
International Journal of Computer Applications (0975 – 888)

Volume 47– No.15, June 2012

5

Analysis of Query Optimization Techniques in

Databases

Jyoti Mor
M. Tech Student, CSE Dept.

MRIU, Faridabad

Indu Kashyap
Assistant Professor, CSE

Dept.
MRIU, Faridabad

R. K. Rathy, PhD.
Professor, CSE Department

MRIU, Faridabad

ABSTRACT
Query optimization in databases has gain a lot of importance in
recent years. In this paper, we have analyzed different

techniques of query optimization in relational databases and
compared their performance. We have covered the techniques
which use different methods for query representation.

Keywords
query; optimization; graph; tableaus; aggregate

1. INTRODUCTION
The databases are the best way of storing and viewing the data
in form of tables. Databases are most useful in representing data
in an organized manner. The query optimization in databases has

gained equal importance as it is very important to reduce the
size, memory usage and time required for any query to be
processed. This improves significantly the performance of the
database. Databases can be classified according to their
organizational approach. The most popular approach is
relational database, a tabular database in which data is defined
so that it can be reorganized and accessed in a number of
different ways. Another approach that has become popular now-

a-days is object database. An object database applies the concept
of object oriented programming. Object database corresponds
with the data defined in object classes and subclasses. A
database management system (DBMS) is software designed to
assist in maintaining and utilizing large collections of data. The
need for such systems, as well as their use, is growing rapidly.
By storing data in a DBMS rather than as a collection of
operating system files, we can use the DBMS’s features to

manage the data in a robust and efficient manner. This paper
deals with relational databases.

2. QUERY OPTIMIZATION
Query optimization refers to the process of executing a query

efficiently. This requires how to fire a given query such that it
takes minimum number of operations and the memory space. It
is the most important part of the query evaluation process.
Query optimization is a function in which multiple query
plans for satisfying a query are examined and a good query
plan is identified. There is a trade-off between the amount of
time spent figuring out the best plan and the amount running the
plan. The resources which are considered for costing are CPU

path length, amount of disk buffer space, disk storage service
time, and interconnect usage between units of parallelism. The
set of query plans examined is formed by examining possible
access paths and various relational table join techniques. These
plans are generated by the parser while parsing the query. The
search space can become quite large depending on the
complexity of the SQL query [1, 10].

2.1. Queries
A query is a language expression that describes data to be
retrieved from a database. In the context of query optimization,

it is often assumed that queries are expressed in a content-based
manner, giving the optimizer sufficient choices among
alternative evaluation procedures. Queries are expressed in
several forms or settings. The most important application is that
of direct requests by end users who need information about the
structure or content of the database. Another application of
queries occurs in transactions that change the stored data based
on their current value [9]. Query like expressions can be used

internally in a DBMS, to check access rights, maintain integrity
constraints, and synchronize concurrent accesses correctly. For
Example, SQL query to view students roll no, students name and
total marks of those students who have scored more than 300
marks from the Student database would be as –

SELECT Rollno, Name, TotalMarks
FROM Student

WHERE TotalMarks>300

2.2. Optimization Objectives
Objective of optimization process should be either to maximize
the output for a given number of resources or to minimize the
resource usage for a given output. Query optimization tries to
minimize the response time for a given query language and mix
of query types in a given system environment [8]. The total cost
to be minimized is sum of following costs:
Communication Cost: Cost of transmitting data from the site
where they are stored to the sites where computations are

performed and results are presented.
Secondary Storage Access Cost: The cost of loading data pages
from secondary storage into main memory.
Storage Cost: The cost of occupying secondary storage and
memory buffers.
Computation Cost: The cost for using the central processing unit
(CPU).

3. OPTIMIZATION TECHNIQUES
Different query optimization techniques are defined by different
people. These techniques are unique in their own representation
and method.

3.1 Optimization using Query Graph
Query Graphs are used in query optimization for the
representation of queries or query evaluation strategies. Two
classes of graphs can be distinguished: object graphs and
operator graphs [7].

Nodes in object graphs represent objects such as variables and
constants. Edges describe predicates that these objects are to
fulfill [12]. Operator graphs describe an operator-controlled data
flow by representing operators as nodes that are connected by

http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/SQL

International Journal of Computer Applications (0975 – 888)

Volume 47– No.15, June 2012

6

edges indicating the direction of data movement [11]. Query
graphs have many attractive properties. The visual presentation
of a query contributes to an easier understanding of its structural
characteristics.

Example 1: Consider two relational schemas.

