
International Journal of Computer Applications (0975 – 888) 

Volume 47– No.13, June 2012 

20 

An Improved FCFS (IFCFS) Disk Scheduling Algorithm 

Manish Kumar Mishra 
Department of Information Technology 
College of Computing and Informatics 

Haramaya University 

Ethiopia 

 

ABSTRACT 

Since the time movable head disk came into existence, the I/O 
performance has been improved by proper scheduling of disk 
accesses. Disk scheduling involves a careful examination of 

pending requests to determine the most efficient way to 
service the requests. The two most common types of 
scheduling are seek optimization and rotational (or latency) 
optimization. Most of the scheduling algorithms concentrate 
on reducing seek times for a set of requests, because seek 
times tend to be an order of magnitude greater than latency 
times. Some of the most important scheduling algorithms are 
First-Come-First-Served (FCFS), Shortest Seek Time First 
(SSTF), SCAN, Circular Scan (C-SCAN) and LOOK. FCFS 

is the simplest form of disk scheduling algorithm. This 
algorithm is simple to implement, but it generally does not 
provide the fastest service. This paper describes an 
improvement in FCFS. A simulator program has been 
designed and tested the improved FCFS. After improvement 
in FCFS it has been found that the service is fast and seek 
time has been reduced drastically.   

General Terms 

Operating System, Disk Scheduling. 

Keywords 

Disk Scheduling, Seek Time, Average Seek Time, FCFS, 
IFCFS. 

1. INTRODUCTION 
In multiprogrammed computing systems, inefficiency is often 
caused by improper use of rotational storage devices such as 
disk. In this type of system, many processes may be 
generating requests for reading and writing disk records. 
Sometimes these processes make requests faster than they can 

be serviced by the moving head-disks, as a result waiting lines 
or queues build up for each device [1]. Which process should 
be selected next for service, is an important question, because 
it affects the effectiveness of the service. The main aim of the 
disk scheduling algorithms is to reduce or minimize the seek 
time for a set of requests [2]. The disk performance can be 
optimized by installing a magnetic disk that can result in high 
transfer rates. Magnetic disk is a collection of platters. 

Information is stored by recording it magnetically on the 
platters. A read-write disk head is located on top of each 
surface of every platter. The heads are attached to a disk arm 
that moves all the heads as a unit. The surface of a platter is 
logically divided into circular tracks, which are subdivided 
into sectors [3]. A cylinder is made up of set of tracks that are 
at one arm position. Disks are currently four orders of 
magnitude slower than main memory, so many researches are 

going on to enhance the efficiency of disks [4]. Scheduling 
algorithms for moving head-disks have been studied for many 
years, but which algorithm is “best” is still an open question 
[5]. Most scheduling algorithms in use today are variations of 

a few central themes. FCFS is still a preferable choice [5]. It is 
easy to implement and it is fair in the sense that once a request 
has arrived, its place in the schedule is fixed. This study 
focuses on improving the effectiveness of FCFS. 

1.1 Disk Performance Parameters 
The disk I/O operations mainly depend on the computer 
system, the operating system, and the nature of the I/O 

channel and disk controller hardware [6]. The time taken to 
position the disk arm at the desired cylinder is called the Seek 
Time, and the time for the desired sector to rotate to the disk 
head is called the Rotational Latency. The sum of seek time 
and rotational latency is known as Access Time. The transfer 
time mainly depends on the rotational speed of the disk. The 
total number of bytes transferred, divided by the total time 
between the first request for service and the completion of the 

last transfer is called the disk Bandwidth [3]. These are the 
disk performance parameters and they can be improved by 
scheduling the servicing of disk I/O requests in a good order. 

