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ABSTRACT 

Public key cryptography systems are based on sound 

mathematical foundations that are designed to make the 

problem hard for an intruder to break into the system. Number 

theory and algebraic geometry, namely the theory of elliptic 

curves defined over finite fields, has found applications in 

cryptology. The basic reason for this is that elliptic curves 

over finite fields provide an inexhaustible supply of finite 

abelian groups which, even when large, are amenable to 

computation because of their rich structure. The first level is 

the mathematical background concerning the needed tools 

from algebraic geometry and arithmetic. This paper introduces 

the elementary algebraic structures and the basic facts on 

number theory in finite fields. It  includes the minimal amount 

of  mathematical background necessary to understand the 

applications to cryptology. Elliptic curves are intimately 

connected with the theory of modular forms, in more than one 

ways. The paper gives a brief introduction to modular 

arithmetic, which is the core arithmetic of almost all public 

key algorithms. . The ultimate goal of the paper is to 

completely understand the structure of the points on the 

elliptic curve over any field F and being able to find them. 
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1. INTRODUCTION 
Modern algebra, like various other branches of mathematics, 

offers conceptual models for design, analysis, and proof for 

wide range of problems. The most constrained structures of 

modern algebra are fields, and after them are rings. At the 

simplest end of spectrum is the subgroup structures monoids, 

semi-groups (subsets of group, eg: not having an inverse, such 

as operations on strings, or languages, such a concatenation of 

strings. Strings do not have inverses). Without an inverse a 

decryption is not possible for an encryption. Hence group is 

first of the simplest and most complete and robust algebraic 

structure, on which to base cryptography design. Groups 

which obey commutative or symmetric property are known as 

Abelian groups.  

 

It was observed that for a non-group say, y = xa, which is not 

limited (not closed), but over infinite real numbers, or 

integers, it is easy for an intruder over time to map, or guess, 

the exponential pattern, from the random samples 

eavesdropped. So it was modified to y = xa mod (n) [1-3], 

where a, x, y, n are integers, then the input-output 

relationship, (originally, an exponential relationship), between 

x, and y values now becomes more random, and hence it 

becomes much harder for an intruder to guess any pattern, [4]. 

At the same time, given y and n publicly known values in 

public key cryptography, it becomes very difficult to guess x. 

This is due to the hardness of the discrete log problem which 

is due to the group closure requirements, and is achieved via 

the trapdoor, modulo (n) function [5-7]. 

The mathematics of elliptic curves, used in cryptography, uses 

the fundamental basic theory as above, and is also based on 

diophantine equations. The elliptic curve used as the 

underlying field, (EC) y2 = x3 + ax + b, all variables, x, y, and 

parameters, a, b must be integers. EC is used in Galois Field 

GF(p), where p is a prime number as typically modulo 

arithmetic, or characteristic 2 fields, such as irreducible 

polynomial fields, eg: GF(2m) as the latter are easier to 

implement by shift, and xor circuits [4,8] . ECC is now an 

accepted standard, ANSI X9.42, Public Key Cryptography 

Systems, X.509.  

 

The remainder of this paper is organized as follows. A brief 

introduction  on Algebraic structure and  finite fields is  

provided in  section 2 and 3, respectively followed by elliptic 

curve operations over finite field and point representation in 

elliptic curve. The operations in these sections are defined on 

affine coordinate system. Section 6 provides the Group law 

required in elliptic curve cryptosystems to achieve security. 

ECDH key exchange algorithm presented in section 7 

illustrates the use of elliptic curve over finite field.  

 

2. ALGEBRAIC STRUCTURE 
A non empty set G equipped with one or more binary 

operations is called an algebraic structure. Let (G, *) be an 

algebraic structure. And let G satisfies following properties:  

 (a) G is closed w.r.t *  

(b) * is associative    

 (c) Existence of identity element     

(d) Existence of inverse   

(e)  * is commutative  

(f)  Closure property w.r.t multiplication  

 (g) Associative w.r.t. multiplication 

 (h) Identity element w.r.t multiplication  

(i) Inverse (multiplicative inverse) 

 (j) Commutative w.r.t multiplication  

(k) Distributive.  

