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ABSTRACT 

The paper introduces an operation on a binary tree, called 

binary tree roll, or roll of a binary tree. Two versions of the 

binary tree roll, counterclockwise and clockwise, are 

presented. The operations are mathematically defined and 

graphically presented. It is explained how the binary tree roll 

actually coincides with the process of turning the entire tree 

90 degrees counterclockwise or clockwise. To visually 

explain and perform the roll operation, the concepts of a 

wedge node, true ancestor, illusory ancestor, illusory root and 

illusory ancestral stem of nodes are introduced, as well as the 

visual operations of turning and downshift. Both roll 

operations are implemented using programming algorithms. 

The algorithms are explained, and all the situations that might 

be encountered during processing the roll operation are 

examined and resolved. Thus, the paper gives a mathematical 

introduction of both binary tree roll operations, gives their 

visual explanations and offers algorithms for their 

implementations using a computer. 
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1. INTRODUCTION 
Trees are fundamental concepts in computer science, and are 

frequently used to keep track of ancestors or descendants, 

sports tournaments, organizational charts of large corporations 

and so on [1]. Trees arise naturally as means to describe state 

spaces during the course of recursive algorithm processing, 

such as backtracking [2, 3], and also games (like tic-tac-toe, 

chess etc). Trees are composed of nodes and edges, the latter 

serving as links between nodes. The term “tree” implicitly 

carries an assumption that the tree is rooted, meaning that a 

special node is designated as the root of the tree, and all nodes 

that are connected to it are its sub-nodes (also called children 

or descendants) – the root is assigned the highest order in the 

hierarchy of the tree.  

Each (rooted) tree has levels of hierarchy, i.e. a set of nodes 

having the same number of predecessors, or ancestors, from 

the root. Commonly, the predecessor nodes are displayed 

higher in the hierarchy, whereas the descendant nodes are 

displayed lower. The root is displayed the highest, and it is the 

only node that has no predecessor of its own. 

Some trees are ordered inside a level. In ordered trees, the 

order in which the sub-nodes of a certain node (called the sub-

nodes‟ parent or ancestor) are arranged is significant – each 

sub-node has an assigned position order relative to other sub-

nodes having the same parent node. Binary trees are special 

kinds of trees, where each node (including the root) has at 

most two sub-nodes. Thus, in a binary ordered tree, the 

notions of a left and right sub-node are commonly used.  

Tree traversal means processing every node by performing a 

certain function on it exactly once (a basic function would be 

to print out the node‟s information, for example). Since trees 

can be viewed as acyclic undirected graphs [4], the basic 

graph traversal techniques, namely depth-first and breadth-

first traversals, are also applicable to trees. Adding the 

additional constraints of a root and at most two sub-nodes to 

every node, so as to obtain a binary tree, yields three depth-

first traversal techniques, which are preorder, inorder and 

postorder, and one breadth-first traversal technique, which is 

level-order traversal [1].  

The notions of “function” and “operation” on a binary tree are 

commonly used as synonyms (e.g. [5, 6, 7]). However, in this 

paper, a distinction will be made. A function on a binary tree 

is a procedure that does not change the internal structure of 

the binary tree. Thus, all traversals of the tree would be 

functions, as well as finding the height of the tree, the width 

of the tree, the number of nodes in the tree etc. On the other 

hand, an operation on a binary tree is a procedure that changes 

the internal structure of the binary tree. In other words, 

insertion of a node in the tree, deletion of a node in the tree, 

tree rotation [8] etc would all be operations on a binary tree. 

Because the structure of the binary tree changes when an 

operation is performed on it, promotion and demotion of 

nodes necessarily takes place, in a sense that nodes get 

positioned higher or lower in the hierarchy (i.e. at a shorter or 

longer distance from the root, respectively) as a result of the 

operation. 

This paper introduces the operation named binary tree roll or 

roll of a binary tree. It can be applied on any binary tree. Two 

versions of the roll operations, the counterclockwise and the 

clockwise roll, will be defined and explained, both 

mathematically and visually. It will be shown that the two 

operations are unambiguous and also inverse to one another. 

Further in the paper, algorithms for their implementations will 

be presented. Since research in the field of binary trees is 

ongoing, both theoretically [9, 10, 11] and practically [12, 13, 

14], this paper provides a new insight into the structure and 

possibilities for working with binary trees. 

