
International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

6

Assessing Reliable Software using SPRT based on
LPETM

R. Satya Prasad

PhD, Associate Professor
Dept. of CS &Engg.

AcharyaNagarjuna University

D. Haritha
Assistant Professor

Dept. of Electronics &
Computer Engg.

K.L.University

R. Sindhura

Dept. of CSE
K.L.University

ABSTRACT

Software reliability assessment is increasingly important in

developing and testing new software products. Logarithmic

Poisson Execution Time Model (LPETM) is a software

reliability model which predicts the expected failures and

hence related reliability quantities better than existing

software reliability models. It uses Non-Homogeneous

Poisson Process(NHPP) with a mean value function that is

dependent on exponentially falling fault detection rate. The

well known sequential Probability Ratio Test(SPRT)

procedure of statistical science is adopted for this model in

order to decide upon the reliability / unreliability of developed

software. The model is evaluated by using 6 Data Sets.

General Terms

Decision Rule , Software testing, Software failure

data,Quality Software.

.

Keywords

LPETM, Maximum Likelihood Estimation, Unreliable

Software, Mean value function, Intensity function.

1. INTRODUCTION
In the analysis of software failure data we often deal with

either inter failure times or number of recorded failures in a

given time interval. If it is further assumed that the average

number of recorded failures in a given time interval is directly

proportional to the length of the interval and the random

number of failure occurrences in the interval is explained by a

Poisson process then we know that the probability equation of

the stochastic process representing the failure occurrences is

given by a homogeneous Poisson process with the expression

!

nte t
P N t n

n

 (1.1)

Stieber (1997) observes that if classical testing strategies

are used (no usage testing), the application of software

reliability growth models may be difficult and reliability

predictions can be misleading. However, he observes that

statistical methods can be successfully applied to the failure

data. He demonstrated his observation by applying the well-

known sequential probability ratio test (SPRT) of Wald

(1947) for a software failure data to detect unreliable software

components and compare the reliability of different software

versions. In this paper we consider a popular SRGM –

proposed by Goel and Okumoto(1979) and adopt the principle

of Stieber (1997) in detecting unreliable software components

in order to accept/reject a developed software. For brevity we

denote the SRGM as GOM. The failure intensity is linearly

decreasing in its mean value function. The theory proposed by

Stieber (1997) is presented in Section 2 for a ready reference.

Extension of this theory to the LPETM is presented in

Section 3. The procedure for parameter estimation is

presented in section 4. Application of the decision rule to

detect unreliable software components with respect to the

proposed SRGM is given in Section 5.

2. WALD'S SEQUENTIAL TEST FOR A

POISSON PROCESS
The sequential probability ratio test (SPRT) was

developed by A.Wald at Columbia University in 1943. Due to

its usefulness in development work on military and naval

equipment it was classified as „Restricted‟ by the Espionage

Act (Wald, 1947). A big advantage of sequential tests is that

they require fewer observations (time) on the average than

fixed sample size tests. SPRTs are widely used for statistical

quality control in manufacturing processes. An SPRT for

homogeneous Poisson processes is described below.

Let {N(t),t 0} be a homogeneous Poisson process with

rate „‟. In our case, N(t)=number of failures up to time „ t‟

and „ ‟ is the failure rate (failures per unit time). Suppose

that we put a system on test (for example a software system,

where testing is done according to a usage profile and no

faults are corrected) and that we want to estimate its failure

rate „ ‟. We cannot expect to estimate „ ‟ precisely. But we

want to reject the system with a high probability if our data

suggest that the failure rate is larger than 1 and accept it with

a high probability, if it‟s smaller than0 (0 <0 <1) . As

always with statistical tests, there is some risk to get the

wrong answers. So we have to specify two (small) numbers

„α‟ and „β‟, where „α‟ is the probability of falsely rejecting the

system. That is rejecting the system even if λ ≤ 0. This is the

"producer‟s" risk. β is the probability of falsely accepting the

system .That is accepting the system even if λ ≥ 1. This is

the “consumer‟s” risk. With specified choices of 0 and 1

such that 0 <0 <1, the probability of finding N(t) failures in

the time span (0,t) with 1,0 as the failure rates are

respectively given by

 (2.1)

 (2.2)

The ratio at any time‟t‟ is considered as a measure of

deciding the truth towards or , given a sequence of

time instants say and the

1

1

1
()!