 

Then Fig. 1 illustrates the different algebraic structure 

satisfying various properties through (a) – (k). 
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Fig 1: Heirarchy of algebraic structure 

3. FINITE FIELD 
Fields are abstractions of familiar number systems (such as 

the rational numbers Q, the real numbers R, and the complex 

numbers C) and their essential properties. They consist of a 

set F together with two operations, addition (denoted by +) 

and multiplication (denoted by ·), that satisfy the usual 

arithmetic properties: 

(i) (F, +) is an abelian group with (additive) identity 

denoted by 0. 

(ii) (F\ {0}, ·) is an abelian group with (multiplicative) 

identity denoted by 1. 

(iii) The distributive law holds: (a+b) · c = a · c+b · c for 

all a, b, c Є F. If the set F is finite, then the field is said 

to be finite. 

3.1 Field operations 
A field F is equipped with two operations, addition and 

multiplication. Subtraction of field elements is defined in 

terms of addition: for a, b Є F, a −b = a + (−b) where −b is the 

unique element in F such that b+ (−b) = 0 (−b is called the 

negative of b). Similarly, division of field elements is defined 

in terms of multiplication: for a, b Є F with b = 0, a/b = a · 

b−1 where b−1 is the unique element in F such that b · b−1 = 1. 

(b−1 1 is called the inverse of b.) 

 

The order of a finite field is the number of elements in the 

field. There exists a finite field F of order q if and only if q is 

a prime power, i.e., q = pm where p is a prime number called 

the characteristic of F, and m is a positive integer. If m = 1, 

then F is called a prime field. If m ≥ 2 , then F is called an 

extension field. For any prime power q, there is essentially 

only one finite field of order q; informally, this means that any 

two finite fields of order q are structurally the same except 

that the labeling used to represent the field elements may be 

different. We say that any two finite fields of order q are 

isomorphic and denote such a field by Fq. Most Standards 

which specify the Elliptic curve Cryptographic techniques 

restrict the order of the underlying field to be an odd prime 

(q=p) or a power of 2(q=2m). [9-11] 

 

3.2 Prime field Fp 
Let p be a prime number. The integers modulo p, consisting of 

the integers {0, 1, 2, . . ., p −1} with addition and 

multiplication performed modulo p, is a finite field of order p. 

We shall denote this field by Fp and call p the modulus of Fp. 

For any integer a, a mod p shall denote the unique integer 

remainder r, 0 ≤r ≤ p−1, obtained upon dividing a by p; this 

operation is called reduction modulo p. 

Example 1:  (prime field F29) The elements of F29 are {0, 1, 2, 

. . ., 28}. The following shows arithmetic operations in F29. 

 Addition: 17+20 = 8 since 37 mod 29 = 8. 

 Subtraction: 17−20 = 26 since −3 mod 29 = 26. 

 Multiplication: 17 · 20 = 21 since 340 mod 29 = 21. 

 Inversion: 17−1 = 12 since 17 · 12 mod 29 = 1. 

 

3.3 Binary Field F2
m

 
Finite fields of order 2m are called binary fields or 

characteristic-two finite fields. One way to construct F2
m is to 

use a polynomial basis representation. Here, the elements of 

F2
m are the binary polynomials (polynomials whose 

coefficients are in the field F2 = {0, 1}) of degree at most m 

−1: 

F2
m = {a m−1 z

 m−1 +a m-2z
 m−2 +·· ·+a 2z

 2+a1 z+a0:  ai = {0, 1}}. 

 

An irreducible binary polynomial f (z) of degree m is chosen 

(such a polynomial exists for any m and can be efficiently 

found. Irreducibility of f (z) means that f (z) cannot be factored 

as a product of binary polynomials each of degree less than m. 

Addition of field elements is the usual addition of 

polynomials, with coefficient arithmetic performed modulo 2. 

Multiplication of field elements is performed modulo the 

reduction polynomial f (z). For any binary polynomial a (z), a 

(z) mod f (z) shall denote the unique remainder polynomial r 

(z) of degree less than m obtained upon long division of a (z) 

by f (z); this operation is called reduction modulo f (z). 