2. THE DEFINITIONS 
The basis for both the counterclockwise and clockwise roll 

operation is the well known fact that a binary tree can 

unambiguously be generated given its preorder and inorder 

traversals, or its inorder and postorder traversals. In other 
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words, given a binary tree‟s inorder traversal, along with 

either one of its preorder or postorder traversals, the original 

binary tree can be reconstructed [15], and this reconstruction 

is unique, whereas for given preorder and postorder traversals 

only, the reconstruction is not unique [16]. It is important to 

mention that this is true if all nodes of the binary tree are 

different, i.e. can be differentiated from one another. The 

easiest way to differentiate the nodes of a binary tree is using 

their data fields, so therefore, throughout this paper, it will be 

assumed that all the elements of every binary tree in question 

will be different from one another.  

The counterclockwise roll of a binary tree, abbreviated 

CCW() henceforth, can now be defined. Given binary trees T1 

and T2, as well as the preorder(), inorder() and postorder() 

functions, which yield the respective traversals, operation 

CCW() is defined as 

 

 (1) 

In other words, upon CCW(), the preorder traversal of the 

original tree is identical to the inorder traversal of the tree 

obtained by the counterclockwise roll, and the inorder 

traversal of the original tree is identical to the postorder 

traversal of the tree obtained by the counterclockwise roll. 

Likewise, the clockwise roll of a binary tree, abbreviated 

CW() henceforth, can be defined as 

 

 (2) 

Similarly, upon CW(), the inorder traversal of the original tree 

is identical to the preorder traversal of the tree obtained by the 

clockwise roll, and the postorder traversal of the original tree 

is identical to the inorder traversal of the tree obtained by the 

clockwise roll. 

3. EXAMPLES 
Figure 1 shows an example of these processes and their 

results. The preorder and inorder traversals of T1 are equal to 

the respective inorder and postorder traversals of T2. In other 

words, using the preorder traversal of T1 as the inorder 

traversal of some new tree and the inorder traversal of T1 as 

the postorder traversal of the new tree, and thus 

unambiguously reconstructing the new tree, will yield tree T2 

as a result. Conversely, taking the inorder traversal of T2 and 

using it as the preorder traversal of a new tree and the 

postorder traversal of T2 and using it as the inorder traversal 

of the new tree, unambiguously reconstructing such a tree will 

yield tree T1 as a result. Upon any roll operation, the root of 

the newly obtained binary tree is different from the root of the 

original tree, which is a consequence of definitions (1) and 

(2). 

 

  

 

 

 

 

 

 

Figure 1: Example of a binary tree roll. CCW(T1) = T2. 

CW(T2) = T1. The root of every tree is marked with a 

rectangle. 

Figure 2 shows another example. More specifically, Figure 2a 

shows a balanced tree, Figure 2b shows the result obtained by 

counterclockwise roll of the tree in Figure 2a and Figure 2c 

shows the result obtained by clockwise roll of the tree in 

Figure 2a.  

Viewing trees T1 and T2 in Figure 1 leads to the thought that 

the two trees are turned 90 degrees respective to one another. 

Repeated testing has shown that this is indeed the case, and 

this has led to the roll operation originally being called 

“rotation of a binary tree” [17]. However, this is not always 

the case, as presented in Figure 2. The trees in Figure 2b and 

Figure 2c are clearly not obtained by simply rotating the tree 

in Figure 2a for 90 degrees counterclockwise and clockwise, 

respectively, even though, when viewing their respective 

traversals, it can be seen that they conform to definitions (1) 

and (2) for counterclockwise and clockwise roll, respectively. 

In the next section it will be explained why the term “binary 

tree roll” (or “roll of a binary tree”) is more appropriate for 

the given operation and how the “rotation of a binary tree” 

can be thought of as a special case of the roll of a binary tree. 

Moreover, the term “roll” will be used to denote the operation 

itself, rather than the result of it (as previously implied in 

[17]). Also, in all figures, the root of every displayed tree will 

be marked with a rectangle, for clarity. 

