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ABSTRACT 

It is a documented fact that mathematical formulation of 
physical phenomena in many diverse fields such as electrical 
engineering, control theory, medicine and even in biology 
often leads to initial value problems of the form 

( , )y f x y

 , (0) 0y y . In this paper, we propose a one-

step numerical scheme that can solve some of these problems. 
The proposed method compares very well with other known 
methods. The efficiency of the method is examined in terms 
of consistency, stability and convergence. We also construct 
the Region of Absolute Stability (RAS) of the scheme. 
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1. INTRODUCTION 
Consider the initial value problem of the form 

        ( , ), (0) , [ , ], .0y f x y y y x a b y

        (1.1) 

We assume that /f y   is continuous on the strip a x b   

thus guaranteeing that (1.1) possesses a unique solution [4]. 
Over many years, there have been numerous methods derived 
to solve equations of the form (1.1) [1, 3, 5, 10, 14].This type 
of equation always occurs in engineering, life sciences, 

accounting and many other fields as a mathematical model of 
various phenomena. For example, various aspects of climate 
change can be modeled into a differential equation of the form 
(1.1). Also, some of the formulations of government 
economic policies are based on equations of form (1.1). In 
general differential equations, in one form or another, have 
been at the centre of many important innovations. It is not an 
exaggeration to say that the spread of modern industrial 

revolution, many economic theories and the decrease in the 
spread of diseases like tuberculosis, HIV/AIDS are as a result 
of man's ability to formulate and solve differential equations. 
It is a little disheartening though that relatively few 
differential equations arising from practical problems have 
analytical solutions. Solving differential equations is thus one 
of the main preoccupations in numerical analysis. In 
numerical analysis approximations play important role in 

solving practical problems. There are numerous ways by 
which an approximate solution to particular differential 
equations can be constructed. In this paper, we propose a 
numerical scheme that is efficient and reliable for solving 
IVPs of the form (1.1). We shall assume that (1.1) is well 
posed with continuous derivatives and that the solution 
depends differentially on the initial condition. 

This paper is divided into six sections. Section 2 deals with 

the development of the numerical scheme while consistency 
and convergence of the scheme are developed in Section 3. 
Stability of the scheme is discussed in Section 4 while 
numerical experiments on some test problems and a 
discussion on the performance (including comparative studies 
of the scheme with other schemes) are presented in Sections 5 
and 6.  

2. DEVELOPMENT OF THE SCHEME 
We define the mesh points of the interval [ , ]a b  in the usual 

way, x a nhn   , 0,1, 2,n  , and let yn   represent the 

numerical estimate to the theoretical value ( )y xn  and fn  

represent ( , )f x yn n . Following [15] (see also [11] and [12] 

for related work), we assume that the theoretical solution 

( )y x  to the initial value problem (1.1) can be locally 

represented in the interval [ , ]1x xn n  by the interpolating 

function 

                  
32

( ) ,
x

F x x x e                              (2.1) 

where  ,  ,   and   are real undetermined coefficients. 

We shall make the following assumptions:- 

i. that the interpolating function coincides  with the  

theoretical solution at x xn  and 1x xn  , i.e., 

                  
32

( )
xnF x x x en n n                       (2.2) 

and 

                
3

2 1( ) ;1 1 1

x
nF x x x en n n             (2.3) 

ii. that the first, second and third derivatives with 
respect to x of the interpolating function coincide 

respectively with the differential equation as well as 
its first and second derivatives with respect to x  at 

x xn  , i.e., 

  

                                  ( )F x fn n


  

                                ( )F x fn n
 

                                 (2.4) 

                               ( ) .F x fn n
 

  
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This implies that 

                       
2

2 3
xnx e fn n      

                  
2 34

2 (6 9 )
x xn nx e x e fn n n 


                    (2.5) 

                  
2 2 36

(6 54 27 ) .
x x xn n nx e e x e fn n n


    

The system of equations in (2.5) is solved and we  obtain 

values of  ,   and  as 

                
 2 31 3 ( )

( ) ( )
3 62 18 9

x x f xn n n
f x x f xn n n

x xn n




  
 

       (2.6) 

                  
 32 3 ( )

( )

3 62 4 36 18

x x f xn n nf xn

x xn n




 
 

                     (2.7) 

                  

 
( )

.
3 3 66 54 27

f xn

xne x xn n






 

                              (2.8) 