Example 2: (binary field F2
4
 ) The elements of F2

4 are the 16 

binary polynomials of degree at most 3: 

 

0   z2 (0100)   z3 (1000)  z3 +z2(1100) 

1(0001)  z 2 +1(0101) z3+1(1001)           z3+z2+1(1101) 

Z (0010)  z2 +z(0110) z3+z(1010)          z3 +z2 +z(1110) 

z+1(0011)   z2 +z+1(0111)  z3+z+1(1011)   z2 +z2 +z+1.(1111) 

 

The following shows arithmetic operations in F2
4 with 

reduction polynomial f (z) = z4+z+1. i.e. in binary form it is 

(10011) 

 Addition: z3 +z2 +z)+( z2 +z+1) = z3+z 

 Subtraction: (z3 +z2 +z) − ( z2 +z+1) = z3+z . (Note 

that since −1 = 1 in F2, we have −a = a for all a ∈ 

F2
m .) 

 Multiplication: (z3 +z2 +z) · (z2 +z+1) = z 2 +1since 

(z3 +z2 +z) · (z2 +z+1) = z5+z+1 . And (z5+z+1) mod 

(z4+z+1) = z 2 +1 . 

 Inversion: (z3 +z2 +z) −1 = z2 since (z3 +z2+1) · z2 

mod (z4 +z+1) = 1. 

 

3.4 Extension fields  
The polynomial basis representation for binary fields can be 

generalized to all extension fields as follows. Let p be a prime 

and m ≥ 2. Let Fp[z] denote the set of all polynomials in the 

variable z with coefficients from Fp. Let f (z), the reduction 

polynomial, be an irreducible polynomial of degree m in 

Fp[z].  Irreducibility of f (z) means that f (z) cannot be 

factored as a product of polynomials in Fp[z] each of degree 

less than m. The elements of Fp
m are the polynomials in Fp[z]  

of degree at most m −1:  
 

Fp
m = {a m−1 z

 m−1 +a m-2z
 m−2 +·· ·+a 2z

 2+a1  z+a0:  ai  ЄFp}
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Addition of field elements is the usual addition of 

polynomials, with coefficient arithmetic performed in Fp.  

 
Multiplication of field elements is performed modulo the 

polynomial f (z). 

 

Example 3: Let p =251 and m =5. The polynomial f (z) = 

z5+z4+12z3+9z2+7 is irreducible in F251[z] and thus can serve 

as reduction polynomial for the construction of F251[z]  , the 

finite field of order 2515. The elements of F251[z]  are the 

polynomials in F251[z] of degree at most 4. The following are 

some examples of arithmetic operations in F251[z]. Let a = 

123z4+76z2 +7z+4 and b = 196z4 +12z3 +225z2 +76. 

 Addition: a+b = 68z4 +12z3 +50z2 +7z+80. 

 Subtraction: a−b = 178z4 +239z3 +102z2 +7z+179. 

 Multiplication: a · b = 117z4 +151z3 +117z2 

+182z+217. 

 Inversion: a−1 = 109z4 +111z3 +250z2 +98z+85. 

 

4.  ELLIPTIC CURVE OVER FINITE 

FIELD 
Elliptic Curve theory is an extension of group theory and 

Galois Field Theory. Most modulo operations are done, mod 

(number) or a modulo (prime number). They originate from 

Weierstrass equations. Cryptography on elliptic curves is 

based on scalar multiplication of points on the elliptic curves, 

as the basic operation. The location of the multiplicative 

inverse over the elliptic curve is the challenging part (as the 

factorization in RSA, discrete logarithm in Diffie-Hellman).  

ECC operations involve arithmetic operations on an elliptic 

field, over a finite field. This is analogous to arithmetic 

operations over a ring of integers, or a modulo field, also 

known as Galois Field (GF). Operations over the real numbers 

are slow and inaccurate due to round-off error. Cryptographic 

operations need  to be faster and accurate. To make 

operations on elliptic curve accurate and more efficient, the 

curve cryptography is defined over two finite fields. 

