
International Journal of Computer Applications (0975 – 888)

Volume 47– No.15, June 2012

1

A Novel Technique for Call Graph Reduction for Bug

Localization

Prabhdeep Singh

Student (ME), Department of CSE, Thapar

University, Patiala, India

Shalini Batra

Assistant Professor, Department of CSE, Thapar

University, Patiala, India

ABSTRACT
In today’s era, software industries are competing for software
quality which depends upon the sound software testing phase.
To deliver the quality product the most challenging job for
software industry is to localize bugs automatically and fix
them before release. One of the techniques for automated bug
localization is usage of call graph. Since size of the call graph
generated is quite large, various call reduction approaches
have been proposed. In this paper a novel approach for call

graph reduction has been proposed where the size of the call
graph is reduced without changing the basic structure and no
major loss of the information is incurred. The output
generated using the proposed methodology shows promising
results.

1. INTRODUCTION

Software is rarely free from defects and debugging is the
process of identifying the root cause of an error and correcting
it. Manual debugging can be extremely expensive and
localizing defects is the most time consuming and difficult
activity in this context.

Numerous software testing techniques are applied to maintain
quality of large software systems [2,10,11]. Since localization
of bugs is the most time-consuming part of debugging,

automated methods for bug localizations are required.

Various techniques have been developed for locating
bugs[15]. One direction of research is static analysis, where
properties of the source code or the version history are
analyzed. Another direction is dynamic analysis, which
requires the execution of the program [11] .

1.1 Call Graph
A call graph is a binary relation over selected entities in a
program, such as methods, classes, subsystem, modules, files,
etc., which represents invocations between those entiti]. Call
graphs are either static or dynamic. A static call graph can be
obtained from the source code. It represents all methods of a
program as nodes and et al possible method invocations as

edges. A dynamic call graph is the invocation relation that
represents a specific set of runtime executions of a program.
Dynamic call graph extraction is a typical application of
dynamic analysis to aid compiler optimization, performance
analysis, program understanding, etc [12]. Dynamic call
graphs represent an execution of a particular program and
reflect the actual invocation structure of the execution.
Without any further treatment, a call graph is a rooted ordered

tree. The main method of a program usually is the root, and
the methods invoked directly are its children[13].

1.2 Call-Graph Representations
A call graph is a directed graph whose nodes represent the
functions of program and directed edges symbolize function
calls. Nodes can represent either one of the following two
types of functions:

Local functions, implemented by the program designer.

External functions: system and library calls.

Local functions are the most frequently occurring functions in
any program. They are written by the programmer of the

binary executable. External functions, as system and library
calls, are stored in a library as part of an operating system.
Contrary to local functions, external functions never invoke
local functions. Call graphs are formally defined as follows:

Definition (Call Graph): A call graph is a directed graph G
with vertex set V=V(G), representing the functions, and edge
set E=E(G), where E(G) ⊆ V(G)×V(G), in correspondence
with the function calls[4].

2. LITERATURE REVIEW
Call graph are representations of program executions. Raw
call graphs typically become much too large for graph-mining
algorithms, as program might be executed for a long period
and frequently call other parts of the program, which adds
information to the graph. Therefore, it is essential to compress

the graphs by a process called reduction[1,7,8]. It is usually
done by a lossy compression technique. This involves the
trade-off between keeping as much information as possible
and a strong compression. The researchers have proposed a
number of different call-graph representations[3,4], standing
for different degrees of reduction and different types and
amounts of information encoded in the graphs.

There are two approaches of reducing software call graphs

Total Reduction (Liu et al.[14])

Zero-one-many reduction (DiFatta et al.[15])

Total reduction is proposed by Liu et al In totally reduced
graphs, every function is represented by a node. A direct edge
is connected with the corresponding nodes when one function
has called another function. Total reduction technique
shortens the size of source call graph [8]. This technique has
been introduced by Liu et al. In this technique, every method

occurs just once within the graph. The major shortcoming of
this technique is that it changes the structure of the graph. On
the other side, much information about the program execution
is lost, e.g., frequencies of the execution of methods and
information on different structural patterns within the graphs.
So it is very difficult to retrieve required information from this
reduced graph.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.15, June 2012