If we subtract equation (2.2) from (2.3), we obtain 

( ) ( )1 1y y F x F xn n n n     

3 32 2( ) ( ) ( ).11 1
x xnx x x x e enn n nn

        
                 (2.9) 

If we now put x a nhn   and ( 1)1x a n hn    , we can 

write our one-step method as 

        1y y hnn                                          

   3 3 3 3(1 )2
(1 2 ) .

h n h n
h n e e 


                        (2.10) 

Substituting for  ,   and  in (2.10), we obtain 

2

1
2

h fn
y y h fn nn



      

 

 

3 21 3 3
6 4 3

2 9 6 1 2

3 3 6 6
6 2 18 9

h n n
e h n h n n

fn
h n h n

 
 
 
 

   




 

 
 
 
  .               (2.11) 

Equation (2.11) is the required one-step method. 

 

 

 

 

3. CONSISTENCY AND 

CONVERGENCE OF THE SCHEME 
A general one-step method is given in the form 

                 ( , ; ),1y y h x y hn n nn                          (3.1) 

where ( , ; )x y hn n  is called the incremental function of the 

method. Analysis of the incremental function is carried out to 
determine if the scheme is convergent and consistent. We now 
derive the incremental function of our scheme. A slight 
rearrangement of (2.11) and application of Taylor series 
expansion leads to 

      
2 3

6
( ) .1

2 6

h h
y y h f f f O hn n n nn

 
           (3.2) 

Ignoring higher order terms in (3.2) and comparing the 
resulting expression with (3.1), we obtain that 

            
2

( , ; ) .
2 6

h h
x y h f f fn n n n n

 
                    (3.3) 

In the next section we check consistency and convergence of 
the proposed numerical method. 
 

3.1 Consistency 
Definition 3.1 (Fatunla [6]) A numerical scheme with an 

incremental function ( , ; )x y hn n  is said to be consistent 

with the initial value problem (1.1)  if 

                  ( , ; 0) ( , ).x y f x yn n n n                           (3.4) 

If we apply Fatunla [6], Henrici [9] and the above definition 

with 0h , we can see that our method is indeed consistent. 

3.2 Convergence 
To show that the scheme is not only consistent but 
convergent, we shall rely on the celebrated theorems of 
Lambert [13] and Henrici [9]. 

Theorem 3.1 Given a differential equation of the form 

( , )y f x y

 , ( )y a z , let ( , )f x y  be defined and 

continuous for all points in the region   defined by 

a x b  , ,y     ( ,a b finite) and let there exist a 

constant L  such that for every x , y , 
*

y , with ( , )x y  and 

*
( , )x y  both in   

          * *
| ( , ) ( , ) | | | .f x y f x y L y y                       (3.5) 

If z  is any given number, then there exists a unique solution 

( )y x  of the initial value problem [2, 13]. 

The condition (3.5) is known as the Lipschitz condition. L  is 
a Lipschitz constant. We regard  the above condition as being 
intermediate between differentiability and continuity in the 

sense that if ( , )f x y  is continually differentiable with respect 

to y  for all ,x y   , this implies that ( , )f x y  satisfies the 

Lipschitz condition with respect to y  for all ,x y   , which 

implies that ( , )f x y  is continuous with respect to y  for all 

,x y    (cf. [6], [13]). 

In particular, if ( , )f x y  has a continuous derivative with 

respective to y , for all ,x y   , then by the Mean Value 

Theorem, we have 
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( , )* *

( , ) ( , ) ( )
f x y

f x y f x y y y
y


  


,         (3.6) 

where y  is a point in the interior of the interval  whose end-

points are y  and 
*

y  and ( , )x y , 
*

( , )x y  are both in  . It 

follows that (3.5) can be satisfied if we choose 

                  
( , )

sup .
,

f x y
L

x y y




 
                              (3.7) 

Theorem 3.2 (Henrici [9]) Let the function ( , ; )x y h  be 

continuous in the region defined by [ , ]x a b , ( , )y    , 

0 0h h  , 00h  , and let there exist a constant L  such 

that 

           * *
| ( , ; ) ( , ; ) | | |x y h x y h L y y                  (3.8) 

for all *, , ,x y y h  in the region just defined. Then the relation 

                       ( , ; 0) ( , )x y f x y                                (3.9) 

is a necessary and sufficient condition for the convergence of 

the method defined by the incremental function  . 

Theorem 3.3 The numerical scheme in (2.11) represented by 
the incremental function (3.3) is convergent and consistent. 

Proof. 

The proof follows directly from (3.3) and Definition 3.1. 

