
International Journal of Computer Applications (0975 – 888) 

Volume 47– No.18, June 2012 

6 

Dependency Analysis using UML for Component-Based 

Software Systems: An XMI Approach 

Jawwad Wasat Shareef 
Deptt.Of Maths.& Computer Science, 

Rani Durgavati University 
Jabalpur, India 

Rajesh Kumar Pandey 
University Institute of Computer 

Science & Applications 
Rani Durgavati University 

Jabalpur, India 

 

ABSTRACT 

Component-based software development (CBSD) is an 
important area in the software engineering field. It has 
become one of the preferred streams for developing large and 
complex systems by integrating prefabricated software 
components which have not only made easier the process of 

software development but has also changed the ways for 
software professionals to develop software applications. A 
number of attempts have been made by software development 
teams, developers as well as researchers to improve 
component-based software development through improved 
measurement tools and techniques i.e. through an effective 
metrics. To manage and to study the different forms of 
dependencies that might occur in component based systems 

there has been little effort. The Component-based systems 
(CBS) are built up by integrating a number of these 
components in the system thus known as component 
assembly. In a CBS interaction can be in the form when one 
component interacts with another component, like one 
component provides an interface and other components use it, 
and also when an event is submitted by a component and it is 
received by other component. These interactions results in 

dependencies. Higher dependency has adverse effects thus 
leading to a complex system, resulting in poor understanding 
and higher maintenance cost. Dependency is represented in 
many forms one is by an adjacency matrix used in graph 
theory. However, this representation can check only for the 
presence of dependency between components and does not 
consider the type of interactions between these components. 
Interaction type can have a significant contribution to the 

complexity of the system. In this paper we present a technique 
in which component-based system is modeled using UML 
tool like ArgoUML 0.32, this tool is an open source and has 
the capability to export the component model in XMI (XML 
Meta-data Interchange) file format, this XMI file stores all the 
information related to a model, by applying parsing technique 
through a tool developed in Java, this technique can store the 
dependency along with other information like, provided 
interface (UML:Dependency.supplier) and required interface 

(UML:Dependency.client). This paper also presents the results 
of an experiment of the proposed approach and measures the 
interaction densities and dependency level of an individual 
component and for the system. 

General Terms 

Component-Based System, Unified Modeling Language. 

Keywords 

Component, Component-based system (CBS), Interaction, 

Dependency, Supplier, Unified Modeling Language (UML), 

XML Meta-data Interchange (XMI). 

1. INTRODUCTION 
Components are developed by software developers, which use 
different methodologies for developing these components 
often in separate groups. The Component-based systems are 
built up by integrating a number of these components in the 
system thus known as component assembly. As the 

components are integrated in a system, more and more 
interaction between these components exists in the system. 
These interactions among the components happen through 
their interfaces known as provided or required interface. In 
other words, interaction happens when a component provides 
an interface and other component uses it, interaction may take 
place in the form of event also, when a component submits an 
event and other components receive it [1]. An interface 

information model specifies all of the operations and their 
associated constraints. It also assists in clarifying the 
definitions of component interactions [2]. Interaction among 
the components results in dependencies, the more the 
interaction among components; the system will be more 
complex which results in poor understanding and maintenance 
cost is also high. Integrating a component can affect the 
composite functionality of the system. Sometimes, a 

component fails to achieve its goal if the dependencies are not 
properly resolved, resulting in a system failure. 

Dependency conflicts can be seen in operating systems where 
administrators do not monitor security announcements or they 
do not update their operating system kernels with appropriate 
security patches. Often, building and installing a new software 
package requires updates to a series of other components as 
well [3]. Researchers suggest that most faults are found due to 

the poor interactions among components. If we can identify 
these possible faults early at specification, then precautionary 
actions can avoid the likely failure causes and costly 
maintenance [4]. 

Understanding and tracking dependence relationships among 
components is increasingly difficult in large and complex 
systems. The problem is intensified since CBS encompasses 
both components developed in-house and components made 
available by a third party (e.g. COTS), often deployed with 

insufficient documentation [5]. Undocumented dependencies 
can prevent the ability to evolve a CBS when it is required to 
do so. In addition, unidentified dependencies can cause 
performance related problems and failures which are 
extremely difficult to find in large systems. Thus, it is 
important to provide ways to comprehensively identify 
dependencies of an individual software component and to 
analyze and manage its influence in a CBS [6]. Dependency 

analysis helps to answer the following questions in a 
component-based system:  



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.18, June 2012 

7 

 on updating a component, which other components that 

are dependent in the system are affected? This will help 
in predicting the efforts required for maintainability. 

 in a system if a new component is installed, it might 

require  the services of other components, what effect it 
will make on the system? 

 in a system consisting of number of components which 

components play an important role and are critical than 
others? Which components are cut off from others? 

 in case when system failure occurs what is the minimal 

set of components in the system that must be inspected? 

 is there any difference between two configurations? 