• Prime field Fp and 

• Binary field F2
m 

The field is chosen with finitely large number of points suited 

for cryptographic operations. Following section explains the 

EC operations on finite fields. The operations in these sections 

are defined on affine coordinate system in which each point is 

represented by the vector (x, y). Chapter 6 of Koblitz’s book 

[9] provides an introduction to elliptic curves and elliptic 

curve systems. For a more detailed account, consult Menezes 

[12] or Blake, Seroussi and Smart [13]. Some advanced books 

on elliptic curves are Enge [14] and Silverman [15]. 

 

4.1 EC on Prime field Fp 
The equation of the elliptic curve on a prime field Fp is y2 mod 

p= x3 + ax + b mod p, where 4a2 + 23b2 mod p ≠ 0. Here the 

elements of the finite field are integers between 0 and p – 1. 

All the operations such as addition, substation, division, 

multiplication involves integers between 0 and p – 1. The 

prime number p is chosen such that there is finitely large 

number of points on the elliptic curve to make the 

cryptosystem secure. SEC specifies curves with p ranging 

between 112-521 bits [16, 17]. The algebraic rules for point 

addition and point doubling are adapted for elliptic curves 

over Fp. The addition of two elliptic cuve points in Fp requires 

a few arithmetic operations (addition, subtraction, 

multiplication, inversion) in the underlying field 

Point Addition 

Consider two distinct points J and K such that J = (xJ, yJ) and 

K = (xK, yK) 

Let L = J + K where  

L = (xL, yL), then xL = s2 - xJ –  xK mod p (1)   

yL = -yJ + s (xJ – xL) mod p   (2) 

s = (yJ – yK)/(xJ – xK) mod p, s is the slope of the line through 

J and K.     (3) 

If K = -J i.e. K = (xJ, -yJ mod p) then J + K = O. where O is 

the point at infinity. 

If K = J then J + K = 2J then point doubling equations are 

used.  

Also J + K = K + J 

 

Point Subtraction 

Consider two distinct points J and K such that J = (xJ, yJ) and 

K = (xK, yK) 

Then J - K = J + (-K) where -K = (xK, -yK mod p) 

Point subtraction is used in certain implementation of point 

multiplication such as NAF [18]. 

 

Point Doubling 

Consider a point J such that J = (xJ, yJ), where yJ ≠ 0 

Let L = 2J  

where L = (xL, yL), Then xL = s2 – 2xJ   mod p    (4) 

yL = -yJ + s(xJ – xL) mod p   (5) 

s = (3xJ
2 + a) / (2yJ) mod p, s is the tangent at point J and a is 

one of the parameters chosen with the elliptic curve .     (6)  

If yJ = 0 then 2J = O, where O is the point at infinity. 

 

Example 4: Elliptic curve over the prime field F29 

Let p = 29, a = 4, and b = 20, and consider the elliptic curve

 E: y2 = x3 +4x +20 defined over F29. Note that =−16 

(4a3 +27b2) =−176896  ≠0 (mod 29), so E is indeed an 

elliptic curve.  The points in E (F29) are the following: 

∞  (2,6)  (4,19)  (8,10)  (13,23)  (16,2)  

19,16)  (27,2) (0,7)  (2,23)  (5,7)  (8,19) 

(14,6)  (16,27) (20,3)  (27,27) (0,22)  (3,1)  

(5,22)  (10,4)  (14,23)  (17,10)  (20,26)  (1,5)  

(3,28)  (6,12)  (10,25)  (15,2)  (17,19)      (24,7)  

(1,24)  (4,10)  (6,17)  (13,6)  (15,27)  (19,13) 

(24,22) 

Examples of elliptic curve addition and doubling are (5,22) + 

(16,27) = (13,6), and  2(5,22) = (14,6). Using equation (1)-(6) 

4.2 Elliptic curve over binary field F2
m 

The equation of the elliptic curve on a binary field  F2
m is y2 + 

xy = x3 + ax2 + b, where b ≠ 0. Here the elements of the finite 

field are integers of length at most m bits. These numbers can 

be considered as a binary polynomial of degree m – 1. In 

binary polynomial the coefficients can only be 0 or 1. All the 

operation such as addition, substation, division, multiplication 

involves polynomials of degree m – 1 or lesser. The m is 

chosen such that there is finitely large number of points on the 

elliptic curve to make the cryptosystem secure. SEC specifies 

curves with m ranging between 113-571 bits [18]. However, 

the algebraic rules for elliptic curves over F2
m are same as 

elliptic curve on prime field 

 