N tt
e t

P
N t

0

0

0
()!

N tt
e t

P
N t

1

0

P

P

0 1

1 2 3 Kt t t t

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

7

corresponding realizations.

of N(t). Simplification of gives

The decision rule of SPRT is to decide in favor of , in

favor of or to continue by observing the number of

failures at a later time than 't' according as is greater than

or equal to a constant say A, less than or equal to a constant

say B or in between the constants A and B. That is, we decide

the given software product as unreliable, reliable or continue

the test process with one more observation in failure data,

according as

 (2.3)

 (2.4)

 (2.5)

The approximate values of the constants A and B are taken as

, B

Where „ ‟ and „ ‟ are the risk probabilities as defined

earlier. A simplified version of the above decision processes is

to reject the system as unreliable if N(t) falls for the first time

above the line

 (2.6)

to accept the system to be reliable if N(t) falls for the first

time below the line

 (2.7)

To continue the test with one more observation on (t, N(t)) as

the random graph of [t, N(t)] is between the two linear

boundaries given by equations (2.6) and (2.7) where

 (2.8)

 (2.9)

 (2.10)

 The parameters , and can be chosen in several

ways. One way suggested by Stieber (1997) is

,

If λ0 and λ1 are chosen in this way, the slope of NU (t) and

NL (t) equals λ. The other two ways of choosing λ0 and λ1 are

from past projects (for a comparison of the projects) and from

part of the data to compare the reliability of different

functional areas (components).

3. SEQUENTIAL TEST FOR SOFTWARE

RELIABILITY GROWTH MODEL
In Section 2, for the Poisson process we know that the

expected value of N(t) = λt called the average number of

failures experienced in time 't' .This is also called the mean

value function of the Poisson process. On the other hand if we

consider a Poisson process with a general function (not

necessarily linear) m(t) as its mean value function the

probability equation of a such a process is

Depending on the forms of m(t) we get various Poisson

processes called NHPP for our model the mean value function

is

m(t)=a.log(1+bt)

We may write

1 2(), (),........ ()KN t N t N t

1

0

P

P

1 1
0 1

0 0

exp()

N t

P
t

P

1

0

1

0

P

P

1

0

P
A

P

1

0

P
B

P

1

0

P
B A

P

 2.UN t a t b

 1.LN t a t b

1 0

1

0

log

a

1

1

0

1
log

log

b

2

1

0

1
log

log

b

, 0 1

0

.log

1

q

q

1

.log

1

q
q

q

1

0

 where q

 ()

()
() . , 0,1,2,

!

y

m t
m t

P N t Y e y
y

 1
()()

1

1

. ()

()!

N tm t
e m t

P
N t

 0
()()

0

0

. ()

()!

N tm t
e m t

P
N t

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

8

where , are values of the mean value function

at specified sets of its parameters indicating reliable software

and unreliable software respectively. For instance the model

we have been considering its m(t) function, contains a pair of

parameters a, b with „a‟ as a multiplier. Also a, b are positive.

Let , be values of the NHPP at two specifications of b

say respectively. It can be shown that for

our models m(t) at b1 is greater than that at b0. Symbolically

m0(t)<m1(t).Then the SPRT procedure is as follows:

Accept the system to be reliable

i.e.,

i.e.,

 (3.1)

Decide the system to be unreliable and reject if

i.e.,

 (3.2)

Continue the test procedure as long as

 -------------(3.3)

Substituting the appropriate expressions of the mean value

function – m(t) of LPETM we get the decision rules and are

given in followings lines
m(t)=a.log(1+bt)

Acceptance region:

 (3.4)

Rejection region:

 (3.5)

Continuation region:

 (3.6)

It may be noted that in the above model the decision rules are

exclusively based on the strength of the sequential procedure

(,) and the values of the mean value functions namely,

, . If the mean value function is linear in „t‟

passing through origin, that is, m(t) = λt the decision rules

become decision lines as described by Stieber (1997). In that

sense equations (3.1), (3.2) , (3.3) can be regarded as

generalizations to the decision procedure of Stieber

(1997).The applications of these results for live software

failure data are presented with analysis in Section 4.