To address the above issues, it is important that dependencies 
among components should be represented by an efficient and 
effective manner, which can retrieve the information in a 
faster way. 

2. DEPENDENCY 
What is Dependency? Whenever a component A uses 
another component or interface B, then A depends on B. 
Component A cannot perform its task without B, and A 
cannot be reused without also reusing B. In such a situation 
the component A is called the "dependant" and the component 
or interface B is called the "dependency". A dependant 
depends on its dependencies [7].  

Two components that use each other are called "coupled". The 
coupling between components can be loose or tight, or 
somewhere in between. The tightness of a coupling is not 
binary. It is not either "loose" or "tight". The degrees of 

tightness are continuous, not discrete. Dependencies can also 
characterize as "strong" or "weak". A tight coupling leads to 
strong dependencies, and a loose coupling leads to weak 
dependencies, or even no dependencies in some situations. 
Dependencies, or couplings, are directional. That A depends 
on B doesn't mean that B also depends on A.  

Efficient system functioning is provided by components 
through interacting, cooperating and coordinating with other 
components, which results in the form of dependencies among 
components. Complex system functionality is usually 
provided by a group of components which depends on the 

interaction of these components with each other. The 
composite functionality also changes when a modification to a 
component takes place, because different components in a 
system reflect composite functionality. Dependency among 
components changes when the replacement or updating of a 
new version component takes place [8]. 

Dependency may be defined as [9] (Lisa and Delugach, 
2001): 

Dependency is a relationship involving two or more 
components, where a change of state in one or more 
component leads to a potential for a change of state in one 
or more other components. 

In the simplest case of dependency, a unidirectional 
dependency between two entities, d(A, B), implies that A 
depends upon B. If A depends upon B, then a change in B 
implies a potential or possible change in A. A is referred as 
dependent and B as the antecedent [10]. 

3. DEPENDENCY ANALYSIS AND 

COMPONENT-BASED SYSTEM 
Dependency analysis involves the task of identifying the 
interdependent components of a system. In component based 
systems, components communicate and share information in 
order to provide system functionalities. Components are 
regularly composed for the purpose of offering more abstract 

services in a system. This composition creates interaction that 
promotes dependencies among components. Replacing a new 
version of a specific component or updating might involve 
replacing the component(s) on which it depends, in order to 
preserve a specific system’s functionality. The key point to 
analyze those aspects is the knowledge about possible 
component relations and dependencies among them [11]. 

4. DEPENDENCY REPRESENTATION 

TECHNIQUES 
Dependency among components can be determined by using 
concept of graph theory. In order to determine whether the 
components are dependent or not, this can be represented 
using a graph with a matrix or adjacency lists, so that 

dependencies among components can be tracked and stored 
for further processing. This approach helps in analyzing what 
has been affected in the system and to create determinism 
when updating the system with new components [12]. 
 
Dependency among components proposed by [13], 
represented by a graph G where G=(N, E) is a directed graph 
which has a finite set of vertices N (called components) and E 

the set of dependencies (path) between components. An 
adjacent matrix AMn*nmay be used to represent the directed 
graph, where  

AM[I,j] = 1, if component Ci is directly connected with Cj, 

 0, if component Ci is not directly connected with Cj, 

  d11 d12 d13 … d1n 

  d21 d22 d23 … d2n 

 = ….   ….. (1) 

  …. 

  dn1 dn2 dn3 … dnn 

where  dij (ij = 1, n) is the (i, j)th state with value 1, if jth 
component is dependent on ith component, otherwise 0. 

For example, dependencies in a component-based system 
modeled in ArgoUML 0.32 consisting of five components, 
namely, C1, C2, C3, C4 and C5(shown in Fig.-2) can be 
represented by the matrix as: 

 

  C1 C2 C3 C4 C5 

 C1 0 1  0 0 0 

 C2  0 0  0 1 0 

 C3  0 1  0 1 0       ……. (2) 

 C4  0 0  0 0 0 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.18, June 2012 

8 

 C5 0 0  0 1 0 

 

From this representation, the dependencies among 
components may be computed. Dependency of a component 
Ci to other components is the number of all paths in the graph 

from Cito other component. 
Di (Dependency of Ci) = Sum of all paths (i to j)  
 (3) 

wherej=1 to n and Path (i,j) is the total number of paths from 
component Cito Cj. 

