
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.9, May 2012

1

Performance Analysis of Floating Point Adder using

VHDL on Reconfigurable Hardware

Karan Gumber

University institute of engineering and technology
Panjab University, Chandigarh

India

Sharmelee Thangjam
University institute of engineering and technology

Panjab University, Chandigarh
India

ABSTRACT

Floating point addition is more difficult than multiplication

because alignment of mantissa is required before mantissa

addition. The main objective of implementation of floating

point adder on reconfigurable hardware i.e. on Virtex is to

utilize less chip area with less combinational delay and faster

speed. Less combinational delay means less latency i.e. less

time is required to appear an output after the input response is

applied and if there is less latency then there will be the faster

speed and lesser the clock period. Implementation of floating

point adder on Virtex 4 produces a least combinational delay

of 24.201nsec consuming 4% of chip area while

implementing same on Spartan 2 produces the greatest

combinational delay of 79.594nsec consuming 92% of chip

area. Less chip area means less number of slices is used in

reconfigurable hardware i.e. on FPGAs.

General Terms

Clock speed, Combinational delay, Chip area, Clock period,

Algorithms

Keywords

Floating point addition, FPGAs, VHDL, Xilinx

1. INTRODUCTION
Floating point operations are hard to implement on

reconfigurable hardware i.e. on FPGAs because of their

complexity of their algorithms. On the other hand, many

scientific problems require floating point arithmetic with high

level of accuracy in their calculations. Therefore VHDL

programming for IEEE single precision floating point adder in

have been explored. For implementation of floating point

adder on FPGAs module various parameters i.e. clock period,

latency, area (number of slices used), total number of paths/

destination ports, combinational delay, modeling formats etc

will be outline in the synthesis report. VHDL code for floating

point adder is written in Xilinx 8.1i and its synthesis report is

shown in Design process of Xilinx which will outline various

parameters like number of slices used, number of slice flip

flop used, number of 4 input LUTs, number of bonded IOBs,

number of global CLKs. Floating point addition is most

widely used operation in DSP/Math processors, Robots, Air

traffic controller, Digital computers because of its raising

application the main emphasis is on the implementation of

floating point adder effectively such that it uses less chip area

with more clock speed[1][2].

2. FLOATING POINT FORMAT
The advantage of floating point over fixed point format is the
range of numbers that can be presented with the fixed number

of bits. Floating point number is composed of three fields and

can be of 16, 18, 32 and 64 bit. Figure shows the IEEE

standard for floating point numbers [3] [4].

31 30 22 0

1 bit sign of signifies whether the number is positive or

negative. „1‟ indicates negative number and „0‟ indicate

positive number. 8 bit exponent provides the exponent range

from E (min) =-126 to E (max) =127. 23 bit mantissa signifies

the fractional part of a number the mantissa must not be

confused with the significand. The leading „1‟ in the

significand is made implicit [3].

2.1 Conversion of Decimal to Floating

numbers
Conversion of Decimal to Floating point 32 bit format is

explained with example. Let us take an example of a decimal

number that how could it will be converted into floating

format. Enter a decimal number suppose 129.85 before

converting into floating format this number is converted into

binary value which is 10000001.110111. After conversion

move the radix point to the left such that there will be only

one bit which is left of the radix point and this bit must be 1

this bit is known as hidden bit and also made above number of

24 bit including hidden bit which is always „1‟ like

1.00000011101110000000000 the number which is after the

radix point is called mantissa which is of 23 bits and the

whole number is called significand which is of 24 bits. Count

the number of times the radix point is shifted say „x‟. But in

above case there is 7 times shifting of radix point to the left.

This value must be added to 127 to get the exponent value i.e.

original exponent value is 127 + „x‟. In above case exponent

is 127 + 7 = 134 which is 10000110. Sign bit i.e. MSB is „0‟

because number is +ve. Now assemble result into 32 bit

format which is sign, exponent, mantissa.

01000011000000011101110000000000. Now take another

example which is totally different from above let us enter a

decimal number -0.5 which is converted into binary value

which is .000011. After conversion move the radix point to

the right in this case such that there will be only one bit which

is left of the radix point and this bit must be 1 this bit is

known as hidden bit and also made above number of 24 bit

including hidden bit which is always „1‟

1.10000000000000000000000 the number which is after the

radix point is called mantissa which is of 23 bits and the

whole number is called significand which is of 24 bits. Count

the number of times the radix point is shifted to the right say

„x‟. In this case there is 5 times shifting of radix point to the

right. This value must be subtracted to 127 to get the exponent

value i.e. original exponent value is 127 - „x‟. In above case

 Sign Exponent Mantissa

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.9, May 2012

2

exponent is 127 - 5= 122 which is 01111010. Sign bit i.e.

