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ABSTRACT 

Floating point addition is more difficult than multiplication 

because alignment of mantissa is required before mantissa 

addition. The main objective of implementation of floating 

point adder on reconfigurable hardware i.e. on Virtex is to 

utilize less chip area with less combinational delay and faster 

speed. Less combinational delay means less latency i.e. less 

time is required to appear an output after the input response is 

applied and if there is less latency then there will be the faster 

speed and lesser the clock period. Implementation of floating 

point adder on Virtex 4 produces a least combinational delay 

of 24.201nsec consuming 4% of chip area while 

implementing same on Spartan 2 produces the greatest 

combinational delay of 79.594nsec consuming 92% of chip 

area.  Less chip area means less number of slices is used in 

reconfigurable hardware i.e. on FPGAs.  
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1. INTRODUCTION 
Floating point operations are hard to implement on 

reconfigurable hardware i.e. on FPGAs because of their 

complexity of their algorithms. On the other hand, many 

scientific problems require floating point arithmetic with high 

level of accuracy in their calculations. Therefore VHDL 

programming for IEEE single precision floating point adder in 

have been explored. For implementation of floating point 

adder on FPGAs module various parameters i.e. clock period, 

latency, area (number of slices used), total number of paths/ 

destination ports, combinational delay, modeling formats etc 

will be outline in the synthesis report. VHDL code for floating 

point adder is written in Xilinx 8.1i and its synthesis report is 

shown in Design process of Xilinx which will outline various 

parameters like number of slices used, number of slice flip 

flop used, number of 4 input LUTs, number of bonded IOBs, 

number of global CLKs. Floating point addition is most 

widely used operation in DSP/Math processors, Robots, Air 

traffic controller, Digital computers because of its raising 

application the main emphasis is on the implementation of 

floating point adder effectively such that it uses less chip area 

with more clock speed[1][2].  

2. FLOATING POINT FORMAT 
The advantage of floating point over fixed point format is the 
range of numbers that can be presented with the fixed number 

of bits. Floating point number is composed of three fields and 

can be of 16, 18, 32 and 64 bit. Figure shows the IEEE 

standard for floating point numbers [3] [4].                                                                       

31        30                         22                    0

          

 
1 bit sign of signifies whether the number is positive or 

negative. „1‟ indicates negative number and „0‟ indicate 

positive number. 8 bit exponent provides the exponent range 

from E (min) =-126 to E (max) =127. 23 bit mantissa signifies 

the fractional part of a number the mantissa must not be 

confused with the significand. The leading „1‟ in the 

significand is made implicit [3]. 

2.1 Conversion of Decimal to Floating 

numbers 
Conversion of Decimal to Floating point 32 bit format is 

explained with example. Let us take an example of a decimal 

number that how could it will be converted into floating 

format. Enter a decimal number suppose 129.85 before 

converting into floating format this number is converted into 

binary value which is 10000001.110111. After conversion 

move the radix point to the left such that there will be only 

one bit which is left of the radix point and this bit must be 1 

this bit is known as hidden bit and also made above number of 

24 bit including hidden bit which is always „1‟ like 

1.00000011101110000000000 the number which is after the 

radix point is called mantissa which is of 23 bits and the 

whole number is called significand which is of 24 bits. Count 

the number of times the radix point is shifted say „x‟. But in 

above case there is 7 times shifting of radix point to the left. 

This value must be added to 127 to get the exponent value i.e. 

original exponent value is 127 + „x‟. In above case exponent 

is 127 + 7 = 134 which is 10000110. Sign bit i.e. MSB is „0‟ 

because number is +ve. Now assemble result into 32 bit 

format which is sign, exponent, mantissa. 

01000011000000011101110000000000. Now take another 

example which is totally different from above let us enter a 

decimal number -0.5 which is converted into binary value 

which is .000011. After conversion move the radix point to 

the right in this case such that there will be only one bit which 

is left of the radix point and this bit must be 1 this bit is 

known as hidden bit and also made above number of 24 bit 

including hidden bit which is always „1‟ 

1.10000000000000000000000 the number which is after the 

radix point is called mantissa which is of 23 bits and the 

whole number is called significand which is of 24 bits. Count 

the number of times the radix point is shifted to the right say 

„x‟. In this case there is 5 times shifting of radix point to the 

right. This value must be subtracted to 127 to get the exponent 

value i.e. original exponent value is 127 - „x‟. In above case 

    Sign                  Exponent                        Mantissa 
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exponent is 127 - 5= 122 which is 01111010. Sign bit i.e. 