Point Addition 

Consider two distinct points J and K such that J = (xJ, yJ) and 

K = (xK, yK) 

Let L = J + K where L = (xL, yL), then  

xL = s2+ s + xJ + xK + a   (7) 

yL = s (xJ + xL) + xL + yJ   (8) 

s = (yJ + yK)/( xJ + xK), s is the slope of the line through J and 

K.     (9) 
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If K = -J i.e. K = (xK, xJ + yJ) then J + K = O. where O is the 

point at infinity. 

If K = J then J + K = 2J then point doubling equations are 

used. 

Also J + K = K + J 

 

Point Subtraction 

Consider two distinct points J and K such that J = (xJ, yJ) and 

K = (xK, yK) 

Then J - K = J + (-K) where -K = (xK, xK + yK) 

Point subtraction is used in certain implementation of point 

multiplication such as NAF [18]. 

 

Point Doubling 

Consider a point J such that J = (xJ, yJ), where xJ ≠ 0 

Let L = 2J where L = (xL, yL),   

Then xL = s2+ s + a    (10) 

yL = xJ
 2 + (s + 1)* xL   (11)  

s = xJ
 + yJ / xJ, s is the tangent at point J and a is one of the 

parameters chosen with the elliptic curve.  (12) 

  If xJ = 0 then 2J = O, where O is the point at infinity 

 

Example 5 : Consider the field F2
4, defined by using 

polynomial representation with the irreducible polynomial 

f(z)=z4+z+1. Then  the element of   F2
4 are binary polynomial 

represented using powers of g , where g = (0010) is a 

generator for the field . The following are the  powers of g:  

g0=(0001)     g1=(0010)     g2=(0100)    g3=(1000)    g4=(0011)    

g5=(0110)    g6=(1100)     g7=(1011)    g8=(0101)     g9=(1010)    

g10=(0111)   g11=(1110)  g12=(1111)   g13=(1101)    g14=(1001)   

g15=(0001)  

In a true cryptographic application, the parameter m must be 

large enough to preclude the efficient generation powers of g 

otherwise the cryptosystem can be broken. In today's practice, 

m = 160 is a suitable choice.  

The  g notation  allows the use of generator notation (ge) 

rather than bit string notation, Also, using generator notation 

allows multiplication without reference to the irreducible 

polynomial f(z) = z4 + z + 1. Example below illustrates this 

[19]  

  

Consider the elliptic curve y2 + xy = x3 + g4x2 + 1. Here a = g4 

and b = g0 =1. The point (g5,g3) satisfies this equation over 

F2
m : y2 +xy = x3 + g4x2 + 1 

                 i.e.  ( g3 ) 2  +  g5 g3   = (g5 ) 3 +  g4 g10   +1 

 i.e.   g6   +   g8   =  g15  +  g14  +  1 

i.e.    (1100)   +   (0101)   =   (0001)   +  (1001)   +   (0001) 

                      i.e.                 (1001)  =   (1001) 

4.3 Geometrical Definition of Point 

Addition and point Doubling 
For any two points P(x1,y1)≠ Q(x2,y2) on an elliptic curve, 

EC group law point addition can be defined geometrically as: 

“If we draw a line through P and Q, this line will intersect the 

elliptic curve at a third point(-R). The reflection of this point 

about x-axis, R(x3,y3) is the addition of P and Q” .For P=Q , 

point doubling, Geometrically if we draw a tangent line at 

point P, this line intersects elliptic curve at point a point (-R). 