T1 

 

Preorder: S,t,r,i,n,g,s 

Inorder: t,S,r,n,i,s,g 

Postorder: t,n,s,g,i,r,S 

T2 

 

Preorder: g,i,r,S,t,n,s 

Inorder: S,t,r,i,n,g,s 

Postorder: t,S,r,n,i,s,g 
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4. VISUAL EXPLANATION 
In order to link the roll operation with the notion of a tree 

being turned for 90 degrees in some direction, the turning of a 

binary tree is defined as a visual operation, in which the tree is 

turned 90 degrees in some direction, so that the rightmost or 

leftmost node in the original tree becomes the root of the new 

tree, i.e. is placed the highest in the hierarchy. In the first case, 

a counterclockwise turn takes place, and the second case a 

clockwise turn takes place. Since this operation is purely 

visual, it can be stated that only the links get modified so that 

the new tree is obtained, whereas the node elements remain in 

their original, i.e. “unturned”, positions. 

Consider the balanced tree in Figure 3a (it is identical to the 

tree in Figure 2a but is repeated here for clarity). Visually, 

every ancestor node in the tree should be displayed higher 

than its descendant nodes, but, upon turning (Figure 3b and 

Figure 3c), some ancestor nodes are displayed lower than their 

descendant nodes. Specifically, in Figure 3b node „2‟ has one 

of its descendants (node „5‟) displayed higher in the picture, 

and in Figure 3c the same applies to node „3‟ (one of its 

descendants, node „6‟, is displayed higher in the picture). If 

the level of hierarchy is defined as the number of edges that a 

node is farther from the root, then it is clear that some internal 

(i.e. non-root) nodes are represented visually higher than their 

ancestor nodes. Such nodes form an illusory ancestral stem of 

nodes, containing nodes that are displayed higher than a 

certain node, but are essentially lower in the hierarchy (i.e. 

further from the root of the tree) than it. A node that has an 

illusory ancestral stem of nodes is called a wedge node, and it 

contains both a true ancestor (which is closer to the root of 

the tree) and an illusory ancestor, which is the first node 

connected to the wedge node along the illusory ancestral stem.  

It is possible that the illusory ancestor be the only node of the 

illusory ancestral stem (as depicted in Figure 3), but it‟s also 

possible that the illusory ancestral stem contain more than one 

node. In that case, the illusory root is important, which 

represents the node that is as displayed visually the highest 

along the illusory ancestral stem of nodes. If the illusory 

ancestral stem contains only one node, i.e. only the illusory 

ancestor, then it is identical to the illusory root. 

To maintain the visual representation that ancestors are 

displayed higher than the descendants, another visual 

operation needs to be performed, that would result with 

another tree, which does not have any illusory ancestral stems. 

In other words, all parts of the tree containing illusory 

ancestral stems would have to be repositioned, so that all 

ancestor nodes would be displayed higher in the hierarchy 

than their descendants. 

 a) b) c) 

Figure 3: Turning of binary trees. a) The original fully balanced tree. b) The tree from a) is turned 90 

degrees counterclockwise, with the new root of the tree set to ‘7’. The wedge node is ‘2’, its true ancestor is 

‘1’ and its illusory ancestor and illusory root is ‘5’, because the illusory ancestral stem of nodes consists only 

of node ‘5’. c) The tree from a) is turned 90 degrees clockwise and the new root of the tree is set to ‘4’. The 

wedge node is ‘3’, its true ancestor is ‘1’ and its illusory ancestor and illusory root is ‘6’, because the illusory 

ancestral stem of nodes consists only of node ‘6’. 

 

 

  

Preorder: 1, 2, 4, 5, 3, 6, 7 

Inorder: 4, 2, 5, 1, 6, 3, 7 

Postorder: 4, 5, 2, 6, 7, 3, 1 

Preorder: 7, 3, 1, 5, 2, 4, 6 

Inorder: 1, 2, 4, 5, 3, 6, 7 

Postorder: 4, 2, 5, 1, 6, 3, 7 

Preorder: 4, 2, 5, 1, 6, 3, 7 

Inorder: 4, 5, 2, 6, 7, 3, 1 

Postorder: 5, 7, 3, 6, 1, 2, 4 

 

 

  

 a) b) c) 

Figure 2: Roll of a balanced binary tree. a) The original tree, along with its preorder (underline), inorder 

(bold) and postorder (italic) traversals, which are used to build the b) counterclockwise and c) clockwise 

rolled tree 
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Such an operation is named downshift. When a wedge node 

appears upon turning, its true ancestor needs to be linked to 

the illusory root, instead of with the wedge node, in the same 

direction of linking that the wedge node was linked to. 