The dependency graph, which is represented by a matrix, can 
easily be used to determine what has been affected when a 
new version of a component is installed. 

Component dependency for CBS proposed by [11]  used 
adjacency matrix representation and introduced a set of 
component-based metrics, namely, Component Dependency 
Metric (CDM) and Component Interaction Density Metric 
(CIDM), which measure the dependency and coupling aspects 
for the software components respectively. The work 
concludes that higher interactions among components increase 
the complexity because of more coupling among components. 

Higher complexity means more expensive and less 
maintainable software. The work uses graph theory based 
notations and adjacency matrix to show dependency. 
However, this approach only considers the presence of 
interactions (1 or 0) and does not consider the type of 
interaction while measuring the complexity. 

Narasimhan and Hendradjaya,  (2004) proposed a suite of 
static and dynamic metrics to measure complexity and 
criticality for the integration of software components. Static 
metrics covered the complexity and the criticality within an 
integrated component and is intended to be used early during 

the design stage. The complexity metrics consist of 
Component Packing Density (CPD) metrics and Component 
Average Interaction Density (CAID) metrics. CPD metrics is 
defined as the form of a ratio of constituent to the number of 
components. It is used to identify the density of integrated 
components. The formula is: 

components

tconstituen
CPD typetconstituen

#

#
_




 

where #<constituent> is the number of lines of code, 
operations, classes, and/or modules in the related components. 
The number of constituent depends on the information that 
might come from the definition of component. This is related 
to the information on the number of classes, number of lines 
of code (LOC), number of modules, or number of operations 
for each component. Interaction Density Metrics measures the 
interaction happens at one component’s interface or through 

consuming other component’s events. It also happens when a 
component submits an event and other components receive it, 
while interaction densities are measured by dividing the actual 
incoming interactions to the total number of incoming 
interactions and similarly dividing the actual outgoing 
interactions to the total number of outgoing interactions. 

Continually as an extension of [14] (Narasimhan et al. 2006), 
in (Narasimhan et al. 2007) [15], the authors detailed illustrate 

the static and dynamic metrics proposed in (Narasimhan et al. 
2006) [14] and validated these metrics by using Weyuker’s 
properties. Most of these metrics fulfill the Weyuker’s 
property criteria. Also the authors checked the impact of these 
metrics in the context of McCall’s Quality Model. Therefore, 

it concluded that these metrics can help component-based 
developers to identify complexity and criticality in an 
integrated system. Based on above metrics, the authors 
deduced results as shown in Table1. 

Table1: Density Metrics 

CPD CAID Result 

Low Low Low data processing and low computation 
(Simple transaction systems) 

High Low High volume of data with many 
components (Compute -intensive real 
timesystems) 

High Low  High volume of data with many 
components but with low interaction 
among components (Transaction 
processing systems) 

 

Kharb and Singh (2008) [16] adopted a similar approach. 
Authors proposed several interaction metrics for component-
based systems to finally measure the complexity of the 
system. These metrics are based on actual and total number of 
incoming and outgoing interactions among the components. 
However, these metrics are just proposed theoretically, 
without any correlation with any quality characteristic, with 
no evaluation and validation on real-life applications. 

Boxall and Araban (2004) [17] define Interface Textual 

Complexity Metrics through a set of mathematical 
expressions. These metrics considers various measuring 
aspects of component’s interfaces, such as interface size, 
number of distinct arguments in operations, level of repetition 
of such arguments, the commonality in identifiers, identifier’s 
length and the density of reference arguments. The proposed 
metric gives a very rich analysis for the arguments used, 
however it considers all the arguments of same type and does 
not differentiate them on the basis of their type and 
complexity involved in that argument due to its data type. 

Sharma et. al. (2009) [18] proposed a link-list based approach 

to represent dependency among components in component-
based system. In this approach several type of information can 
be stored like provided and required interfaces of components 
and their types, dependent components etc. The information 
may be used to measure the interaction complexity of the 
system. These metrics considers various measuring aspects of 
component’s like Incoming Interaction Density (IID), 
Outgoing Interaction Density (OID), Average Interaction 
Density (AID), Dependency level (DL) of a component. 