1.2 Disk Scheduling Algorithms 
Disk scheduling algorithms are used to allocate the services to 
the I/O requests on the disk. Some of the most important 
scheduling algorithms are First-Come-First-Served (FCFS), 
Shortest Seek Time First (SSTF), SCAN, Circular Scan (C-

SCAN) and LOOK. FCFS is the simplest form of disk 
scheduling algorithm. In this scheduling, I/O requests are 
served as per their arrival. The request that arrive first, is 
served first so the name First-Come-First-Served. In SSTF 
algorithm, the request with the minimum seek time from the 
current head position is served first. In this algorithm, I/O 
requests at the edges of the disk surface may get starved [7].    
SSTF gives substantial improvement over FCFS. In SCAN 
algorithm, the disk arm starts from one end of the disk and 

moves to the other end of the disk. While moving from one 
end to the other end of the disk, it serves the requests as it 
reaches each cylinder. When it reaches to other end, the 
direction of head movement is reversed. SCAN gives better 
performance than FCFS and SSTF. In C-SCAN, the disk head 
moves from one end to the other end of the disk, serving the 
request along the way. When the disk head reaches to the 
other end, it immediately returns back to the beginning of the 

disk. In return trip, it does not serve any request. The waiting 
time increases in C-SCAN [2]. In LOOK algorithm, the arm 
goes only as far as the final request in each direction [3]. The 
direction reverses immediately, without going all the way to 
the end of the disk.       

2. IFCFS ALGORITHM 
The improved FCFS (IFCFS) disk scheduling algorithm 
works similar to FCFS but with a small improvement. IFCFS 

move the disk head with the intention to serve the first I/O 
request. On the way going to serve the first request, if there is 
any request waiting from the current disk head position to the 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.13, June 2012 

21 

first request, will be served. After serving first request and the 
requests that were served on the way, disk head will move to 
the next request waiting in the queue. On the way going to 
serve this request, if there is any request waiting from the 
current disk head position to the next waiting request, will be 

served etc. IFCFS guarantees the performance improvement 
over FCFS. 

Following is the proposed IFCFS disk scheduling algorithm 

Step 1. START 
Step 2. Make a queue of the I/O requests say 

REQUEST. 
Step 3. Do steps 4, 5 and 6 WHILE queue REQUEST 

becomes empty. 
Step 4. Move the disk head from the current position 

say K to the first request in the queue 
REQUEST. Serve the requests that are on the 
way of the disk head from the current position 
K to the first request in the queue REQUEST. 

Step 5. Serve the first request in the queue REQUEST. 
Step 6. Remove the requests from the queue 

REQUEST that are already served. 
Step 7. END 

 

3. PERFORMANCE EVALUATION 
To evaluate the performance, I assumed that all the I/O 
requests are independent of each other and have equal 
priority. The requests are stored in the request queue. The 
minimum track number is 0 and the maximum track number is 
100 on each platter. The seek time has been taken as the 
performance parameter. 

3.1 Experiments Performed 
For performance evaluation of my proposed IFCFS algorithm, 

I have taken three different cases. Six, eight and ten I/O 

requests have been taken into consideration in case 1, case 2 

and case 3 respectively. In each case, the experimental results 

of proposed IFCFS algorithm have been compared with FCFS 

algorithm. 

Case 1: I consider the disk queue with request for I/O to 
blocks on cylinders 80, 50, 30, 40, 5 and 10. If disk head is 
presently at cylinder 20, it will first move to cylinder 80. 
Since three I/O requests on cylinders 50, 30 and 40 will be on 

the way going from cylinder 20 to 80, these three requests will 
be served before the disk head reached to cylinder 80. After 
serving request at cylinder 80, the request queue will be 
checked for next request. Since the requests on cylinders 50, 
30 and 40 have been already served, the next available request 
is on cylinder 5. The disk head will now move to cylinder 5 
from cylinder 80. On the way going to cylinder 5, the request 
on cylinder 10 will be served. The total head movement is 135 

cylinders. Using the same example, the total head movement 
in FCFS is 160 cylinders. Table 1 shows the comparison of 
result of proposed IFCFS with FCFS algorithm. Figure 1 and 
Figure 2 shows the representation of FCFS and IFCFS 
respectively. Figure 3 shows the comparison of average seek 
time of FCFS and IFCFS.  