Students (Rollno, Name, Address) and
Student_Marks (Rollno, English, Math, Science, TotalMarks,
MarksPercentage)

Assume that the user wishes to view

“Name, TotalMarks and MarksPercentage" of the students who
have got TotalMarks greater than 235.”

The query for this would be:

SELECT Name, TotalMarks, MarksPercentage
FROM Students, Student_Marks
WHERE Students.Rollno=Student_Marks.Rollno and
(TotalMarks>235)

The query graph for this query is shown in fig 1.

3.2 Optimization using Tableaus
Tableaus notations for a subset of relational calculus queries are
characterized by containing only AND-connected terms and no
universal quantifiers [2]. Thus tableau queries are a particular
kind of conjunctive queries. Tableaus are specialized matrices,
the columns of which correspond to the attributes of the
underlying database schema. The first row of the matrix serves
the same purpose as the target list of a relational calculus

expression. The other rows describe the predicate.
Fig 2 illustrates the construction of a tableau representing the
query of Example 1. It starts with tableaus for single relations
and proceeds by combining these tableaus into new tableaus for
larger and larger sub expressions. Distinguished variables are

denoted by a's; non-distinguished ones are denoted by b's. Sets

of tableaus are used for representing general conjunctive queries
[4]. The tableau building starts with creating a temporary table
having only those attributes which are required to solve the
query. In this example the attributes required are Rollno, Name,
Total and Percentage. Next the tables in query are processed and
the corresponding values from the tables are entered into this
temporary table created turn by turn. Next the values are
compared from the where clause and the values that are needed

to be compared are changed. The marks values are changed and
the values that satisfy the condition are kept and rest all are
removed. Next the Rollnos from both the tables are compared
and the values are combined in one table. Once they are
combined, the values for rollno are changed from a to b. after

 >

Name, TotalMarks,

MarksPercentage

Rollno Rollno

Rollno, TotalMarks,

MarksPercentage

Students

Students_Marks

=

235 Total

Rollno, Name

Figure 1. Query Graph for query in Example 1

International Journal of Computer Applications (0975 – 888)

Volume 47– No.15, June 2012

7

the values are changed to b, the values to be projected are shown to the user.

T (Students) =

T (Marks) =

T (σ Total>235) =

T (Join (Students.Rollno =
Marks.Rollno) σ Total>235) =

T (Project (Name, Total, Percentage) =

Figure 2. Tableaus for Example 1

3.3 Optimization of Queries having

Aggregates
The aggregates in the query are the statements like group-by,
having, min, max, etc. These functions complicate the query
processing a bit. Thus the optimization of queries having
aggregates needs a proper way. The optimization of queries with

aggregates is considered less. Also the optimizers do not flatten
the views in queries that reference views with aggregates [5].
To optimize queries with aggregate two steps are required,
namely

 Transformations

 Optimization algorithms

Transformation is needed to optimize the queries containing
group-by and join and optimization algorithms are required to

Rollno Name Total Percentage

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2

Rollno Name Total Percentage

a1 a3 a4

a1 a3 a4

a1 a3 a4

a1 a3 a4

a1 a3 a4

Rollno Name Total Percentage

a1 239 a4

a1 274 a4

a1 236 a4

Rollno Name Total Percentage

a1

a1

a2 239 a4

a1

a1

a2 274 a4

a1

a1

a2 236 a4

Rollno Name Total Percentage

b1

b1

a2 239 a4

b1

b1

a2 274 a4

b1

b1

a2 236 a4

International Journal of Computer Applications (0975 – 888)

Volume 47– No.15, June 2012

8

incorporate the transformation [3]. In this process efforts are
made such that the search space should not increase
dramatically.

3.3.1. Transformations for Single Block SQL
The single block SQL are the SQL queries having no subquery.
Transformations for making group-by to precede join is possible
under many conditions which fall in following categories:

1. Conditions that depend on the schema and nature of join
predicate and independent of nature of the aggregating
functions.

2. Conditions that depend on specific properties of
aggregating functions which leads to introduction of
additional group-by nodes.
a) Conditions that do not require introducing derived

columns

b) Conditions that require use of derived columns

Category 1 applies to aggregating functions. There are different
ways of evaluating group-by and join predicates as shown in Fig
3.
Early group-by reduces the input size of join. Thus tree1 can be
transformed to tree2. Tree3 represents the stagewise group-by
from properties of aggregate functions which lead to
introduction of group-by nodes. These aggregate functions

follow property –
Agg (S U S’) = Agg (Agg (S) U Agg(S’))

3.3.2. Optimization Algorithm for Single Block

Query
The optimizer decides when to apply transformation and in what
form. The optimization in presence of group-by and aggregate
functions has few problems which can be stated as:

 Increase in the number of operators.