MSB is „1‟ because number is -ve. Now assemble result into

32 bit format which is sign, exponent, mantissa

10111101010000000000000000000000.

#Note: - Hidden bit is not included into 32 bit format this bit

is implicit. When performing operation with this format this

implicit bit is made explicit [4] [5]

3. ADDITION ALGORITHM FOR

FLOATING POINT NUMBERS
The floating point addition is the most complex operation then

the floating point multiplication since the alignment of

mantissa is required before mantissa addition. I would like to

explain floating point addition algorithm in 2 cases with

example. Case I is when both the numbers are of same sign

i.e. when both the numbers are either +ve or –ve means the

MSB of both the numbers are either 1 or 0. Case II when both

the numbers are of different sign i.e. when one number is +ve

and other number is –ve means the MSB of one number is 1

and other is 0. The flowchart of the algorithm is given below

in next page and it is explained in following steps with proper

example.

3.1 Case I: - When both numbers are of

same sign
Step 1:- Enter two numbers N1 and N2. E1, S1 and E1, S2

represent exponent and significand of N1 and N2.

Step 2:- Is E1 or E2 =‟0‟. If yes set hidden bit of N1 or N2 is

zero. If not then check is E2 > E1 if yes swap N1 and N2 now

contents of N2 in N1 and N1 in N2 and if E1 > E2 make

contents of N1 and N2 same there is no need to swap.

Step 3:- Calculate difference in exponents d=E1-E2. If d = „0‟

then there is no need of shifting the significand and if d is

more than „0‟ say „y‟ then shift S2 to the right by an amount

„y‟ and fill the left most bits by zero. Shifting is done with

hidden bit.

Step 4:- Amount of shifting i.e. „y‟ is added to exponent of N2

value. New exponent value of E2= previous E2 + „y‟. Now

result is in normalize form because E1 = E2.

Step 5:- Is N1 and N2 have different sign „no‟. In this case N1

and N2 have same sign.

Step 6:- Add the significands of 24 bits each including hidden

bit S=S1+S2.

Step 7:- Is there is carry out in significand addition. If yes

then add „1‟ to the exponent value of either E1 or new E2 and

shift the overall result of significand addition to the right by

one by making MSB of S is „1‟ and dropping LSB of

significand.

Step 8:- If there is no carry out in step 6 then previous

exponent is the real exponent.

Step 9:- Sign of the result i.e. MSB = MSB of either N1 or

N2.

Step 10:- Assemble result into 32 bit format excluding 24th bit

of significand i.e. hidden bit [6] [7].

Example Step 1: Enter N1 and N2.

N1=2.3=0 10000000 100100100000000000000000

N2=7.4=0 10000001 111011000000000000000000

E1= 10000000

E2= 10000001

S1=100100100000000000000000

S2= 111011000000000000000000

Step 2: If E2>E1. Yes then swap N1 & N2.

New N1=0 10000010 111011000000000000000000

New N2=0 10000000 100100100000000000000000

Step 3: Calculate d =E1-E2.

10000001-10000000 = 1

Step 4: Shifting of S2 to the right by one and also add 1 to E2.

N2 =0 10000000 100100100000000000000000(original)

N2= 0 10000000 010010010000000000000000 (one time

shifted)

Shifting by 1 time means add „1‟ to exponent.

Step 5: New exponent value E2 = 10000001, new significand

value S2 = 010010010000000000000000 here E1 = E2.

Step 6: S=S1+S2.

S1=111011000000000000000000

S2=010010010000000000000000

S=1001101010000000000000000

Step 7: Here is carry out add „1‟ to exponent and shift result to

the right by one bit and discard the LSB of „S‟.

Original exponent=10000010

Original significand=100110101000000000000000

Step 8: MSB of result is „0‟.

Step 9: Assemble into 32 bit format.

0 10000010 00110101000000000000000

3.2 Case II: - When both numbers are of

different sign
Step 1, 2, 3 & 4 are same as done in case I.

Step 5:- Is N1 and N2 have different sign „Yes‟.

Step 6:- Take 2‟s complement of S2 and then add it to S1 i.e.

S=S1+2‟s complement of S2.