2

The below fig 1 is shown the call graph of source graph

Figure 1 is derived from the source code, called source call
graph[9]. As seen in figure the graph has 3 levels where P is
root node and Q and R are its children. In next level R is
considered as Q, S and T’s parent. Q is called 3 times so 3
direct edges are connected from R to Q and S is called 2 times
so 2 edges are connected with R to S. Function T is called
single time so edge is connected from R to T singly. After

applying Liu et al. approach reduced graph is shown in Figure
2. Using this technique the 2nd level children are reduced
from two to one. In source call graph P is connected with Q at
2nd level but after reducing it is directly connected with Q in
3rd level of graph. This reduced call graph doesn’t show the
call frequency of nodes. Its structure has also been changed.

The other approach given by DiFatta et al. covers the
drawback of Liu et al. approach as it does not change the
structure but the reduction is not properly done. The improper
reduction increases its complexity and it is difficult to find

frequent sub structure from graph. Reduced graph can provide
near information about call frequency but exact information is

not known. Call frequencies are important for detecting
certain groups of bugs.

In the figure 3 reduced callgraph by approach of DiFatta et al.
has been shown. Frequency of nodes has been changed but the
structure of call graph remains same. In this approach of
reduced call graph node is shown two times if it is shown
more than two times in source code. The exact frequency of
nodes is not known by using this approach.

3. PROPOSED APPROACH
To overcome the drawbacks of both techniques a new
approach is proposed. In this approach the reduced call graph
shows the call frequency of each node without changing the
structure of source call graph. First of all, all functions of
source code are labeled so that it can easily be interpreted.
Then a call graph is made using these labeled functions. The

main task is to save the node into computer memory with its
parent’s information which is not possible with adjacency list
or adjacency matrix. Therefore the parent of each child is
stored in the matrix. Rows represent the levels of call graph as
1st row represent 1st level’s nodes, 2nd row represent 2nd
level’s nodes and so on. Every node also contains the
information about its parent. The proposed algorithm to save
the node with its parent’s information in the computer

memory and efficiently reduce the graph is as follows:

Algorithm: Reducing call graph

Input: Matrix of structure containing children, label, parent

Output: Reduced call graph

Set j=Getstr[100][]

foreach aa←1 to 10 do

 Set j[aa - 1] = Getstr[200]

end for

Set count= GetArray(level)

foreach i←0 to levels-1 do

S Q

R Q

P

Q T S

Figure 3

S Q

R

P

T

Figure 2

P

Q R

T Q S Q S Q

Figure 1

International Journal of Computer Applications (0975 – 888)

Volume 47– No.15, June 2012

3

 print “Enter no. of children at level 0”

 Input(children)

 count[i]=children

 foreach x←0 to children -1 do

 print "Enter the label of (x) children"

 j[i][x].label = Input(label)

 print "Enter the parent of (x) children"

 j[i][x].parent = Input(parent)

 j[i][x].count = 1

 end for

end for

foreach k←levels down to 1 do

 foreach l←0 to count[levels-1] -1 do

 foreach m←l+1 to count[levels -1] -1 do

 if j[k-1][l].label=j[k-1][m].label AND j[k-

1][l].parent=j[k-1][m].parent AND j[k-1][l].parent ! = -1 then

 j[k-1][m].parent = -1

 j[k-1][l].count++

 end if

 end for

 end for

end for

Algo1: Reducing Call Graph

4. IMPLEMENTATION DETAILS

The above algorithm has three inputs from the source graph as

children, label and parent at each level and stored in the

matrix which is implemented from line number 6 to 16.

Similarly the reduction of graph is implemented from line no

17 to 25 where it merges the children of same label of same

parent in each level.

5. CONCLUSION
New static and dynamic approaches for bug localization have
been developed, the diffusion into other disciplines has

proceeded at a rapid pace, and knowledge of all aspects of the
field has grown even more profound. At the same time, one of
the most striking trends in graph theory is constantly
increasing emphasis on the interdisciplinary nature of the
field. Graph mining today is basic research tool in all areas of
engineering, medicine, and the sciences. The bug localization
techniques based on graph mining are successfully applied in
a wide range of practical problems arising in software
industry.