 

 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.18, June 2012 

9 

5. PROPOSED COMPONENT 

DEPENDENCY REPRESENTATION 

USING XMI FILE   
The main idea of this approach is to provide mechanisms for: 

 Describing dependencies of an individual component 

with the overall system and 

 Analyzing the influence of such dependencies in terms of 

type of interactions, dependent components in a CBS in 
which the component is assembled, by extracting the 
information through XMI file, generated through design 
documents like UML tool (AgroUML 0.32) at early 

stage. 
 
In the proposed representation, each component has a list of 
components which are dependent on it. The length of a 
dependency list gives the number of dependent components 
and can be used as a measurement of dependency complexity. 
The higher the number, the more complex is the relation with 
other components.  

Consider a simple case involving two components C1and C2. 
C2 requires some functionality from component C1. Therefore 
C2is dependent on C1. 

 

 
 

This can be represented by using design tool like ArgoUML 
as follows: 

 

In this approach components are first design using an open 
source design tool ArgoUML, this tool has the ability to store 
its model data in XMI 1.2. As a variant of XML, XMI is 
amenable to automatic processing; using a variety of parsers, 
and XMI documents can be transformed to other XML 
formats. However, extracting metrics from XMI does provide 
a mechanism for design evaluation at an early stage in the 

development lifecycle, as well as source code language 
independence (to some extent) [19]. 

Using ArgoUML design tool, components are then selected to 

design the system, where they are integrated and then XMI 
1.2 file is generated, by parsing the XMI file the dependency 
level of components and information about components 
dependent on other components and their interaction density 
can be obtained. This will result in better understanding of the 
system and will decrease the overall maintenance efforts and 
problems that are likely to occur at later stages of software 
development. 

5.1 Implementation of the Proposed 

Methodology 
For the above representation after the system has been 
designed using ArgoUML tool, creating component artifacts 
through Collaboration diagram option, as shown in Figure2, 
the XMI 1.2 file is generated with the help of Export XMI 
option (ArgoUML using Netbeans XMI Writer version 

1.0), as shown in Annexure-1, which is then parsed for 
extracting information regarding dependency of components 
using a Java based Netbeans software tool. The parser parses 
the XMI file, which stores each and even small to small 
information related to UML model. The XMI file contains 
information about all the components integrated into the 
system, it is the only open source tool that assigns a unique 
XMI identifiers (UUIDs) to flag user-designed model 

components. Therefore, only in the case of analyzing 
ArgoUMLderived XMI was it possible to extract information 
of interest. Figure1 shows the data-flow through the various 
stages of the application. XMI input derived from UML 
models created by software design tools is transformed as 
follows: 

 UML model to XMI file generated 

 XMI input to parser 

 Different status of Components related to dependency 
output using Netbeans software tool. 

 

 

Figure 1: Data flow through various stages of application 

 

C1 C2 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.18, June 2012 

10 

5.2 XMI Representation of UML 

Component Diagrams  

 

Figure2: Annotated XMI representation of a Component 
Dependency Diagram diagram 

Components ‘C1’ and ‘C2’ are as shown in Figure2, 
Component C1 is identified by a unique xmi.id (0866) and C2 

(0867). Component C1 is dependency client dependent on C2, 
component C2 is the dependency supplier, both are recorded 
by referenced xmi.idref values. Each participating element 
also records the relationship. The Dependency D1 which is for 
component C1 is referenced as 
<UML:ModelElement.clientDependency> with a 
<UML:Dependencyxmi.idref> values. 

5.3 Interaction Metrics for Component-

Based Systems 
Various interaction complexity measures for the component-
based systems in the form of metrics are summarized below:  

a) For Individual Component 
Based on the proposed methodology, incoming and outgoing 

interaction density can be measured for a component. The 
dependent components on a parent component can also be 
identified. Interaction densities may be used to measure the 
integration efforts for the system. 

i) Incoming Interaction Density 
Incoming Interaction Density (required interface) 

(IID) for a component C can be measured as the ratio of 
Used Incoming Interactions (UML:Dependency.client) 
UII (C) to the Available Incoming Interactions (sum of 
UML:Dependency.client for component C) AII (C). 

 

AII (C) and UII (C) can be measured as: 
AII (C)=Sum of all provided services of Parent Components of C 

 (sum of UML:Dependency.client for component C) 
 
UII (C) = Sum of all required services for Component C 
 (number of UML:Dependency.clientfor component C) 

 
Therefore, 

  𝐼𝐼𝐷 𝐶 =  
𝑈𝐼𝐼(𝐶)

𝐴𝐼𝐼(𝐶)
 

 (4) 
 

IID may be used to measure the integration efforts for 

that individual component. Higher value of IID results in 
complex integration efforts, which will increase the 
maintenance efforts. 
 