Step 7:- Is there is carry out in significand addition. If yes

then discard the carry and also shift the result to left until

there is „1‟ in MSB also counts the amount of shifting say „z‟.

Step 8:- Subtract „z‟ from exponent value either from E1 or

E2. Now the original exponent is E1-„z‟. Also append the „z‟

amount of zeros at LSB.

Step 9:- If there is no carry out in step 6 then MSB must be

„1‟ and in this case simply replace „S‟ by 2‟s complement.

Step 10:- Sign of the result i.e. MSB = Sign of the larger

number either MSB of N1or it can be MSB of N2.

Step 10:- Assemble result into 32 bit format excluding 24th bit

of significand i.e. hidden bit [8][9].

Example

Step 1: Enter N1 and N2.

N1=128.5=0 10000110 100000001000000000000000

N2=-18.25=1 10000011 100100100000000000000000

E1=10000110

E2=10000011

S1=100000001000000000000000

S2=100100100000000000000000

Step 2: E1>E2 no need to swap.

Step 3: Calculate„d‟=E1-E2

10000110-10000011=00000011=>3 in decimal.

Step 4: Shifting of S2 to the right by three and also add 3 to

E2.

N2 = 0 10000011 100100100000000000000000 (original)

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.9, May 2012

3

Figure 1: Algorithm for floating point addition

 Start

Enter N1 and N2 in

Floating Format

Is E1 or E2=0

Is E2>E1

Calculate Difference d=E1-E2

Set S23 =0 of N1

or N2 i.e. hidden

bit

Swap N1 and N2

Shift S2 of N2 to right by Amount„d‟ And fill left most bit by

Zero‟s. Shifting is done by Hidden Bit.

Amount of Shifting i.e. „d‟ is added to the exponent of N2 .New exponent of N2

=D+E2 {Expo N1=Expo N2}. Now result is in normalized form

Are N1 and N2

having different

sign?

Discard Carry and shift the result to left

until there is „1‟ at MSB fill least

significant bits by zero. Calculate

amount of shifting say „x‟

Compute

Sign=Sign of N1

or N2

Compute

Significant

S=S1+S2

Add 1 to Exponent and

Also Shift overall result to

right dropping LSB and

making MSB „1‟

Previous

Exponent is

the real

Exponent

Replace S2 of N2 by 2‟s

complement

Compute Significant

S=S1+S2

Amount of Shifting is Subtracting from Exponent to

produce original exponent .Exponent of result

=N1Expo/N2Expo-„x‟

Assemble Result into 32 bit format

Replace S by 2s

Complement

Compute

Sign=Sign of

larger number

MSB is „1‟

 Yes

yes

No

Yes

No

No Yes

Yes No

No

Carry

Out

Carry

Out

Carry

Out

Yes

No Carry Out

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.9, May 2012

4

N2 = 0 10000100 010010010000000000000000 (1 time

shifting)

N2 = 0 10000101 001001001000000000000000 (2 time

shifting)

N2 = 0 10000110 000100100100000000000000 (3 time

shifting)

Shifting by 1 time means add „1‟ to exponent.

Step 5: New exponent value E1 = 10000110, new significand

value S2 = 000100100100000000000000 here E1=E2 i.e.

result is in normalized form.

Step 6: Take 2‟s complement of S2 because S2 is -ve i.e.

S=S1+2‟s complement of S2.

S1=100000001000000000000000

S2=111011011100000000000000

S=1011011100100000000000000

Step 7: Here is carry out add lets discard the carry and shift

result to the left by one bit to make MSB „1‟ and then

subtract the amount of shifting from E1 or E2 to form original

exponent of result.

Original exponent=10000110-1=10000101

Original significand=110111001000000000000000

Step 8:- Sign bit of result i.e. MSB= Sign of 128.5 which is

larger number.

Step 9: Assemble into 32 bit format.

0 10000101 110111001000000000000000

3.3 Special Conditions
There are some special conditions while implementing

floating point adder which needs to be handle these are

explained below

1: If N1 = N2 = „0‟ then overall result is „0‟.

2: If E1=E2 and sign bit of E1 ≠ E2 then again overall result is

„0‟.

3: If E1= „0‟ and E2 ≠ „0‟ then overall result is equal to E2.

4: If E2= „0‟ and E1 ≠ „0‟ then overall result is equal to E1

5: If d= E1-E2 ≥24 then overall result is larger of E1 or E2

[10].