4. STABILITY OF THE SCHEME 
In order to prove the stability of the numerical scheme, we 
shall state the following theorem 

Theorem 4.1 (Lambert [13]) Assume that ( )y y xn n  and 

( )l l xn n  denote two different solutions of the initial value 

problem (1.1) with the initial conditions specified as 

( )
0

y x z  and *( )0l x z , respectively, and such that 

*| |z z   , 0  . If the two numerical estimates are generated 

by 

                         ( , ; )1y y h x y hn n                                (4.1) 

                          ( , ; )1l l h x y hn n                                 (4.2) 

then the condition 

                         *| | | |1 1y l L z zn n                               (4.3) 

is necessary and sufficient for the numerical scheme be stable 
and convergent. 

Theorem 4.2 The method represented by (2.11) with 
incremental function 

  
2

( , ; )
2 6

h h
x y h f f fn n n n n      

  is stable and convergent. 

Proof. 

In the proof of the theorem, we follow Lambert [13].  Let 

   
1n ny y 

2
( , ) ( , ) ( , )

2 6

h h
h f x y f x y f x yn n n n n n

 
    

  

       (4.4) 

and   

     
2

( , ) ( , ) ( , )
1 2 6

h h
l l h f x l f x l f x ln n n n n nn n

 
     

   

    (4.5) 

so that 

      {[ ( , ) ( , )]1 1y l y l h f x y f x ln n n n n n n n        

                    [ ( , ) ( , )]
2

h
f x y f x l

n n n n
 

   

                   
2

[ ( , ) ( , )]}.
6

h
f x y f x l

n n n n
 

             (4.6) 

If we apply the Mean Value Theorem, we have 

      
( , )

( , ) ( , ) ( )
f x ynf x y f x l y ln n n n n n

yn


  


                  (4.7) 

where y  is a point in the interior of the interval whose 

endpoints are y  and l . Let 

   

                         
( , )

( ),1
f x ynL y ln n

yn


 


                       (4.8) 

                        
( , )

( ),2
f x ynL y ln n

yn


 


                       (4.9) 

and 

                         
( , )

( ).3
f x ynL y ln n

yn


 


                    (4.10) 

Then (4.6) can be written as 

             1 1y l y ln n n n     

              
2

( ),1 2 3
2 6

h h
h L L L y l

n n

 
    
  

                 (4.11) 

and 

                   | | | | | ( )|1 1y l y l hK y ln n n n n n       

                                       |1 || |,hK y ln n    

where  

 
2

.1 2 3
2 6

h h
K L L L    

 

Given 0  , ( )y x z , *( )l x z  and |1 |L hK  , then 

            *| | | |.1 1y l L z zn n     

 Since the solution is bounded, we conclude that our method, 
(2.11), is stable and convergent. 
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4.1 Region of absolute stability (RAS) 
One of the practical criteria for a numerical method to be 

useful is that it must have a region of absolute stability. 

Definition 4.1 A numerical method for solution of (1.1) is 
called absolutely stable if when applied to the scalar equation 

                             ,y y                                        (4.12) 

 it yields values { } 0y j j  with the property that 0y j  as 

j . The set of values h   for which a method is 

absolutely stable is called the set (or region) of absolute 
stability [1]. 

The notion of absolute stability provides a way to determine 
whether a numerical method will produce reasonable results 

with a given value of 0h . To obtain the region of absolute 

stability for our scheme, we apply the scheme (2.11) to the 
test problem (4.12). 

We proceed to determine fn , fn
 , fn

  and substitute in 

equation (2.11). Note that for (4.12) ( , )f x y y , so that at the 

points x xn , we have f yn n . The following equation is 

obtained 

                   ( )1y R h yn n                                       (4.3) 

with 

                      
2 3

( ) 1 ,
2 6

z z
R z z                                (4.4) 

which is the stability polynomial of the method. The region of 
absolute stability is the region (in the complex plane) defined 

by |1 ( )| 1R z   (for a rigorous definition of stability, see [7]). 

Figure 1. shows the region of absolute stability for the scheme 

(2.11) obtained by using the MATLAB package [8]. 

 

Figure 1. Region of absolute stability for the numerical 

scheme (2.11). 

