we decide 

the given software product as unreliable, reliable or continue 

the test process with one more observation in failure data, 

according as 

 

   (2.3) 

   (2.4)  

    (2.5) 

The approximate values of the constants A and B are taken as 

 

,   B  

 

Where „ ‟ and „ ‟ are the risk probabilities as defined 

earlier. A simplified version of the above decision processes is 

to reject the system as unreliable if N(t) falls for the first time 

above the line 

 

  (2.6) 

to accept the system to be reliable if   N(t) falls for the first 

time below the line 

 

  (2.7) 

To continue the test with one more observation on (t, N(t)) as 

the random graph of [t, N(t)] is between the two linear 

boundaries given by equations (2.6) and (2.7) where 

   (2.8) 

 

  (2.9) 

 

 (2.10) 

 

 The parameters , and  can be chosen in several 

ways. One way suggested by Stieber (1997) is 

 

,  

 

  

If λ0 and λ1 are chosen in this way, the slope of NU (t) and 

NL (t) equals λ. The other two ways of choosing λ0 and λ1 are 

from past projects (for a comparison of the projects) and from 

part of the data to compare the reliability of different 

functional areas (components).  

 

3. SEQUENTIAL TEST FOR SOFTWARE 

RELIABILITY GROWTH MODEL 
In Section 2,  for the  Poisson process we know  that  the 

expected value of N(t) = λt called the average number of 

failures experienced in time 't' .This is also called the mean 

value function of the Poisson process. On the other hand if we 

consider a Poisson process with a general function (not 

necessarily linear) m(t) as its mean value function the 

probability equation of a such a process is 

 

 

 

Depending on the forms of m(t) we get various  Poisson 

processes called NHPP for our model the mean value function 

is 

 
m(t)=a.log(1+bt) 

We may write 
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where ,   are values of the mean value function 

at specified sets of its parameters indicating reliable software 

and unreliable software respectively. For instance the model 

we have been considering its m(t) function, contains a pair of 

parameters a, b with „a‟ as a multiplier. Also a, b are positive. 

Let ,  be values of the NHPP at two specifications of b 

say   respectively. It can be shown that for 

our models m(t) at b1  is greater than that at b0.  Symbolically 

m0(t)<m1(t).Then the SPRT procedure  is as follows: 

Accept the system to be reliable  

 

i.e.,  

 
 

i.e.,  

 (3.1) 

 

Decide the system to be unreliable and reject if  

 

i.e.,

 (3.2) 

 

 

Continue the test procedure as long as 

 

    -------------(3.3) 

 

Substituting the appropriate expressions of the mean value 

function – m(t) of LPETM we get the decision rules and are 

given in followings lines 
m(t)=a.log(1+bt) 

Acceptance region: 

 

 (3.4) 

 

Rejection region: 

 (3.5) 

 

Continuation region: 

 (3.6) 

 

 

It may be noted that in the above model the decision rules are 

exclusively based on the strength of the sequential procedure 

(,) and the values of the mean value functions namely, 

, . If the mean value function is linear in „t‟ 

passing through origin, that is, m(t) = λt  the decision rules 

become decision lines as described by Stieber (1997). In that 

sense equations (3.1), (3.2) , (3.3) can be regarded as 

generalizations to the decision procedure of Stieber 

(1997).The applications  of these results for live software 

failure data are presented with analysis in Section 4. 

 

4. PARAMETER ESTIMATION 
Parameter estimation is of primary importance in software 

reliability prediction. Once the analytical solution for m(t) is 

known for a given model, parameter estimation is achieved by 

applying a well known technique of Maximum Likelihood 

Estimation (MLE). Depending on the format in which test 

data are available, two different approaches are frequently 

used. A set of failure data is usually collected in one of two 

common ways, time domain data and interval domain data. 

The idea behind maximum likelihood parameter estimation is 

to determine the parameters that maximize the probability 

(likelihood) of the sample data. The method of maximum 

likelihood is considered to be more robust (with some 

exceptions) and yields estimators with good statistical 

properties. In other words, MLE methods are versatile and 

apply to most models and to different types of data. Although 

the methodology for maximum likelihood estimation is 

simple, the implementation is mathematically intense.  