3.4 Problems associated in addition
There are two problems which occurs when we are going to

add two floating point numbers

1: When the exponent of two numbers are different this can be

solved by shifting the significand of smaller number to the

right by an amount equal to exponent difference and this

amount is added to exponent value of smaller number to make

exponent of both the numbers are same means in normalized

form

2: When there is carry out in significand addition if both the

number are of different sign then add „1‟ to the exponent and

shift the result of significand to the right by one discarding

LSB and if both the number are of different sign then discard

the carry and shift the result to the left until there is „1‟ at

MSB the amount of shifting is subtracted from exponent to

form real exponent [10] [11].

4. SYNTHESIS REPORT
These are the final results which are obtained in the synthesis

report when we are going to simulate VHDL code of floating

point adder on Spartan 2 and Virtex 4.Table I and Table II

show the implementation of floating point adder on Spartan 2.

.Table III and Table IV shows the implementation of floating

point adder on Virtex 4. The parameters such as number of

slices, number of slice flip flop, GCLKs are outline in the

synthesis report are as follows.

Table I: Spartan 2(xc2s30-6tq144) Speed Grade = -6

Logic

Utilization

Used Available Utilization

Number of

Slices

401 432 92%

Number of

slice Flip

Flop

72 864 8%

Number of 4

input LUTs

710 864 82%

Number of

bonded IOBs

99 96 103%

Number of

Global CLKs

2 4 50%

Table II: Implementation of floating point adder on

Spartan 2 also outline these following parameters

Parameters Values

Clock Period 3.657nsec

Maximum Frequency 273.411MHz

Combinational Delay 79.594nsec

Memory Usage 157848Kbytes

Table III: Virtex 4 (xc4cfx12-12sf363) Speed Grade = -12

Logic

Utilization

Used Available Utilization

Number of

Slices

401 5472 4%

Number of

slice Flip

Flop

72 10944 0%

Number of 4

input LUTs

710 10944 0%

Number of

bonded IOBs

99 240 41%

Number of

Global CLKs

2 32 6%

Table IV: Implementation of floating point adder on

Virtex 4 also outline these following parameters

Parameters Values

Clock Period 1.269nsec

Maximum Frequency 789.266MHz

Combinational Delay 24.201nsec

Memory Usage 244468Kbytes

5. CONCLUSION AND FUTURE WORK
We have analyzed a way of implementing floating point adder

on virtex family causes reduction in latency and consume

much less chip area. Further, the VHDL code for

implementation of floating point adder can be optimized and

then routed on Virtex 6 for further decrease in combinational

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.9, May 2012

5

delay and less consumption of chip area. In future, these

modules can be converted to IEEE-754 double-precision

format. The implementation of these units will ease the

implementation of computationally intense scientific

applications.

6. ACKNOWLEDGMENTS
I would like to thanks the anonymous reviewers for their

insightful comments.

7. REFERENCES
[1] Ali malik, Dongdong chenand Soek bum ko, “Design

tradeoff analysis of floating point adders in FPGAs,”

Can. J. elect. Comput. Eng., ©2008IEEE.

[2] Loucas Louca, Todd A cook and William H. Johnson,

“Implementation of IEEE single precision floating point

addition and multiplication on FPGAs,”©1996 IEEE.

[3] Alexandru, Mircea, Lucian and Oana, “Exploiting

parallelism in double path adder structure for increase

througput of floating point addition ,” ©2007 IEEE.

[4] V. Y. Gorshtein, A. I Grushin, SR Shevtsov, “Floating

point addtion method and apparatus,” Sun microsystem

U.S patent 5808926,1998.

[5] IEEE std. 1076-2002, “IEEE stsndard VHDL reference

manual,” Sponsored by Design Automation standards

Committee published by IEEE.

[6] Metin Mete, Mustafa Gok, “A multiprecision floating

point adder,” ©2011 IEEE.

[7] Florent de Dinechin, “Pipelined FPGA adders,” ©2010

IEEE.

[8] Ali malik, Soek bum ko , “Effective implementation of

floating point adder using pipelined LOP in FPGAss,”

©2010 IEEE.

[9] Allan, Wayne Luk, “ Parametised floating point

arithmetic on FPGA,”© 2001 IEEE.

[10] Dr. John A. Eldon, Craig Robertson, “ A floating point

format for signal processing,” ©2002 IEEE.

[11] Asger, David, C. N. lyu, “ An IEEE complaint floating

point adder that conforms with the pipelined packet

forwarding paradigm,” ©2000 IEEE.