 

 

Table 1. Comparison of FCFS and IFCFS (Case 1) 

Algorithms 
Total Head 

Movement 

Average Seek 

Time 

FCFS 160 26.67 

IFCFS 135 22.50 

 

 

Fig 1: Representation of FCFS (Case 1) 

 

 

Fig 2: Representation of IFCFS (Case 1) 

Tr
ac

k 
N

u
m

b
er

s 

0 

 

10 

 

20 

 

30 

 

40 

 

50 

 

60 

 

70 

 

80 

 

90 

 

100 

 

Time 

 

Queue = 80, 50, 30, 40, 5, 10            Head starts at 20 

 

Tr
ac

k 
N

u
m

b
er

s 

0 

 

10 

 

20 

 

30 

 

40 

 

50 

 

60 

 

70 

 

80 

 

90 

 

100 

 

Queue = 80, 50, 30, 40, 5, 10            Head starts at 20 

 

Time 

 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.13, June 2012 

22 

 

Fig 3: Comparison of Average Seek Time (Case 1) 

Case 2: The disk queue with request for I/O to blocks on 
cylinders 100, 5, 50, 90, 75, 10, 80 and 60 has been taken into 
consideration. If disk head is presently at cylinder 40, it will 
first move to cylinder 100. Since five I/O requests on 
cylinders 50, 90, 75, 80 and 60 will be on the way going from 

cylinder 40 to 100, these five requests will be served before 
the disk head reached to cylinder 100. After serving request at 
cylinder 100, the request queue will be checked for next 
request. Since the requests on cylinders 50, 90, 75, 80 and 60 
have been already served, the next available request is on 
cylinder 5. The disk head will now move to cylinder 5 from 
cylinder 100. On the way going to cylinder 5, the request on 
cylinder 10 will be served. The total head movement is 155 

cylinders. Using the same example, the total head movement 
in FCFS is 410 cylinders. Table 2 shows the comparison of 
result of proposed IFCFS with FCFS algorithm. Figure 4 and 
Figure 5 shows the representation of FCFS and IFCFS 
respectively. Figure 6 shows the comparison of average seek 
time of FCFS and IFCFS. 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparison of FCFS and IFCFS (Case 2) 

Algorithms 
Total Head 

Movement 

Average Seek 

Time 

FCFS 410 51.25 

IFCFS 155 19.38 

 

 

Fig 4: Representation of FCFS (Case 2) 

 

 

Fig 5: Representation of IFCFS (Case 2) 

Tr
ac

k 
N

u
m

b
er

s 

0 

 

10 

 

20 

 

30 

 

40 

 

50 

 

60 

 

70 

 

80 

 

90 

 

100 

 

Time 

 

Queue = 100, 5, 50, 90, 75, 10, 80, 60     Head starts at 40 

 

Tr
ac

k 
N

u
m

b
er

s 

0 

 

10 

 

20 

 

30 

 

40 

 

50 

 

60 

 

70 

 

80 

 

90 

 

100 

 

Time 

 

Queue = 100, 5, 50, 90, 75, 10, 80, 60     Head starts at 40 

 

A
ve

ra
ge

 S
e

e
k 

Ti
m

e 

0 

 

5 

 

10 

 

15 

 

20 

 

25 

 

30 

 

35 

 

40 

 

45 

 

FCFS 

 

50 

 

55 

 

IFCFS 

 

Queue = 80, 50, 30, 40, 5, 10            

Head starts at 20 

 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.13, June 2012 

23 

 

Fig 6: Comparison of Average Seek Time (Case 2) 

Case 3: The disk queue with request for I/O to blocks on 
cylinders 20, 35, 5, 95, 75, 55, 85, 45, 40 and 15 has been 
taken into consideration. If disk head is presently at cylinder 
50, it will first move to cylinder 20. Since three I/O requests 
on cylinders 35, 45 and 40 will be on the way going from 

cylinder 50 to 20, these three requests will be served before 
the disk head reached to cylinder 20. After serving request at 
cylinder 20, the request queue will be checked for next 
request. Since the requests on cylinders 35, 45 and 40 have 
been already served, the next available request is on cylinder 
5. The disk head will now move to cylinder 5 from cylinder 
20. On the way going to cylinder 5, the request on cylinder 15 
will be served. After serving request at cylinder 5, the request 

queue will be checked for next request. Next available request 
is on cylinder 95. Since three I/O requests on cylinders 75, 55 
and 80 will be on the way going from cylinder 5 to 95, these 
three requests will be served before the disk head reached to 
cylinder 95. The total head movement is 135 cylinders. Using 
the same example, the total head movement in FCFS is 305 
cylinders. Table 3 shows the comparison of result of proposed 
IFCFS with FCFS algorithm. Figure 7 and Figure 8 shows the 
representation of FCFS and IFCFS respectively. Figure 9 

shows the comparison of average seek time of FCFS and 
IFCFS.  