 

 

ii) Outgoing Interaction Density 
Outgoing Interaction Density (provided interface) (OID) 
for a component C can be measured as the  ratio  of  
Used  Outgoing  Interactions  
(UML:Dependency.supplier) UOI (C) to the Available 

Outgoing Interactions (sum of 
UML:Dependency.supplier for component C) AOI (C). 

 

AOI (C) and UOI (C) can be measured as: 
 

AOI (C) = Sum of all provided services of Component C 
(sum of UML:Dependency.supplier for component C) 
 
UOI (C) = Sum of required services of child Components 
of C 
 (number of UML:Dependency.supplier) 

 
Therefore, 

  O𝐼𝐷 𝐶 =  
𝑈𝑂𝐼(𝐶)

𝐴𝑂𝐼(𝐶)
 

 (5) 
 

OID may be used as a measure of usability of component 
in the system. Higher value of this metric result in higher 
possibility of using this component by other child 
components, which is an indication of high dependability 
of this component within the system. Also, it may be 
used for measuring the service utilization. If all the 
provided interfaces of a component are utilized by other 
dependent components then it may be termed as efficient 
component in terms of service utilization. On the other 

hand, if some of the provided interfaces are not used by 
any of the dependent components; it means that the 
functionality provided by the component is not fully 
utilized by other components [18] (Sharma et. al., 2009). 

iii) Dependency Level 
Dependency level (DL) of a component is the sum 

of all the child components of C, which can be 
determined through XMI as the sum of 
(UML:Dependencyxmi.idref) for that component. 

DL (C) = Sum of child components of C 
 (6) 

 (Sum of UML:Dependencyxmi.idref) 
 

This measure can be used to identify the critical 
components and isolated components in the system. 
Highest value of DL will be referred as the most critical 
component of the system. Any change in this component 
may require several possible changes in other dependent 
components also. On the other hand, 0 dependency level 
for a component means an isolated or independent 
component. It can accommodate any change without 
affecting other components of the system [18] (Sharma 
et. al., 2009). 

b) For the System 
Interaction densities (incoming as well as outgoing) may 
also be measured for the whole system through XMI file. 
Incoming Interaction Density for the system S, IID (S) 
may be defined as: 

 
 
 
 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.18, June 2012 

11 

Sum of Incoming interactions for all components 
 (sum of UML:Dependency.supplier for component C) 

IID(S)=  -----------------------------------------------------------     

(7) 
Number of Components 

  (sum of UML:Component xmi.id) 
 

Similarly, Outgoing Interaction Density for the system S, 
OID (S) may be defined as 

 
Sum of Outgoing interactions for all components 
(sum of UML:Dependency.client for component C) 

OID(S)=  --------------------------------------------------------     
(8) 
Number of Components 
(sum of UML:Component xmi.id) 

 
Also, Average Interaction Density (AID) for the system S 

may be defined as: 
 

Sum of Interactions for all components 
sum of (UML:Dependency.client + UML:Dependency.supplier)  

AID(S)=  ------------------------------------------------------------- 
(9) 

 Number of Components 
 (sum of UML:Component xmi.id) 
 
These measures can be used to measure the interaction 
complexity of the system, which may be a measure of 
integration efforts for the system. 

5.4 Experimentation 
A simple component based system is shown in Figure3, here 
components are drawn in ArgoUML 0.32 modeling tool, after 
which XMI version 1.2 file is exported as shown in 
Annexure-1, this XMI file is parsed for extracting nodes, for 

which the pseudo-code is given in Table-4. In Figure 3 the 
above discussed concepts and measures are applied. There are 
total five components named C1, C2, C3, C4, and C5 in the 
system, some of these components are dependent on the other 
components and are denoted by dependencies D1, D2, D3, 
D4, D5.  
The XMI file contains information of all components by 
assigning a unique (UML:Component xmi.id) to each 

component. The component provided interface (outbound) 
interactions for its client is assigned by 
(UML:Dependency.client) by assigning a unique 
(UML:Componentxmi.idref) to each component, similarly 
required interface (inbound) interactions are assigned as 
(UML:Dependency.supplier)  in the system. The XMI file 
parsing approach for extracting information related to 
component dependency is better than other approaches 

because by using the parser a large XMI file can be parsed in 
a short time providing accurate information about artifacts and 
dependency among components. The components for which 
the interactions are to be used are parsed by their unique-id 
(xmi.idref). Pseudo-code for parsing the XMI file for client 
and supplier is given in Table-4, which has been implemented 
in Java using Netbeans 6.8. 
As per Figure3 some components are having incoming 
interactions, referred as (UML:Dependency.supplier) and 