 Assuming that the data are given for the cumulative 

number of detected errors yi in a given time-interval (0,ti) 

where i = 1,2, …, n. and 0 < t1< t2<…< tn then the log 

likelihood function (LLF) takes on the following form. Likely 

hood function by using λ(t) is:𝐿 =  𝜆 𝑡𝑖 
𝑛
𝑖=1 .The logarithmic 

likelihood function for interval domain data (pham, 2006) is 

given by: 

𝐿𝑜𝑔 𝐿 =   (𝑦𝑖
𝑛
𝑖=1 − 𝑦𝑖−1) log[m(ti) – m(ti-1)] – m(tn) 

The maximum likelihood estimators (MLE) ofѲ1,Ѳ2,…,Ѳ𝑘are 

obtained by maximizing L or , where is ln L . By 

maximizing , which is much easier to work with than L, the 

maximum likelihood estimators (MLE) of Ѳ1,Ѳ2,…,Ѳ𝑘are the 

simultaneous solutions of k equations such that: 
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𝜕(ᴧ⋀)

𝜕Ѳ𝑗
= 0 j=1,2,…,k 

The parameters „a‟ and „b‟ are estimated using iterative 

Newton Raphson Method, which is given as 

 

To estimate „a‟ and „b‟ , for a sample of n units, first obtain 

the likelihood function: 𝐿 =  𝑎𝑏𝑒−𝑏𝑡𝑛
𝑖=1  Take the natural 

logarithm on both sides, The Log Likelihood function is given 

as: 𝐿𝑜𝑔 𝐿 = log[ 𝜆(𝑡𝑖)]𝑛
𝑖=1   

= log[ 𝑎𝑏𝑒−𝑏𝑡𝑛
𝑖=1 ] 

= (𝑦𝑖
𝑛
𝑖=1 − 𝑦𝑖−1)log[(𝑎. log[1 + 𝑏𝑡𝑖])-(a.log[1+b𝑡𝑖−1])] −

          𝑎. log[1 + 𝑏𝑡𝑛 ] 

The parameter „a‟ is estimated by taking the partial derivative 

w.r.t „a‟ and equating it to „0‟. (i.e 
𝜕 log 𝐿

𝜕𝑎
= 0)  

 𝑎 =  
 (𝑦𝑖−𝑦𝑖−1)𝑛

𝑖=1

log [1+𝑏𝑡𝑛 ]
     

The parameter „b‟ is estimated by iterative Newton Raphson 

Method using𝑏𝑛+1 = 𝑏𝑛 −  –
𝑔(𝑏𝑛 )

𝑔|(𝑏𝑛 )
  . which is substituted in 

finding „a‟. where g(b) & g|(b)  are expressed as follows. 

 ;   

g(b)=  𝑦𝑖 − 𝑦𝑖−1 [𝑡𝑖
𝑛
𝑖=1 − 𝑡𝑖−1][

log  1+𝑏𝑡𝑖−1 −log [1+𝑏𝑡𝑖]

 1+𝑏𝑡𝑖 [1+𝑏𝑡𝑖−1]
] - 

𝑎𝑡𝑛

1+𝑏𝑡𝑛
 

 

 

𝑔′ (𝑏)= 

  𝑦𝑖 − 𝑦𝑖−1 [𝑡𝑖
𝑛
𝑖=1 −

𝑡𝑖−1]
 (𝑡𝑖−1−𝑡𝑖)+ 𝑡𝑖+𝑡𝑖−1+2𝑏𝑡𝑖𝑡𝑖−1 [𝑙𝑜𝑔

 1+𝑏𝑡𝑖 

 1+𝑏𝑡𝑖−1 
] 

(1+𝑏𝑡𝑖)
2 (1+𝑏𝑡𝑖−1)2  

 

                 +
 [𝑦𝑖−𝑦𝑖−1

𝑛
𝑖=1 ]

log [1+𝑏𝑡𝑛 ]
X 

𝑡𝑛
2

(1+𝑏𝑡𝑛 )2 

 

5. SPRT ANALYSIS OF LIVE DATA 

SETS 

We see that the developed SPRT methodology is for a 

software failure data which is of the form [t, N(t)] where N(t) 

is the observed number of failures of software system or its 

sub system in „t‟ units of time. In this section we evaluate the 

decision rules based on the considered mean value functions 

for six different data sets of the above form, borrowed from 

Wood (1996), Pham (2005). Based on the estimates of the 

parameter „b‟ in each mean value function, we have chosen 

the specifications of  b0 , b1 equidistant on either side of 

estimate of  b obtained through a Data Set to apply 

SPRT such that b0< b < b1. The choices are given in the 

following table. 

 

Table 5.1: Specifications of b0, b1 

Data Set 
Estima

te of  a 

Estimate 

of b 
b0 b1 

Pham (2005) 
Phase 1 Data 

81.06 0.000050 0.000025 0.000075 

Pham (2005) 

Phase 2 Data 
99.77 0.000061 0.000036 0.000086 

Wood (1996) 
Release 1 

Data 

59.93 0.000444 0.000419 0.000469 

Wood (1996) 
Release 2 

Data 

126.71 0.000155 0.000130 0.000180 

Wood (1996) 

Release 3 
Data 

48.38 0.000501 0.000476 0.000526 

Wood (1996) 

Release 4 
Data 

40.94 0.000159 0.000134 0.000184 

 

Using the selected b0,b1 and subsequently the m0(t),m1(t)for 

each model we calculated the decision rules given by 

Equations 3.4, 3.5, sequentially at each „t‟ of the data sets 

taking the strength ( α, β ) as (0.05,0.05). These are presented 

for the model in Tables 5.2. 