 Effect on the physical properties.

The transformations sometime add some operators to original
query. With these there are physical changes also which can
cause increase in the width of intermediate relations or change in
order.
The transformation of group-by introduces additional group-by
operators which increases the space many times. Further, it is
not possible to compare two segments of plan locally. As one
plan may be efficient according to current query but other plan

may reduce the cost of future joins. Another problem is that if

there are more than one aggregation functions on the same
column, then the width of the relation after application of group-
bys will increase.

Greedy Conservative Heuristic
Greedy Conservative Heuristic is a technique to optimize the
single block queries with group-by by exploiting the
transformations [6]. It ensures that the quality of the plan is

similar to the execution plans generated by the optimizer and
there is no overhead in optimization.
This technique places group-by preceding the join if and only if
the following conditions hold:
1. It is semantically correct.
2. The record width in the output of group-
 by is no longer than the one in its input.
3. It results in a cheaper plan for that join.

It considers only a single ordering of group-by columns for each
join. Thus when sort-merge is used, a major to minor ordering is
choose which is same for the join node. It ensures that the plan
has high quality for which it chooses such a plan in which the
size of intermediate results does not increase. Greedy
Conservative Heuristic increases the quality of plan with modest
increase in the optimization overhead.

4. CONCLUSION
Different techniques using different representations show that
there are many other ways to represent query other than the
query trees. The query graph is simple method to represent the
query. Tableaus on the other hand are simple to define, use and
implement. They not only provide a way of representing the

query but also define a method of query optimization in an
efficient way. Graphs and tableaus provide a very easy way to
optimize the query in databases.
Optimization of query blocks is quiet complicated and requires a
different method for optimization of single block queries. The
multi block queries are yet more difficult to optimize and require
much of the processing. The greedy method used for
optimization of single block queries can be extended to optimize

the multi block queries.
Query optimization still is a field where more work can be done
in distributed and deductive databases.

5. REFERENCES
[1] Abdullah Dilsat : Query Optimization in Distributed

Databases. Report, Middle East Technical University,
December 2003.

[2] Aho, A.V., Sagiv,Y. and J. D. Ullman: Efficient
optimization of a class of relational expressions. ACM
Trans. Database Systems. 4, 4, p- 435-454, 1979.

[3] Chaudhuri S. and K. Shim. Query optimization with
aggregate views. In Proceedings of the 5th International

Conference on Extending Database Technology, Avignon,
France, March 1996.

[4] Chaudhuri S. and K. Shim: An Overview of Cost-based
Optimization of Queries with Aggregates. IEEE DE
Bulletin, Sep. 1995. (Special Issue on Query Processing).

[5] Chaudhuri S. and K. Shim: Including group-by in query
optimization. In Proceedings of the 20th International
VLDB Conference, Santiago, Chile, Sept 1994.

[6] Chaudhuri S.: An Overview of Query Optimization in

Relational Systems ; Pods’09, ACM New York, NY, USA,
Year 1998.

G

Join

R1 R2

G

1

Join

R1

R2

Tree1 Tree3

G1

G

R

2

Join

R1

Tree2

Figure 3. Single Block Query Transformations

International Journal of Computer Applications (0975 – 888)

Volume 47– No.15, June 2012

9

[7] Leee Chiang, Chih Chi-Sheng and Chen Yaw-Huei :
Optimizing large join queries using a graph-based
approach. IEEE Trans on Knowledge and Data
Eng.2001,13(2): p-298-315, 2001.

[8] Matthias Jarke, Jurgen Koch: Query Optimization in

Database Systems. ACM Computing Surveys, Vol. 16, Issue
2, 1984.

[9] Sagiv, Y.: Optimization of Queries in Relational Databases.
UMI Research Press, Ann Arbor, Michigan, 1981.

[10] Sukheja Deepak and Umesh Kumar Singh : A Novel
Approach of Query Optimization for Distributed Database

Systems. IJCSI International Journal of Computer Science
Issues, Vol. 8, Issue 4, No 1, July 2011.

[11] Yao S.B.: Optimization of query evaluation algorithms.
ACM Trans. Database Syst. Vol 4, 2 (June), p-133-155,
1979.

[12] Youssefi, K. and E. Wong, : Query processing in a
relational database management system. In Proceedings of
the 5th International Conference on Very Large Data Bases
(Rio de Janeiro, Oct. 3-5). IEEE, New York, 1979, pp. 409-
417.