some are having outgoing interactions, referred as 
(UML:Dependency.client). For example component C1 is 
dependent on C2 which is shown by D1 as dependency 
(UML:Dependency) and is characterize by a unique identifier 
(UML:Dependency xmi.id). Component C3 is dependent on 

two components C2 and C4, shown by 
(UML:Dependency.client) D2 and D3. Similarly component 
C5 is dependent on component C4. Component C2 has two 
(UML:Dependency.supplier)  component C1 and C3, through 
dependency D1 and D2 and one (UML:Dependency.client) 

shown by dependency D5, (UML:Dependency.supplier) is 
component C4. 
 

 

Figure 3: CBS modeled in ArgoUMLhaving five 

Components C1, C2, C3, C4, C5 and dependency D1, D2, 

D3, D4, D5. 

To find out the inbound and outbound interactions, a method 
is proposed used for parsing the XMI file. The description of 
the code is as follows: 

 
(i) The code given in Table2 is an XMI 1.2 file Exported 

from Figure-3, using ArgoUML 0.32. The XMI contents 
show dependency D1 (86B) between component C1 

(866) and C2 (867).  
(ii) The code given in Table3 shows how the information 

about dependencies and supplier are included in XMI 
file. This code basically contains the client means the 
xmi.id of the component which is having dependency on 
another component. 

(iii) The code given in Table4, basically contains the supplier 
means the xmi.id of the component which is supplier for 

a dependency given by other component 

5.5 Implementation of Pseudo-code for 

Extraction of Dependency between 

components  
Pseudo-code has been developed in Java using Netbeans 6.8 

as given in Table5, for parsing the XMI file to trace the 
incoming and outgoing interactions. The count for 
occurrences in values of (UML:Dependency.client) and 
(UML:Dependency.supplier) will give the number of 
incoming and outgoing interactions. Total interactions, 
available incoming interactions, used interactions and other 
valuable information can be measured by using the same 
approach. These values can then be used to ascertain various 

interaction complexity measures for the component-based 
systems.  
 

 

 

 

 

 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.18, June 2012 

12 

Table 2: XMI File showing Dependency D1 between components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: XMI File showing Dependency and Supplier 

 
 

 

 

Table 4: XMI File showing Supplier (Provided Interface) 

 

 
 

 

 

 

 

<UML:Dependency.supplier> 

   <UML:Component xmi.idref='127-0-0-1-5354896a:13451187756:-

8000:0000000000000869'/> 

</UML:Dependency.supplier> 

 

<UML:Dependency xmi.id='127-0-0-1-5354896a:13451187756:-

8000:000000000000086B' name='D1' isSpecification='false'> 

 <UML:Dependency.client> 

  <UML:Component xmi.idref='127-0-0-1-5354896a:13451187756:-

8000:0000000000000866'/> 

 </UML:Dependency.client> 

 <UML:Dependency.supplier> 

 <UML:Component xmi.idref='127-0-0-1-5354896a:13451187756:-

8000:0000000000000867'/> 

 </UML:Dependency.supplier> 

 

</UML:Dependency> 

  <UML:Dependency xmi.id='127-0-0-1-5354896a:13451187756:-

8000:000000000000086C' name='D2'isSpecification='false'> 

   <UML:Dependency.client> 

    <UML:Component xmi.idref='127-0-0-1-5354896a:13451187756:-

8000:0000000000000868'/> 

   </UML:Dependency.client> 

  <UML:Dependency.supplier> 

    <UML:Component xmi.idref='127-0-0-1-5354896a:13451187756:-

8000:0000000000000867'/> 

  </UML:Dependency.supplier> 

</UML:Dependency> 

 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.18, June 2012 

13 

Table5: Pseudo code for parsing the XMI file detecting dependency between components in Java using Netbeans 6.8 

 

The Pseudo-code in Table5 when executed collects the 
information about Dependency related to client and supplier 
and stores the information in a 2-dimensional String array 

umlDepd[countDepd][0] = xmi.id (client) and 
umlDepd[countDepd][1] = xmi.id (supplier). Similarly using a 
separate array, we can find components name along with their 
Dependency information. 
 

The XMI file with the help of pseudo-code given in Table5, is 

parsed to extract the given metrics discussed above. This will 
help in analyzing the dependency levels (DL) and the 
dependent components for a particular component. This may 
also be used to analyze the impact of change on all 
components which are dependent on changed/replaced 

component. The values of various measures extracted for 
these components are shown in Table6. 
 