MSB is „1‟ because number is -ve. Now assemble result into 

32 bit format which is sign, exponent, mantissa 

10111101010000000000000000000000. 

#Note: - Hidden bit is not included into 32 bit format this bit 

is implicit. When performing operation with this format this 

implicit bit is made explicit [4] [5] 

3. ADDITION ALGORITHM FOR 

FLOATING POINT NUMBERS  
The floating point addition is the most complex operation then 

the floating point multiplication since the alignment of 

mantissa is required before mantissa addition. I would like to 

explain floating point addition algorithm in 2 cases with 

example. Case I is when both the numbers are of same sign 

i.e. when both the numbers are either +ve or –ve means the 

MSB of both the numbers are either 1 or 0. Case II when both 

the numbers are of different sign i.e. when one number is +ve 

and other number is –ve means the MSB of one number is 1 

and other is 0. The flowchart of the algorithm is given below 

in next page and it is explained in following steps with proper 

example. 

3.1 Case I: - When both numbers are of 

same sign 
Step 1:- Enter two numbers N1 and N2. E1, S1 and E1, S2 

represent exponent and significand of N1 and N2. 

Step 2:- Is E1 or E2 =‟0‟. If yes set hidden bit of N1 or N2 is 

zero. If not then check is E2 > E1 if yes swap N1 and N2 now 

contents of N2 in N1 and N1 in N2 and if E1 > E2 make 

contents of N1 and N2 same there is no need to swap. 

Step 3:- Calculate difference in exponents d=E1-E2. If d = „0‟  

then there is no need of shifting the significand and if d is 

more than „0‟ say „y‟ then shift S2 to the right by an amount 

„y‟ and fill the left most bits by zero. Shifting is done with 

hidden bit. 

Step 4:- Amount of shifting i.e. „y‟ is added to exponent of N2 

value. New exponent value of E2= previous E2 + „y‟. Now 

result is in normalize form because E1 = E2. 

Step 5:- Is N1 and N2 have different sign „no‟. In this case N1 

and N2 have same sign. 

Step 6:- Add the significands of 24 bits each including hidden 

bit S=S1+S2. 

Step 7:- Is there is carry out in significand addition. If yes 

then add „1‟ to the exponent value of either E1 or new  E2 and 

shift the overall result of significand addition to the right by 

one by making MSB of S is „1‟ and dropping LSB of 

significand. 

Step 8:- If there is no carry out in step 6 then previous 

exponent is the real exponent. 

Step 9:- Sign of the result i.e. MSB = MSB of either N1 or 

N2.  

Step 10:- Assemble result into 32 bit format excluding 24th bit 

of significand i.e. hidden bit [6] [7]. 

Example Step 1: Enter N1 and N2. 

N1=2.3=0 10000000 100100100000000000000000 

N2=7.4=0 10000001 111011000000000000000000 

E1= 10000000 

E2= 10000001 

S1=100100100000000000000000 

S2= 111011000000000000000000 

Step 2: If E2>E1. Yes then swap N1 & N2. 

New N1=0 10000010 111011000000000000000000 

New N2=0 10000000 100100100000000000000000 

Step 3: Calculate d =E1-E2. 

10000001-10000000 = 1 

Step 4: Shifting of S2 to the right by one and also add 1 to E2. 

N2 =0 10000000 100100100000000000000000(original) 

N2= 0 10000000 010010010000000000000000 (one time 

shifted) 

Shifting by 1 time means add „1‟ to exponent. 

Step 5: New exponent value E2 = 10000001, new significand 

value S2 = 010010010000000000000000 here E1 = E2. 

Step 6: S=S1+S2. 

S1=111011000000000000000000 

S2=010010010000000000000000 

S=1001101010000000000000000 

Step 7: Here is carry out add „1‟ to exponent and shift result to 

the right by one bit and discard the LSB of „S‟. 

Original exponent=10000010 

Original significand=100110101000000000000000 

Step 8: MSB of result is „0‟. 