Then, R is the reflection of this point about x-axis. This 

chord-tangent-rule  for point addition and doubling is 

illustrated in figure 2 and 3 respectively. Figure 4 represents 

the concept of inverse element in finite field. Neutral element 

O is a point with y = ∞, which is added to the curve and 

Inverse element -P is the symmetric point of P  

 

 

 

 

 

 

 

 

 

Fig 2: Point Addition P+Q =R 

 

 

 

 

 

 

  

 

Fig 3: Point Doubling P +P = 2P =R 

 

 

 

 

 

 

 

Fig 4 : Inverse element  -P 

 

 

P=(x,y)

-P=(x,-y)

P = (x1, y1)

1) 

R = (  x3, y3)

1) 

P = (  x1, y1)

 

R = ( x3, y3)

1) 

Q = (  x2, y2)

1) 
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5. ELLIPTIC CURVE POINT 

REPRESENTATION 
The elliptic curve points can be represented in the following 

coordinate systems :(Affine (A), Projective (P), Jacobian (J ), 

Chudnovsky brothers Jacobian (J C), and Modified Jacobian 

(JM). Each coordinate system requires different number of 

operations to perform point addition and doubling, and 

therefore different execution times. Also each coordinate 

system differs in the number of underlying finite field 

elements used to represent an elliptic curve point. This 

determines the capacity for storing or transferring elliptic 

curve points. Table 1 shows the representation of elliptic 

curve points as well as number of GF(p)elements used for 

storing a point in any of the five coordinate system. Table 2 

shows the number of operations needed to compute elliptic 

curve point addition or doubling [20]. Here M is 

multiplication; S is Squaring and I in inversion. 

 

 

Table 1 Representation of point and number of GF (p) 

elements 

Coordinate system Coordinates Elements in 

GF (p) 

Affine  A (x, y) 2 

Projective P  (X, Y, Z) 3 

Jacobian J  (X, Y, Z) 3 

Chudnovsky Jacobian  

Jc  

(X,Y,Z,Z2, Z 3 ) 5 

Modified Jacobian J m  (X, Y, Z, Z 4) 4 

 

 

Table 2 : Number of operations for adding and doubling 

points in different coordinate system. 

Coordinate system Addition Doubling 

Affine  A  2M + S + I  2M + 2S + I 

Projective P  12M + 2S  8M + 5S 

Jacobian J  12M + 4S  4M + 6S 

Chudnovsky Jacobian 

JC 

11M + 3S  5M + 6S 

Modified Jacobian J M  13M + 6S  4M + 4S 

It is possible to mix different coordinate systems, i.e. to add 

two points where one is represented in some coordinate 

system, and the other point is represented in another 

coordinate system. Since operations in coordinate systems 

differ in their computational, mixing of coordinate systems is 

efficient [21]. When mixing different coordinate systems, 

some computational overhead is added because of the 

conversions between coordinates. Table 3 estimates the 

computational timings [20] 

 

 

 

 

Table 3   Number of operations for conversion between 

coordinate systems. 

From/To 
Affine  

A 

Projective 

P 

Jacobian 

J 

Chudnovsky 

Jacobian JC 

Modified 

Jacobian 

J M 

Affine  A 0 2M 3M+S 3M+S 4M+2S 

Projective P 2M+ I 0 2M+S 3M+S 3M+2S 

Jacobian J 3M+S+I M+S+I 0 M+S M+2S 

Chudnovsky  

Jacobian JC 
3M+S+I M+S+I 0 0 M+S 

Modified 

Jacobian 

J M 

3M+S+I M+S+I 0 M+S 0 

 

6. BASIC CONCEPT 

6.1 Group law 
 Let E be an elliptic curve defined over the field K. There is a 

chord-and-tangent rule for adding two points in E (K) to give 

a third point in E (K). Together with this addition operation, 

the set of points E (K) forms an abelian group with ∞ serving 

as its identity. It is this group that is used in the construction 

of elliptic curve cryptographic systems. 

 

Let E be an elliptic curve defined over Fq. The number of 

points in E(Fq ), denoted #E(Fq ), is called the order of E over 

Fq . Since the Weierstrass equation has at most two solutions 

for each x Є Fq , #E(Fq ) Є [1,2q +1] provided by Hasse 

theorem. It states that number of points satisfying the elliptic 

curve falls in the range  q + 1− √q  ≤   #E(Fq  )  ≤  q + 1+ 2√q.  