 

Table 5.2: SPRT for LPETM

Data Set T N(t) 

R.H.S of equation 

(3.4) 

Acceptance region (≤) 

R.H.S of Equation 

(3.5) 

Rejection Region(≥) 

Pham(2005) 

 Phase 1 Data 

356 

712 

1068 

1424 

1780 

2136 

2492 

1 

1 

2 

3 

5 

5 

5 

-1.4008 

-0.1456 

1.0866 

2.2965 

3.4853 

4.6536 

5.8023 

4.0026 

5.3004 

6.5746 

7.8261 

9.0558 

10.2646 

11.4533 

Pham (2005) 

Phase 2 Data 

416 

832 

1248 

1664 

2080 

2496 

3 

4 

4 

7 

9 

9 

-1.0695 

1.1826 

3.3781 

5.5202 

7.6118 

9.6552 

 

5.7729 

8.1035 

10.3763 

12.5945 

14.7607 

16.8777 
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Wood (1996) 

Release 1 Data 

 

529 

968 

1430 

1893 

2490 

3058 

3625 

4422 

5218 

5823 

6539 

7083 

7487 

7846 

8205 

8564 

8923 

9282 

9641 

10000 

16 

24 

27 

33 

41 

49 

54 

58 

69 

75 

81 

86 

90 

93 

96 

98 

99 

100 

100 

100 

-16.6825 

-9.9658 

-4.0506 

1.1120 

6.9060 

11.7203 

15.9940 

212939 

25.9377 

29.1195 

32.5651 

34.9845 

36.6840 

38.1311 

39.5233 

40.8646 

42.1583 

43.4078 

44.6187 

45.7848 

41.1524 

52.1541 

62.0586 

70.8726 

80.9573 

89.4948 

97.1955 

106.9067 

115.5639 

121.5758 

128.1601 

132.8296 

136.1323 

138.9593 

141.6918 

144.3362 

146.8979 

148.3822 

151.7935 

154.1361 

Wood (1996) 

Release 2 Data 
384 13 -2.0491 16.5704 

Wood (1996) 

Release 3 Data 

 

162 

499 

715 

1137 

1799 

2438 

2818 

3574 

4234 

4680 

4955 

5053 

6 

9 

12 

20 

28 

40 

48 

54 

57 

59 

60 

61 

-26.8706 

-22.1002 

-19.4170 

-14.8214 

-8.8866 

-4.1957 

-1.7621 

2.4799 

5.6728 

7.6172 

8.7430 

9.1318 

34.4153 

43.6736 

49.0173 

58.4085 

71.0073 

81.3632 

86.8806 

96.7442 

104.3809 

109.1235 

111.9018 

112.8670 

Wood (1996) 

Release 4 Data 

254 

788 

1054 

1 

3 

8 

7.8618 

-5.0486 

-3.7291 

 

11.0764 

14.6306 

16.3050 

 

From the  above table we see that a decision either to accept 

or reject the system is reached much in advance of the last 

time instant of the data(the testing time).The following 

consolidated table reveals the iterations required to come to a 

decision about the software of each Data Set. 

Table 5.3: Consolidated Table of Decisions 

Data Set 
LPETM 

Model 
Iterations Decision 

Pham (2005) 

Phase 1 Data 
0.9752 7 Accept 

Pham (2005) 

Phase 2 Data 
0.9961 6 Accept 

Wood (1996) 

Release 1 

Data 

0.9742 21 Continuous 

Wood (1996) 

Release 2 

Data 

0.9742 20 Continuous 

Wood (1996) 

Release 3 

Data 

0.9290 13 Continuous 

Wood (1996) 

Release 4 

Data 

0.9672 20 Continuous 

The above  consolidated table shows that LPETM as 

exemplified for 6 Data Sets indicate that the model is 

performing well for 2 Data Sets in arriving at a decision. For 

the remaining 4 Data Sets LPTEM is inconclusive. Therefore, 

we may conclude that the model LPETM is most appropriate 

model to decide upon reliability / unreliability of software. 

The authors are exploring the possibility of performance of a 

new SRGM generated on the basis of dependence of mean 

value function on the fault detection rate in a exponentially 

decreasing manner. 
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