By parsing the XMI file, the incoming interactions 
(UML:Dependency) and outgoing interactions 
(UML:Supplier) are calculated by using a pseudo-code 
developed in Java, a two dimensional array is declared in 
which the incoming interactions and outgoing interactions are 
stored and counted by using a counter, with the help of this 
pseudo-code and as per Figure1 from which XMI file is 
generated, the dependency level (DL) and the dependent 
components for a particular component can be analyzed. The 

values of various measures for these components are as shown 
in Table 6. 

 

 

 

 

public void addDepSuppInfo() { 

for (cnt = 0; cnt<nTextLines; cnt++) { 

if (textToDisplay[cnt].trim().length() >= 26) { 

                String checkS = textToDisplay[cnt].trim().substring(0, 22); 

if (checkS.contains("<UML:Dependency xmi.id")) { 

cnt++; 

if (textToDisplay[cnt].trim().length() >= 18) { 

while (!(textToDisplay[cnt].trim().startsWith("</UML:Dependency>"))) { 

if  (textToDisplay[cnt].trim().startsWith("<UML:Dependency.client>")) { 

cnt++; 

                     String umlD = 

textToDisplay[cnt].trim().substring(26,textToDisplay[cnt].trim().length() - 

2); 

umlDepd[countDepd][0] = umlD; 

cnt++; 

if (textToDisplay[cnt].trim().startsWith("<UML:Dependency.supplier>")) { 

cnt++; 

           String umlD = textToDisplay[cnt].trim().substring(26, 

textToDisplay[cnt].trim().length() - 2); 

umlDepd[countDepd][1] = umlD; 

countDepd++; 

                            } 

                        } 

                    } 

                } 

            } 

     } 

   } 

 } 

 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.18, June 2012 

14 

Table6: Dependency metrics values calculated from XMI file 

Component 
UML:Component 
xmi.id= 

Dependency 

Supplier 
UML:Dependency(arrow) 
UML:Dependency.Supplier(Incoming) 
UML:Dependency.client(Outgoing) 

 

IIC 
UML:Dependency.client 

OIC 
UML:Dependency.supplier 

DL 

C1 
xmi.id=0866 

D1 
xmi.id=086B 
no incoming(no client) 
xmi.id=867 (C2) 

0 1 1 

C2 
xmi.id=0867 

D5 
xmi.id=086B; 86C 
xmi.id=866; 868 
xmi.id=869 

2 1 1 

C3 
xmi.id=0868 

D2, D3 
xmi.id=086C; 86D 
no incoming (no client) 

xmi.id=867 (C2);869 (C4) 

0 1 2 

C4 
xmi.id=0869 

D3, D4, D5 
xmi.id=086D; 86E; 86F 
xmi.id= 868; 86A 
not a supplier 

3 0 0 

C5 
xmi.id=086A 

D4 
xmi.id= 86E 
no incoming(no client) 
xmi.id=869 (C4) 

0 1 1 

 

Here based on the measurements given in Table 6 following 
predictions can be made— 
1. Component C4 is having the highest (IIC), which means 

that integration efforts for using this component will be 
more than other components in the system. 

2. The most critical component is C3, which has 
dependency level 2 and has two child components C2 
and C4. If a change is done to component C3 than 

accordingly corresponding change has to be done to both 
components. 

3. Components C2, C3, C5 are fully utilized by their 
respective child components. 

4. Dependency level of C4 is minimum i.e., 0, thus if any 

changes are done in component C4, it will not affect 
other components. 

6. CONCLUSION  
The present work proposes a UML based approach where 
design artifacts like components can be modeled to design 
component based systems using open source design tools like 
ArgoUML to represent dependency among components. This 
approach is more efficient than matrix based approach or Link 
List based as it can parse the XMI file faster and efficiently 
and the metrics can be derived at early stage of system 
development. This approach is expected to give faster 

searches for the components, which are dependent on other 
components. In this paper different metrics related with 
interactions among components are discussed and Pseudo-
code has been developed in Java using Netbeans for parsing 
the XMI file to trace the incoming and outgoing interactions. 
The information may be used to analyze several interaction 
and dependency related issues with the proposed approach. 
The information may be used to measure the interaction 

complexity of the system. 

7. REFERENCES 
[1] Narasimhan, V. L. and Hendradjaya, B., 2004. A New 

Suite of Metrics for the Integration of Software 
Components, 1st International Workshop on Object 
Systems and Software Architectures (WOSSA'2004), S. 