Step 9: Assemble into 32 bit format. 

0 10000010 00110101000000000000000 

3.2 Case II: - When both numbers are of 

different sign 
Step 1, 2, 3 & 4 are same as done in case I. 

Step 5:- Is N1 and N2 have different sign „Yes‟. 

Step 6:- Take 2‟s complement of S2 and then add it to S1 i.e. 

S=S1+2‟s complement of S2. 

Step 7:- Is there is carry out in significand addition. If yes 

then discard the carry and also shift the result to left until 

there is „1‟ in MSB also counts the amount of shifting say „z‟. 

Step 8:- Subtract „z‟ from exponent value either from E1 or 

E2. Now the original exponent is E1-„z‟. Also append the „z‟ 

amount of zeros at LSB. 

Step 9:- If there is no carry out in step 6 then MSB must be 

„1‟ and in this case simply replace „S‟ by 2‟s complement. 

Step 10:- Sign of the result i.e. MSB = Sign of the larger 

number either MSB of N1or it can be MSB of N2. 

Step 10:- Assemble result into 32 bit format excluding 24th bit 

of significand i.e. hidden bit [8][9]. 

Example 

Step 1: Enter N1 and N2. 

N1=128.5=0 10000110 100000001000000000000000 

N2=-18.25=1 10000011 100100100000000000000000 

E1=10000110 

E2=10000011 

S1=100000001000000000000000 

S2=100100100000000000000000 

Step 2: E1>E2 no need to swap. 

Step 3: Calculate„d‟=E1-E2 

10000110-10000011=00000011=>3 in decimal. 

Step 4: Shifting of S2 to the right by three and also add 3 to 

E2. 

N2 = 0 10000011 100100100000000000000000 (original)

 



International Journal of Computer Applications (0975 – 8887) 

Volume 46– No.9, May 2012 

3 

 

Figure 1: Algorithm for floating point addition 
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N2 = 0 10000100 010010010000000000000000 (1 time 

shifting) 

N2 = 0 10000101 001001001000000000000000 (2 time 

shifting) 

N2 = 0 10000110 000100100100000000000000 (3 time 

shifting) 

Shifting by 1 time means add „1‟ to exponent. 

Step 5: New exponent value E1 = 10000110, new significand 

value S2 = 000100100100000000000000 here E1=E2 i.e. 

result is in normalized form. 

Step 6: Take 2‟s complement of S2 because S2 is -ve i.e. 

S=S1+2‟s complement of S2. 

S1=100000001000000000000000 

S2=111011011100000000000000 

S=1011011100100000000000000 

Step 7: Here is carry out add lets discard the carry and shift 

result to the left by one bit  to make MSB „1‟ and then 

subtract the amount of shifting from E1 or E2 to form original 

exponent of result. 

Original exponent=10000110-1=10000101 

Original significand=110111001000000000000000 

Step 8:- Sign bit of result i.e. MSB= Sign of 128.5 which is 

larger number. 

Step 9: Assemble into 32 bit format. 

0 10000101       110111001000000000000000 

3.3 Special Conditions 
There are some special conditions while implementing 

floating point adder which needs to be handle these are 

explained below 

1: If N1 = N2 = „0‟ then overall result is „0‟. 

2: If E1=E2 and sign bit of E1 ≠ E2 then again overall result is 

„0‟. 

3: If E1= „0‟ and E2 ≠ „0‟ then overall result is equal to E2. 

4: If E2= „0‟ and E1 ≠ „0‟ then overall result is equal to E1  

5: If d= E1-E2 ≥24 then overall result is larger of E1 or E2 

[10].  

3.4 Problems associated in addition 
There are two problems which occurs when we are going to 

add two floating point numbers 

1: When the exponent of two numbers are different this can be 

solved by shifting the significand of smaller number to the 

right by an amount equal to exponent difference and this 

amount is added to exponent value of smaller number to make 

exponent of both the numbers are same means in normalized 

form 

2: When there is carry out in significand addition if both the 

number are of different sign then add „1‟ to the exponent and 

shift the result of significand to the right by one discarding 

LSB and if both the number are of different sign then discard 

the carry and shift the result to the left until there is „1‟ at 

MSB the amount of shifting is subtracted from exponent to 

form real exponent [10] [11]. 