5. COMPUTATIONAL EXAMPLES 
We illustrate the usefulness of our method by applying it to 
four examples. We compare the performance of the method 
with that of three other well-known methods, Euler's method, 

the Euler-Trapezoidal predictor-corrector method, with two 
corrections applied per step, and the Runge Kutta method. The 
performance of the proposed numerical scheme relative to the 
other methods is further illustrated in Tables 1-4, in which we 
tabulate numerical solutions of the four IVPs in Figures 2-5 
using four different numerical methods. Notice that besides 
the numerical solutions of the three methods mentioned in 
Figures 2-5, the tabulated solutions include those obtained by 

the Runge Kutta method. MATLAB [8] was used to perform 
numerical computations and to generate the graphs in Figure 

5.1. 
 

              

 

                        Figure 2.  IVP: 2 2,   (1) 1y t y y        Figure 3.  IVP: 3 21 ,    (0) 0y t y y     
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                    Figure 4.  IVP: ,     (0) 0yy e t y        Figure 5.  IVP: 3 2( ) ( / ) ,    (1) 1y ty y t y    

                Table 1: For IVP 2 2,   (1) 1y t y y                                Table 2:  For IVP 3 21 ,    (0) 0y t y y     

t Euler 
E-T 

scheme 

New 

scheme 
R Kutta    t Euler 

E-T 

scheme 

New 

scheme 
R Kutta 

1.1 1.00000 1.009444 1.009667 1.009682 
 

0.25 0.2500 0.2562 0.2552 0.2543 

1.2 1.02100 1.037113 1.03751 1.037528 
 

0.50 0.5117 0.532 0.5308 0.5292 

1.3 1.060756 1.081274 1.081815 1.08183 
 

0.75 0.7959 0.8359 0.8353 0.8328 

1.4 1.117236 1.140212 1.140872 1.140882 
 

1.00 1.0988 1.1643 1.1669 1.1620 

1.5 1.188414 1.212144 1.212897 1.212902 
 

1.25 1.4007 1.4949 1.5080 1.4965 

1.6 1.272181 1.295206 1.29602 1.296024 
 

1.50 1.6529 1.7498 1.8002 1.7680 

1.7 1.366337 1.387482 1.388322 1.388328 
 

1.75 1.7422 1.6745 1.8496 1.7520 

1.8 1.468649 1.487077 1.487903 1.487914 
 

2.00 1.4112 0.6874 1.0748 0.8700 

1.9 1.576956 1.592186 1.592961 1.592978 
 

2.25 0.1590 -1.211 -1.1450 -1.1850 

2.0 1.689277 1.70118 1.701871 1.701895 
 

2.50 -2.4320 -3.261 -2.8790 -3.0040 

 

           Table 3: For IVP ,     (0) 0yy e t y                                     Table 4: For IVP  3 2( ) ( / ) ,    (1) 1y ty y t y    

 t Euler 
È-T 

scheme 

New 

scheme 
R Kutta 

 
t Euler 

È-T 

scheme 

New 

scheme 
R Kutta 

0.25 0.250000 0.256230 0.255208 0.254342 
 

1.03 1 1.002299 1.002272 1.00228 

0.50 0.511719 0.532037 0.530759 0.529212 
 

1.06 1.004504 1.009368 1.009294 1.009312 

0.75 0.795933 0.835885 0.835346 0.832771 
 

1.09 1.013778 1.021674 1.021521 1.021553 

1.00 1.098841 1.164348 1.166901 1.161990 
 

1.12 1.028306 1.039976 1.039701 1.039753 

1.25 1.400704 1.494852 1.507986 1.496533 
 

1.15 1.048847 1.065453 1.064982 1.065066 

1.50 1.652916 1.749788 1.800248 1.767976 
 

1.18 1.076536 1.099911 1.099119 1.099257 

1.75 1.742199 1.674496 1.849619 1.751999 
 

1.21 1.113064 1.146187 1.144846 1.145081 

2.00 1.411170 0.687418 1.074768 0.869967 
 

1.24 1.160967 1.208925 1.206581 1.207006 

2.25 0.159020 -1.210912 -1.14489 -1.184548 
 

1.27 1.224174 1.296276 1.291933 1.292771 

2.50 -2.432314 -3.261017 -2.878922 -3.003635 
 

1.30 1.309035 1.424111 1.415235 1.41711 
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6. CONCLUSION 
We have presented a numerical scheme that is efficient, stable 

and convergent. The implementation of the scheme is simple 
and the results obtained when the scheme is applied to various 
problems shows that the scheme compares favorably with 
other schemes. We have also given a comprehensive analysis 
of the convergence of the scheme and plotted the associated 
region of Absolute Stability 
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