4. PARAMETER ESTIMATION
Parameter estimation is of primary importance in software

reliability prediction. Once the analytical solution for m(t) is

known for a given model, parameter estimation is achieved by

applying a well known technique of Maximum Likelihood

Estimation (MLE). Depending on the format in which test

data are available, two different approaches are frequently

used. A set of failure data is usually collected in one of two

common ways, time domain data and interval domain data.

The idea behind maximum likelihood parameter estimation is

to determine the parameters that maximize the probability

(likelihood) of the sample data. The method of maximum

likelihood is considered to be more robust (with some

exceptions) and yields estimators with good statistical

properties. In other words, MLE methods are versatile and

apply to most models and to different types of data. Although

the methodology for maximum likelihood estimation is

simple, the implementation is mathematically intense.

 Assuming that the data are given for the cumulative

number of detected errors yi in a given time-interval (0,ti)

where i = 1,2, …, n. and 0 < t1< t2<…< tn then the log

likelihood function (LLF) takes on the following form. Likely

hood function by using λ(t) is:𝐿 = 𝜆 𝑡𝑖
𝑛
𝑖=1 .The logarithmic

likelihood function for interval domain data (pham, 2006) is

given by:

𝐿𝑜𝑔 𝐿 = (𝑦𝑖
𝑛
𝑖=1 − 𝑦𝑖−1) log[m(ti) – m(ti-1)] – m(tn)

The maximum likelihood estimators (MLE) ofѲ1,Ѳ2,…,Ѳ𝑘are

obtained by maximizing L or , where is ln L . By

maximizing , which is much easier to work with than L, the

maximum likelihood estimators (MLE) of Ѳ1,Ѳ2,…,Ѳ𝑘are the

simultaneous solutions of k equations such that:

1()m t 0 ()m t

0P 1P

 0 1 0 1,b b b b

1

0

P
B

P

1

0

()()

1

()()

0

. ()

. ()

N tm t

N tm t

e m t
B

e m t

1 0

1 0

log () ()
1

()
log () log ()

m t m t

N t
m t m t

1

0

P
A

P

1 0

1 0

1
log () ()

()
log () log ()

m t m t

N t
m t m t

1 0 1 0

1 0 1 0

1
log () () log () ()

1
()

log () log () log () log ()

m t m t m t m t

N t
m t m t m t m t

 0 1

1

0

log
1

()
1

log
1

b t b t

b t

b t

a e e

N t
e

e

 0 1

1

0

1
log

()
1

log
1

b t b t

b t

b t

a e e

N t
e

e

 0 01 1

1 1

0 0

1
log log

1
()

1 1
log log

1 1

b t b tb t b t

b t b t

b t b t

a e e a e e

N t
e e

e e

0 ()m t 1()m t

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

9

𝜕(ᴧ⋀)

𝜕Ѳ𝑗
= 0 j=1,2,…,k

The parameters „a‟ and „b‟ are estimated using iterative

Newton Raphson Method, which is given as

To estimate „a‟ and „b‟ , for a sample of n units, first obtain

the likelihood function: 𝐿 = 𝑎𝑏𝑒−𝑏𝑡𝑛
𝑖=1 Take the natural

logarithm on both sides, The Log Likelihood function is given

as: 𝐿𝑜𝑔 𝐿 = log[𝜆(𝑡𝑖)]𝑛
𝑖=1

= log[𝑎𝑏𝑒−𝑏𝑡𝑛
𝑖=1]

= (𝑦𝑖
𝑛
𝑖=1 − 𝑦𝑖−1)log[(𝑎. log[1 + 𝑏𝑡𝑖])-(a.log[1+b𝑡𝑖−1])] −

 𝑎. log[1 + 𝑏𝑡𝑛]

The parameter „a‟ is estimated by taking the partial derivative

w.r.t „a‟ and equating it to „0‟. (i.e
𝜕 log 𝐿

𝜕𝑎
= 0)

 𝑎 =
 (𝑦𝑖−𝑦𝑖−1)𝑛

𝑖=1

log [1+𝑏𝑡𝑛]

The parameter „b‟ is estimated by iterative Newton Raphson

Method using𝑏𝑛+1 = 𝑏𝑛 − –
𝑔(𝑏𝑛)

𝑔|(𝑏𝑛)
 . which is substituted in

finding „a‟. where g(b) & g|(b) are expressed as follows.