In this paper a novel algorithm for call graph reduction has
been proposed In order to use the respective call graphs for
bug localization, the developed technique stores the parent
information in the matrix and reduced at each level
drastically. Information about each node is retained by using
the call frequency by annotating each edge with a numerical
weight. Similarly the algorithm used to reduced call graph has
various advantages over traditional techniques. It takes

various parameters for consideration such as information of
nodes, basic structure of graphs and call frequency. Here the
detailed study of call graph reduction in graph mining made
the study of various other techniques in bug localization very
easy

6. FUTURE SCOPE
The proposed algorithm works only when there are same
types of nodes at a particular level in a call graph.

In future this work can be extended to multiple levels of call
graph will make the graph mining algorithm efficiently.

Secondly the storage of graph can be upgraded with any new
storage technique where it would require lesser storage space
as well as lesser access time leading to further optimize

reduction of call graph.

S Q

R Q

P

T

Figure 4

1 1

3 1 2

International Journal of Computer Applications (0975 – 888)

Volume 47– No.15, June 2012

4

7. REFERENCES
[1] W. Sadiq, M. E. Orlowska, “Applying Graph Reduction

Techniques for Identifying Structural Conflicts in
Process Models Distributed Systems Technology”,
Proceeding of the 11th International Conference on
Advanced Information Systems Engineering, 1999,
pp.195–209.

 [2] I. R. Katz, J. R. Anderson, “Debugging: an analysis of
bug-location strategies”, Human Computer Interaction,
1987, pp.351–399.

[3] R.Hastings,B.Joyce, “Purify: Fast detection of memory
leaks and access errors”, Proceedings of the Winter
USENIX Conference, 1992, pp.125.

[4] O.Lhotak, “Comparing Call Graphs”, Proceedings of the
7th ACM Sigplan-sigsoft Workshop on Program
Analysis for Software Tools and Engineering, PASTE
07, San Diego, California, USA, 2007, pp. 37-42.

[5] L. Dietz, V. Dallmeier, A. Zeller, T. Scheffer “Localizing

Bugs in Program Executions with Graphical Models”,
Advances in Neural Information Processing Systems
22,Proceedings of the Conference, Vancouver, Canada,
2009, pp. 468-477.

 [6] W. Ren, R. Beard, E.Atkins, “Information consensus in
multivehicle cooperative control” Control Systems,
IEEE, Vol.27, No. 2, 2007, pp.71 -82.

 [7] G. Shi, Weiwei “A Graph Reduction Approach to

Symbolic Circuit Analysis” Proceeding of Design
Automation Conference, 2007.

 [8]S. K. Lukins, N. A. Kraft, L. H. Etzkorn, “Source Code
Retrieval for Bug Localization using Latent Dirichlet
Allocation, ”Proceedings of the 15th Working
Conference on Reverse Engineering, 2008, pp.155-164.

 [9] D. Binkley, “Source Code Analysis: A Road Map”

Proceedings of the 29th International Conference on
Software Engineering, 2007.

[10] Boris Beizer, “Software Testing Techniques”, Van
Nostrand Reinhold Co., 2nd Ed., 1990.

 [11] L. Dietz, V. Dallmeier, A. Zeller, T. Scheffer
“Localizing Bugs in Program Executions with Graphical
Models”, Advances in Neural Information Processing
Systems 22,Proceedings of the Conference, Vancouver,

Canada, 2009, pp. 468-477.

 [12] B. Ryder, “Constructing the call graph of a program”,
Software Engineering, IEEE Transactions on,vol. SE-5,
no. 3, 1979, pp. 216 – 226.

[13] X. Hu, T. Chiueh, K. G.Shin, “Large-scale malware
indexing using function-call graphs”, ACM Conference
on Computer and Communications Security, E.AlShaer,
S. Jha, A. FD.Keromytis,Eds,2009, pp. 611–620.

[14] C. Liu, X Yan, H Yu, J Han,., P.S. Yu, “Mining Behavior
Graphs for \Backtrace" of Noncrashing Bugs”. In: Proc.
of the 5th Int. Conf. on Data Mining, 2005

[15] Di Fatta, G. Leue, S.Stegantova,“Discriminative Pattern
Mining in Software Fault Detection”. In: Proc. of the 3rd
Int. Workshop on Software Quality Assurance,2006.