Australia, Australia, pp: 34 -39. 

[2] Liu Y, Cunningham HC., 2004.  Mapping component 
specifications to Enterprise JavaBeans 
implementations.Proceedings of the 42nd Annual 
Southeast Regional Conference, 2004. ACM Press: New 
York,; 177–182. 

[3] Kon, F., Campbell, R. H., 2000. Dependence 
Management in Component-based Distributed Systems, 
IEEE Concurrency, Vol. 8, Issue 1, pp: 26-36. 

[4] Mahmood, S., Lai, R., 2005. Measuring the Complexity 
of a UML Component Specification, Proceedings of 
Fifth International Conference on Quality Software 
(QSIC 2005), pp: 150-157. 

[5] Vieira, M., Richardson, D. J., 2002. Analyzing 
Dependencies in Large Component-Based Systems, 
Proceedings of the 17th IEEE International Conference 
on Automated Software Engineering, Edinburgh, UK, 

pp: 241 -246. 

[6] Vieira, M., Dias, M., Richardson, D. J., 2001. Describing 
Dependencies in Component Access Points, Proceedings 
of the 4th Workshop on CBSE, 23rd International 
Conference on Software Eng. (ICSE 2001), Toronto, 
Canada, pp : 115-118. 

 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.18, June 2012 

15 

[7] http://tutorials.jenkov.com/ood/understanding-
dependencies.html, last access: 12-02-2012 

[8] Li, B., 2003. Managing Dependencies in Component -
Based Systems Based on Matrix Model, Proceedings of 
Net Object. Days, Erfurt, Germany, pp: 22 -25. 

[9] Lisa, C., Delugach, H. S., 2001. Dependency Analysis 
Using Conceptual Graphs, In Proceedings of the 9th 
International Conference on Conceptual Structures, ICCS 
92001, pp: 117-130. 

[10] Keller, A., Blumenthal, U., Kar, G., 2000. Classification 
and Computation of Dependencies for Distributed 
Management, Proceedings of the 5th International 
Conference on Computers and Communications (ISCC 

2000), pp: 78-84. 

[11] Gill, N. S., Balkishan, 2008. Dependency and Interaction 
Oriented Complexity Metrics of Component-Based 
Systems, ACM SIGSOFT Software Engineering Notes 
Vol. 33 Issue 2, pp: 1-5. 

[12] Larsson, M., 2007. Applying Configuration Management 
Techniques to Component - Based System, MRTC 
Report, IT Licentiate thesis, 2000 -07, Uppsala 

University. 

[13] Stafford, J. A., Alexandar, L. W., Caporuscio, M., 2003. 
The Application of Dependence Analysis to Software 
Architecture Descriptions, Lecture Notes in Computer 
Science, Vol. 2804, pp: 52-62. 

[14] Narasimhan, V. L. and Hendradjaya, B., 2005. 
Theoretical Considerations for Software Component  

Metrics. World Academy of Science, Engineering and 
Technology, 10, pp: 169-174. 

[15] Narasimhan, V. L. and Hendradjaya, B., 2006. Some 
theoretical considerations for a suite of metrics for the 
integration of software components.ScienceDirect, 

Elsevier, 177, pp: 844-864. 

[16] Kharb, L., Singh, R., 2008. Complexity Metrics for 
Component -Oriented Software Systems, ACM 
SIGSOFT Software Engineering Notes, Vol. 33, Issue 2, 
pp: 1-3. 

[17] Boxall, M. A. S., Araban, S., 2004. Interface Metrics for 
Reusability Analysis of Components, Proceedings of. 
Australian Software Engineering Conference 

(ASWEC'2004), Melbourne, Australia, pp: 40 -46. 

[18] Arun Sharma, Rajesh Kumar, P. S. Grover, Dependency 
Analysis for Component-Based Software Systems, 
accepted for publication in ACM SIGSOFT Software 
Engineering Notes, Vol. 34, Issue 4, July 2009, pp: 1-8. 

[19] T. Paterson: Object-Oriented Software Design Metrics 

from XMI, M.Sc. Dissertation, Heriot-Watt University, 
2002. 

[20] Virol, C., 2005. Error Propagation Metrics from XMI, 
M.Sc., Lane Department of Computer Science & 
Electrical Engineering Morgantown, West Virginia 
University,https://eidr.wvu.edu 
/eidr/documentdata.eIDR?documentid=4045, last 
access: 24-12-2011. 

  

 