 ;

g(b)= 𝑦𝑖 − 𝑦𝑖−1 [𝑡𝑖
𝑛
𝑖=1 − 𝑡𝑖−1][

log 1+𝑏𝑡𝑖−1 −log [1+𝑏𝑡𝑖]

 1+𝑏𝑡𝑖 [1+𝑏𝑡𝑖−1]
] -

𝑎𝑡𝑛

1+𝑏𝑡𝑛

𝑔′ (𝑏)=

 𝑦𝑖 − 𝑦𝑖−1 [𝑡𝑖
𝑛
𝑖=1 −

𝑡𝑖−1]
 (𝑡𝑖−1−𝑡𝑖)+ 𝑡𝑖+𝑡𝑖−1+2𝑏𝑡𝑖𝑡𝑖−1 [𝑙𝑜𝑔

 1+𝑏𝑡𝑖

 1+𝑏𝑡𝑖−1
]

(1+𝑏𝑡𝑖)
2 (1+𝑏𝑡𝑖−1)2

 +
 [𝑦𝑖−𝑦𝑖−1

𝑛
𝑖=1]

log [1+𝑏𝑡𝑛]
X

𝑡𝑛
2

(1+𝑏𝑡𝑛)2

5. SPRT ANALYSIS OF LIVE DATA

SETS

We see that the developed SPRT methodology is for a

software failure data which is of the form [t, N(t)] where N(t)

is the observed number of failures of software system or its

sub system in „t‟ units of time. In this section we evaluate the

decision rules based on the considered mean value functions

for six different data sets of the above form, borrowed from

Wood (1996), Pham (2005). Based on the estimates of the

parameter „b‟ in each mean value function, we have chosen

the specifications of b0 , b1 equidistant on either side of

estimate of b obtained through a Data Set to apply

SPRT such that b0< b < b1. The choices are given in the

following table.

Table 5.1: Specifications of b0, b1

Data Set
Estima

te of a

Estimate

of b
b0 b1

Pham (2005)
Phase 1 Data

81.06 0.000050 0.000025 0.000075

Pham (2005)

Phase 2 Data
99.77 0.000061 0.000036 0.000086

Wood (1996)
Release 1

Data

59.93 0.000444 0.000419 0.000469

Wood (1996)
Release 2

Data

126.71 0.000155 0.000130 0.000180

Wood (1996)

Release 3
Data

48.38 0.000501 0.000476 0.000526

Wood (1996)

Release 4
Data

40.94 0.000159 0.000134 0.000184

Using the selected b0,b1 and subsequently the m0(t),m1(t)for

each model we calculated the decision rules given by

Equations 3.4, 3.5, sequentially at each „t‟ of the data sets

taking the strength (α, β) as (0.05,0.05). These are presented

for the model in Tables 5.2.

Table 5.2: SPRT for LPETM

Data Set T N(t)

R.H.S of equation

(3.4)

Acceptance region (≤)

R.H.S of Equation

(3.5)

Rejection Region(≥)

Pham(2005)

 Phase 1 Data

356

712

1068

1424

1780

2136

2492

1

1

2

3

5

5

5

-1.4008

-0.1456

1.0866

2.2965

3.4853

4.6536

5.8023

4.0026

5.3004

6.5746

7.8261

9.0558

10.2646

11.4533

Pham (2005)

Phase 2 Data

416

832

1248

1664

2080

2496

3

4

4

7

9

9

-1.0695

1.1826

3.3781

5.5202

7.6118

9.6552

5.7729

8.1035

10.3763

12.5945

14.7607

16.8777

)('

)(
1

n

n
nn

xf

xf
xx

0
log

)(

b

L
bg 0

log
)('

2

2

b

L
bg

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

10

Wood (1996)

Release 1 Data

529

968

1430

1893

2490

3058

3625

4422

5218

5823

6539

7083

7487

7846

8205

8564

8923

9282

9641

10000

16

24

27

33

41

49

54

58

69

75

81

86

90

93

96

98

99

100

100

100

-16.6825

-9.9658

-4.0506

1.1120

6.9060

11.7203

15.9940

212939

25.9377

29.1195

32.5651

34.9845

36.6840

38.1311

39.5233

40.8646

42.1583

43.4078

44.6187

45.7848

41.1524

52.1541

62.0586

70.8726

80.9573

89.4948

97.1955

106.9067

115.5639

121.5758

128.1601

132.8296

136.1323

138.9593

141.6918

144.3362

146.8979

148.3822

151.7935

154.1361

Wood (1996)