Essentially, that would mean visually pushing downwards the 

entire illusory ancestral stem; hence the term “downshift”. In 

counterclockwise roll, the downshift is to the left, and in 

clockwise roll, the downshift is to the right. Left downshift 

happens upon CCW() and right downshift happens upon 
CW(), when necessary (there are cases, which will be 

explained further in this chapter, when a downshift isn‟t 

necessary to complete the roll operation). 

Figure 4 demonstrates the process of obtaining a roll of a 

binary tree using turning and downshift, after which the 

results are the same as in Figure 2b and Figure 2c. Figure 5 

displays CCW() using turning and downshift in a tree in 

which the illusory ancestral stem contains more than one 

node, and therefore the illusory ancestor and the illusory root 

are different. Again, the linking of the true ancestor with the 

illusory root is the key to performing the downshift. 

Depending on the internal structure (i.e. topology) of the tree, 

performing a roll operation using turning and downshift might 

take several steps to complete. Figure 6 presents a case where, 

in order to complete a CW() operation, a clockwise turn and 

two consecutive right downshifts are needed. This is because 

two right sub-nodes (namely „3‟ and „7‟) contain left sub-trees 

of their own, and they all cause illusory ancestral stems after a 

clockwise turn, which must be handled by two consecutive 

downshifts. It is worth mentioning that, no matter the 

sequence of downshifts, as long as all illusory ancestral stems 

of nodes are downshifted, the resulting tree will comply with 

the appropriate definition for the corresponding roll operation 

(in Figure 6, the ending tree complies with definition (2), for 

clockwise roll). 

In most cases, the downshift is necessary if the roll operation 

gets performed visually using turning. However, there are 

cases when the downshift is not necessary, and the roll yields 

the same result as the turn, both visually and theoretically. 

Thus, CCW() is equal to a counterclockwise turn if no left 

sub-node in the tree has a right sub-node of its own (tree T1 in 

Figure 1 is such an example). Likewise, CW() is equal to a 

clockwise turn if no right sub-node in the tree has a left sub-

node of its own (tree T2 in Figure 1 is such an example). 

Figure 4: Achieving binary tree roll using turning and downshift 
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It is worth mentioning that the turning and the downshift 

operations, as well as the notions of a wedge node, true 

ancestor, illusory stem of ancestors, illusory ancestor and 

illusory root, are visual only and don‟t actually take place or 

appear when performing the roll operations defined by 

definitions (1) and (2). However, they are useful for 

envisioning the roll processes and obtaining the rolled trees 

without first obtaining the traversals needed to generate them.  

5. MUTUAL INVERSENESS OF THE 

ROLL OPERATIONS 
From the definitions of CCW() and CW(), i.e. definitions (1) 

and (2), it follows immediately that both operations are 

inverse respective to one another (trees T1 and T2 in Figure 1 

give a good visual demonstration of this property). As another 

example, if T1 is the tree represented in Figure 3a and T2 is the 

tree represented in Figure 3b, CCW(T1) = T2 and CW(T2) = 

Preorder: 1, 2, 4, 5, 8, 7, 9, 3, 6 

Inorder: 4, 8, 5, 9, 7, 2, 1, 6, 3 

Postorder: 8, 9, 7, 5, 4, 2, 6, 3, 1 

Preorder: 3, 1, 2, 7, 5, 4, 8, 9, 6 

Inorder: 1, 2, 4, 5, 8, 7, 9, 3, 6 

Postorder: 4, 8, 5, 9, 7, 2, 1, 6, 3 

Figure 5: CCW() of a tree using turning and downshift. After the turn, the new root of the tree is ‘3’, the wedge node is 

‘4’, its true ancestor is ‘2’, its illusory ancestor is ‘5’ and its illusory root is ‘7’, since the illusory ancestral stem of nodes 

consists of nodes ‘5’ and ‘7’. The downshift is performed by linking the true ancestor (‘2’) with the illusory root (‘7’), 

instead of the wedge node (‘4’), in the same direction of linking – the illusory root becomes the right sub-node of the true 

ancestor, just like the wedge node used to be. The traversals of the starting tree (bottom left) and the ending tree (bottom 

right) are given for clarity 

 