Table 3. Comparison of FCFS and IFCFS (Case 3) 

Algorithms 
Total Head 

Movement 

Average Seek 

Time 

FCFS 305 30.50 

IFCFS 135 13.50 

 

 

Fig 7: Representation of FCFS (Case 3) 

 

 

Fig 8: Representation of IFCFS (Case 3) 

Tr
ac

k 
N

u
m

b
er

s 

0 

 

10 

 

20 

 

30 

 

40 

 

50 

 

60 

 

70 

 

80 

 

90 

 

100 

 

Time 

 

Queue = 20, 35, 5, 95, 75, 55, 85, 45, 40, 15     

Head starts at 50 

 

Tr
ac

k 
N

u
m

b
er

s 

0 

 

10 

 

20 

 

30 

 

40 

 

50 

 

60 

 

70 

 

80 

 

90 

 

100 

 

Time 

 

Queue = 20, 35, 5, 95, 75, 55, 85, 45, 40, 15     

Head starts at 50 

 

A
ve

ra
ge

 S
e

e
k 

Ti
m

e 

0 

 

5 

 

10 

 

15 

 

20 

 

25 

 

30 

 

35 

 

40 

 

45 

 

FCFS 

 

50 

 

55 

 

IFCFS 

 

Queue = 100, 5, 50, 90, 75, 10, 80, 60           

Head starts at 40 

 



International Journal of Computer Applications (0975 – 888) 

Volume 47– No.13, June 2012 

24 

 

Fig 9: Comparison of Average Seek Time (Case 3) 

 

4. CONCLUSION 
Simulation results shows that the proposed IFCFS disk 
scheduling algorithm is always giving better performance than 

FCFS. After improvement in FCFS it has been found that the 
service is fast and seek time has been reduced drastically. This 
algorithm can be implemented to improve the performance in 
the systems in which FCFS is a preferable choice. 

5. REFERENCES 
[1] H. M. Deitel, “Operating Systems”, 2nd Edn., Pearson 

Education Pte. Ltd., 2002, ISBN 81-7808-035-4. 

[2] Sourav Kumar Bhoi, Sanjaya Kumar Panda, and Imran 
Hossain Faruk, “Design and Performance Evaluation of 
an Optimized Disk Schedduling Algorithm (ODSA)”, 

International Journal of Computer Applications, Vol. 40, 
No. 11, Feb 2012, pp. 28-35. 

[3] A. Silberschatz, P. B. Galvin, and G. Gagne, “Operating 
System Concepts”, 7th Edn., John Wiley and Sons Inc, 
2005, ISBN 0-471-69466-5. 

[4] W. Stallings, “Operating Systems”, 4th Edn., Pearson 
Education Pte. Ltd., 2007, ISBN 81-7808-503-8. 

[5] Robert Geist, Stephen Daniel, “A Continuum of Disk 

Scheduling Algorithms” ACM Transactions on 
Computer Systems” Vol. 5, No. 1, Feb 1987, pp. 77-92 

[6] C. Staelin, G. Amir, D. B. Ovadia, R. Dagan, M. 
Melamed and D. Staas, “ Real-time disk scheduling 
algorithm allowing concurrent I/O requests”, HP 
Laboratories, HPL-2009-344. 

[7] A. L. N. Reddy, Jim Wyllie and K. B. R. Wijayaratne, 
“Disk Scheduling in a Multimedia I/O System” ACM 

Transactions on Multimedia Computing, 
Communications and Applications” Vol. 1, No. 1, Feb 
2005, pp. 37-59 

 

A
ve

ra
ge

 S
e

e
k 

Ti
m

e 

0 

 

5 

 

10 

 

15 

 

20 

 

25 

 

30 

 

35 

 

40 

 

45 

 

FCFS 

 

50 

 

55 

 

IFCFS 

 

Queue = 20, 35, 5, 95, 75, 55, 85, 45, 40, 15     

Head starts at 50 

 

 