 

6.2 Admissible orders of elliptic curves 
Let q = p 

m
 where p is the characteristic of Fq . There exists an 

elliptic curve E defined over Fq with #E (Fq) = q + 1− t  

where t is the trace of E, if and only if one of the following 

conditions holds: 

 (i) t ≡ 0 (mod p) and t 2 ≤  4q. 

 (ii) m is odd and either          

(a) t = 0; or              

 (b) t2  = 2q and p = 2; or                

  (c) t2  = 3q and p = 3. 

 (iii) m is even and either                

(a) t2  = 4q; or             

(b) t2  = q and p ≡ 1 (mod 3); or       

(c) t = 0 and p ≡ 1 (mod 4). 

Hence for any prime p and integer t satisfying |t| ≤ 2√ p, there 

exists an elliptic curve E over Fp with #E(Fp) = p +1−t. In 

other words the order of elliptic curve (Fp) is roughly equal to 

size p in the underlying field [22]. This is illustrated in 

following example along with Table 4. 

 
Example 6: Let p = 37. Table 2 lists, for each integer n in the 

Hasse interval [37+1−2 √37, 37+1+2√ 37], the coefficients (a, 

b) of an elliptic curve E: y2 = x3 +ax +b defined over F37 with 
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#E (F37) = n. The order #E (Fq ) can be used to define super 

singularity of an elliptic curve. 

 

 
Table 4. Admissible orders n = #E (F37) of elliptic curves E: 

y2 = x3 +ax +b 
n (a,b) n (a,b) n (a,b) n (a,b) n (a,b) 

26 5,0 31 2,8 36 1,0 41 1,16 46 1,11 

27 0,9 32 3,6 37 0,5 42 1,9 47 3,15 

28 0,6 33 1,13 38 1,5 43 2,9 48 0,1 

29 1,12 34 1,18 39 0,3 44 1,7 49 0,2 

30 2,2 35 1,8 40 1,2 45 2,14 50 2,0 

 

6.3 Group structure of an Elliptic curve  
Let  Zn to denote a cyclic group of order n and  E(Fq) be an 

abelian group of rank 1 or 2. Then E (Fq) is isomorphic to 

Zn1© Zn2 where n1 and n2 are uniquely determined positive 

integers such that n2 divides both n1 and q −1. Also #E (Fq ) 

= n1n2. If n2 = 1, then E (Fq ) is a cyclic group. If n2 > 1, 

then E (Fq ) is said to have rank 2. If n2 is a small integer 

(e.g., n = 2, 3 or 4), then E(Fq ) is almost cyclic. Since n2 

divides both n1 and q −1, one expects that E (Fq ) is cyclic or 

almost cyclic for most elliptic curves E over Fq . The 

following two example illustrates the group structure over 

prime field and binary field. 

 

Example7: E : y2 = x3 +x +1 defined over F11. Since 11 is 

prime, E (F11) is a cyclic group and any point in E(F11) except 

for ∞ is a generator of E(F11). The following shows that the 

multiples of the point P = (1, 5) generate all the points in 

E(F11). So the order of P = (1,5)  is  13 that is the total number 

of coordinates or elements of group.[20] 

 
0P= ∞       1P=(1,5)         2P=(3,3)    3P=(8,2)             

4P= (6,5)   5P= (4,6)       6P= (0,10)     7P= (2,0)                 

 8P= (0,1)     9P=(4,5)    10P=(6,6)                      11P=(8,9)  

 12P= (3, 8)                        13P= (1, 6)  

 

Example8: Consider F2
4 as represented by the reduction 

polynomial f (z) =z4+z+1. The elliptic curve E: y2 +xy = x3 

+g3 x2 + (g3 +1) defined over  F2
4 has #E(F2

4) = 22 . Since 22 

does not have any repeated factors, E(F2
4) is cyclic. The point 

P = (g3, 1) = (1000,0001) has order 11; its multiples are 

shown below.[23] 

 

0P =∞       1P = (1000, 0001)   2P = (1001, 1111)                    

3P = (1100, 0000)       4P = (1111, 1011) 5P = (1011, 0010)   

6P = (1011, 1001)     7P = (1111, 0100)    8P = (1100, 1100)       

9P = (1001, 0110)     10P = (1000, 1001) 

 

7. ELLIPTIC CURVE DIFFIE HELMAN 

PROTOCOL 
ECDH, a variant of DH, is a key agreement algorithm. For 

generating a shared secret between A and B using ECDH, 

both have to agree upon Elliptic Curve domain parameters.  