 

4. SYNTHESIS REPORT 
These are the final results which are obtained in the synthesis 

report when we are going to simulate VHDL code of floating 

point adder on Spartan 2 and Virtex 4.Table I and Table II 

show the implementation of floating point adder on Spartan 2. 

.Table III and Table IV shows the implementation of floating 

point adder on Virtex 4. The parameters such as number of 

slices, number of slice flip flop, GCLKs are outline in the 

synthesis report are as follows. 

Table I: Spartan 2(xc2s30-6tq144) Speed Grade = -6 

Logic 

Utilization 

Used Available Utilization 

Number of 

Slices 

401 432 92% 

Number of 

slice Flip 

Flop 

72 864 8% 

Number of 4 

input LUTs 

710 864 82% 

Number of 

bonded IOBs 

99 96 103% 

Number of 

Global CLKs 

2 4 50% 

Table II: Implementation of floating point adder on 

Spartan 2 also outline these following parameters 

Parameters Values 

Clock Period 3.657nsec 

Maximum Frequency 273.411MHz 

Combinational Delay 79.594nsec 

Memory Usage 157848Kbytes 

Table III: Virtex 4 (xc4cfx12-12sf363) Speed Grade = -12 

Logic 

Utilization 

Used Available Utilization 

Number of 

Slices 

401 5472 4% 

Number of 

slice Flip 

Flop 

72 10944 0% 

Number of 4 

input LUTs 

710 10944 0% 

Number of 

bonded IOBs 

99 240 41% 

Number of 

Global CLKs 

2 32 6% 

Table IV: Implementation of floating point adder on 

Virtex 4 also outline these following parameters 

Parameters Values 

Clock Period 1.269nsec 

Maximum Frequency 789.266MHz 

Combinational Delay 24.201nsec 

Memory Usage 244468Kbytes 

5. CONCLUSION AND FUTURE WORK 
We have analyzed a way of implementing floating point adder 

on virtex family causes reduction in latency and consume 

much less chip area. Further, the VHDL code for 

implementation of floating point adder can be optimized and 

then routed on Virtex 6 for further decrease in combinational 
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delay and less consumption of chip area. In future, these 

modules can be converted to IEEE-754 double-precision 

format. The implementation of these units will ease the 

implementation of computationally intense scientific 

applications. 

6. ACKNOWLEDGMENTS 
I would like to thanks the anonymous reviewers for their 

insightful comments. 

7. REFERENCES 
[1] Ali malik, Dongdong chenand Soek bum ko, “Design 

tradeoff analysis of floating point adders in FPGAs,” 

Can. J. elect. Comput. Eng., ©2008IEEE. 

[2] Loucas Louca, Todd A cook and William H. Johnson, 

“Implementation of IEEE single precision floating point 

addition and multiplication on FPGAs,”©1996 IEEE. 

[3] Alexandru, Mircea, Lucian and Oana, “Exploiting 

parallelism in double path adder structure for increase 

througput of floating point addition ,” ©2007 IEEE. 

[4] V. Y. Gorshtein, A. I Grushin, SR Shevtsov, “Floating 

point addtion method and apparatus,” Sun microsystem 

U.S patent 5808926,1998. 

[5] IEEE std. 1076-2002, “IEEE stsndard VHDL reference 

manual,” Sponsored by Design Automation standards 

Committee published by IEEE. 

[6] Metin Mete, Mustafa Gok, “A multiprecision floating 

point adder,” ©2011 IEEE. 

[7] Florent de Dinechin, “Pipelined FPGA adders,” ©2010 

IEEE. 

[8] Ali malik, Soek bum ko , “Effective implementation of 

floating point adder using pipelined LOP in FPGAss,” 

©2010 IEEE. 

[9] Allan, Wayne Luk, “ Parametised floating point 

arithmetic on FPGA,”© 2001 IEEE. 

[10] Dr. John A. Eldon, Craig Robertson, “ A floating point 

format for signal processing,” ©2002 IEEE. 

[11]  Asger, David, C. N. lyu, “ An IEEE complaint floating 

point adder that conforms with the pipelined packet 

forwarding paradigm,” ©2000 IEEE. 

 