Release 2 Data
384 13 -2.0491 16.5704

Wood (1996)

Release 3 Data

162

499

715

1137

1799

2438

2818

3574

4234

4680

4955

5053

6

9

12

20

28

40

48

54

57

59

60

61

-26.8706

-22.1002

-19.4170

-14.8214

-8.8866

-4.1957

-1.7621

2.4799

5.6728

7.6172

8.7430

9.1318

34.4153

43.6736

49.0173

58.4085

71.0073

81.3632

86.8806

96.7442

104.3809

109.1235

111.9018

112.8670

Wood (1996)

Release 4 Data

254

788

1054

1

3

8

7.8618

-5.0486

-3.7291

11.0764

14.6306

16.3050

From the above table we see that a decision either to accept

or reject the system is reached much in advance of the last

time instant of the data(the testing time).The following

consolidated table reveals the iterations required to come to a

decision about the software of each Data Set.

Table 5.3: Consolidated Table of Decisions

Data Set
LPETM

Model
Iterations Decision

Pham (2005)

Phase 1 Data
0.9752 7 Accept

Pham (2005)

Phase 2 Data
0.9961 6 Accept

Wood (1996)

Release 1

Data

0.9742 21 Continuous

Wood (1996)

Release 2

Data

0.9742 20 Continuous

Wood (1996)

Release 3

Data

0.9290 13 Continuous

Wood (1996)

Release 4

Data

0.9672 20 Continuous

The above consolidated table shows that LPETM as

exemplified for 6 Data Sets indicate that the model is

performing well for 2 Data Sets in arriving at a decision. For

the remaining 4 Data Sets LPTEM is inconclusive. Therefore,

we may conclude that the model LPETM is most appropriate

model to decide upon reliability / unreliability of software.

The authors are exploring the possibility of performance of a

new SRGM generated on the basis of dependence of mean

value function on the fault detection rate in a exponentially

decreasing manner.

6. REFERENCES
[1] GOEL, A.L and OKUMOTO, K. (1979). “A Time

Dependent Error Detection Rate Model For Software

Reliability And Other Performance Measures”, IEEE

Transactions on Reliability, vol.R-28, pp.206-211, 1979.

[2] MUSA, J.D., and OKUMOTO, K. (1984). ”A

Logorithmic Poisson Execution Time Model For

Software Reliability Measurement”, Proceeding Seventh

International Conference on Software Engineering,

Orlando, 230-238.

[3] PHAM, H.(2005). ”A Generalized Logistic Software

Reliability Growth Model”, OPSEARCH, Vol.42, No.4,

322-331.

[4] Pham. H., 2006. “System software reliability”, Springer.

[5] STIEBER, H.A.(1997). “Statistical Quality Control:

How To Detect Unreliable Software Components”,

Proceedings of the 8th International Symposium on

Software Reliability Engineering, 8-12.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.19, June 2012

11

[6] WALD (1947).”Sequential Analysis”, Wiley,New York.

[7] WOOD, A.(1996).“Predicting Software

Reliability”,IEEE Computer, 2253-2264.

[8] R.Satya Prasad and G. Krishna Mohan.(2011).”Detection

Of Reliable Software Using SPRT On Time Domain

Data”,International Journal of Computer Science,

Engineering and Applications, Vol.1, No.4, pp.92-99.

[9] R. Satya Prasad, N. Supriya and G. Krishna Mohan

(2011).“Detection Of Reliable Software Using SPRT”

International Journal of Advanced Computer Science and

Applications Vol.2, No: 8, pp.60-63.

[10] R. Satya Prasad and D. Haritha (2011). “ Discovery of

Reliable Software using GOM on Interval Domain Data”

, International Journal of Computer Applications Volume

32– No.5, pp.7-12.

[11] R. Satya Prasad and D. Haritha (2011). “Detection of

Reliable Software using HLSRGM” , International

Journal of Computer Information Systems ,pp.49-53.