An overview of ECDH is given below. 

 

7.1  Key Agreement Algorithm 
For establishing shared secret between two device A and B 

 

E1.   Let dA and dB be the private key of device A and B 

      respectively, Private keys are random number less than n, 

      where n is a domain parameter. 

E2.  Let QA = dA*G and QB = dB*G be the public key of    

device A and B respectively, G is a domain parameter 

E3.  A and B exchanged their public keys 

E4.  The end A computes K = (xK, yK) = dA*QB 

E5.  The end B computes L = (xL, yL) = dB*QA 

E6.  Since K=L, shared secret is chosen as  xK 

 

7.2  ECDH - Mathematical Explanation 
To prove the agreed shared secret K and L at both devices A 

and B are same, from  E2, E4 and E5  

K = dA * QB = dA  *  (dB * G)  =  (dB * dA) * G = dB * 

(dA * G ) = dB * QA = L 

  Hence K = L, therefore  xK  =  xL 

Since it is practically impossible to find the private key dA or 

dB from the public key QA or QB, it is not possible to obtain 

the shared secret for a third party. 

 

7.3 Relating with finite field 
Here  

 Private Key dA and dB are scalar quantity.  

 n is prime number. 

 Elliptic curve E, a domain parameter, satisfies the 

cyclic abelian property. 

 G, a domain parameter, is the generator point of 

elliptic curve E on which both devices have agreed 

upon. 

 QA  and  QB  public key of device A and B 

respectively are  coordinate points satisfying the 

elliptic curve E.  

 Step E2 where QA = dA*G and QB = dB*G, uses the 

concept of point addition and point doubling. 

      i.e.    ∑            and          ∑           

 To verify K = L , algorithm uses commutative 

property of Abelian group. 
  

8. CONCLUSION 
(a) The study concludes that Abelian cyclic groups , that are 

defined over finite fields and have desirable properties 

concerning their orders and their associated pairings, are 

extensively used in cryptography, as the order of the sender-

receiver transmission does not confuse the common key. Also  

 

(b) The abelian group of points of an elliptic curve due to the 

smaller key size, maintains the same level of security as in 

conventional cryptosystems. Shorter key sizes make Elliptic 

suitable for lightweight computing, bandwidth, power devices 

as mobiles, laptops, mobile web browsers etc.  

 

(c) In the case of elliptic curves, we found the operation “+” 

to be compatible with its geometry, and later, a group 

structure. When ‘+’ operation evaluated, to provide evidence 

for abelian group law an identity element, inverse elements, 

abelian properties, and associability were clarified [24] 

 

(d) Since modular arithmetic involves no floating-point 

operations, the mathematical calculations are more accurate 

and efficient than the real number arithmetic. The modulo (n) 

operation causes the domain to have finite number of 
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members. This ensures the problem is solvable for the valid 

receiver, as well as for the problem to be hard e.g. discrete log 

for Diffie-Hellman or Elliptic curves and prime factorization 

for RSA.  
 
(e) Points of the elliptic curve can be represented in different 

coordinate system depending upon the application. But since 

operations in coordinate system differ in their computational 

timings, it is advantageous to mix different coordinate system. 

And in situations where inversion is Fp/F2
m is expensive 

relative to multiplication, it may be advantages to represent 

points using projective coordinates. 

 

(f)This suggests that ECCs are superior to currently deployed 

public key cryptosystems since not only do they offer a 

greater level of security when the underlying parameters are 

chosen correctly, but they offer a greater advantage due to its 

shorter key sizes, faster generation of systems, smaller space 

requirements and efficient implementation techniques.  

The study can be further extended  general class of curves , 

Hyper Elliptic Curves. 
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