Preorder: 1, 2, 3, 6, 4, 5, 7, 9, 8 

Inorder: 2, 1, 5, 9, 7, 4, 6, 8, 3 

Postorder: 2, 9, 7, 5, 4, 8, 6, 3, 1 

Preorder: 2, 1, 5, 9, 7, 4, 6, 8, 3 

Inorder: 2, 9, 7, 5, 4, 8, 6, 3, 1 

Postorder: 7, 9, 8, 3, 6, 4, 5, 1, 2 

Figure 6: CW() of a tree using turning and consecutive downshifts. In the first downshift, the wedge node is ‘3’, its true 

ancestor is ‘1’, its illusory ancestor is ‘6’ and its illusory root is ‘5’, since the illusory ancestral stem of nodes consists of 

nodes ‘6’, ‘4’ and ‘5’. In the second downshift, the wedge node is ‘7’, its true ancestor is ‘5’ and its illusory ancestor and 

root is ‘9’, since the illusory ancestral stem of nodes consists only of node ‘9’. When there are no more illusory ancestral 

stems, the roll operation is complete, which can be verified by the traversals of the original tree (bottom left) and the final 

tree (bottom right) 
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T1. This can also be verified for the trees in Figure 3c (if 

considered as T1) and Figure 3a (if considered as T2). Testing 

the operations for any binary tree gives the same result. 

Therefore, it can be represented mathematically that, for any 

given binary tree T, it holds true that 

 (3) 

and 

 (4) 

6. ALGORITHMS FOR THE ROLL 

OPERATIONS 
As a result of a roll operation on a given binary tree, a new 

binary tree gets produced, which contains all the elements of 

the original binary tree, but rearranged in a different 

hierarchical structure, so as to comply with definition (1) or 

(2), depending on the direction of roll. The most 

straightforward way to accomplish the roll in the desired 

direction is to obtain the traversals of the original tree and 

then reconstruct the new tree using the appropriate traversal 

combinations according to definition (1) or (2). However, 

since the tree obtained as the result of the roll always contains 

the same elements as the original tree, it is possible to 

generate an algorithm that will rearrange the elements so as to 

obtain the rolled tree without the need to obtain the traversals 

first. An algorithm for the roll operation will now be 

presented and explained.   

Figure 7 shows the algorithm for CCW(). The algorithm is 

given in pseudocode, which most closely resembles the C++ 

programming language, and the lines are numbered, for a 

more detailed explanation. The algorithm is recursive and 

employs auxiliary variables defined within it, which are of the 

data type of a binary tree node. Normally, a node of a binary 

tree contains an information field, as well as links to the left 

sub-node and right sub-node of the same node type, called 

lSn and rSn respectively in the pseudocode. The 

information field can be of any data type, and does not need to 

be comparable (i.e. does not have to have relation operators, 

such as >, <, == or !=, defined for it). The define directive 

will be used to define (i.e. declare and initialize) auxiliary 

variables. It is assumed that the node element type can be 

compared for equality and inequality to NULL (the null 

element, containing no information or value) and any other 

node element data type. The assignment operator (=) is also 

assumed to be defined for this node element data type. For 

clarity, the function header and the subsequent recursive calls 

within the algorithm are presented with bold letters. 

Line 1 defines the function header. The function return type is 

not listed, as the algorithm itself does not produce a return 

value (if a return type would have to be listed, void would 

be a good choice). The parameters that are requested are the 

root of the tree (it is also used as the root of sub-trees in the 

subsequent recursive calls) and the root‟s predecessor, i.e. the 

node that had the root of the (sub-)tree as its sub-node. 

Initially, the predecessor node is NULL (and needs to be 

passed as such upon initial function calls), since the root of 

the original tree has no ancestor node. The values of both the 

root and the predecessor nodes are guaranteed to 

change within the function calls (since the roll operation 

requires that the root and the internal structure of the tree 

change so as to obtain the resulting tree) and that‟s why they 

are called by reference, as indicated by the ampersand (&) 

preceding them, indicating that the changes, that they‟ll be 

subjected to, would need to be carried over as the algorithm 

processes further.  

1. CCW(&root, &predecessor) 

2. { 

3.  if(root != NULL) 

4.  { 

5.   if(root.rSn == NULL) 

6.   { 

7.    root.rSn = root.lSn; 

8.    root.lSn = NULL; 

9.    CCW(root.rSn, root); 

10.   } 

11.   else 

12.   { 

13.    if(root.rSn.rSn == NULL) 

14.    { 

15.     root.rSn.rSn = root.rSn.lSn; 

16.     root.rSn.lSn = root; 

17.     root = root.rSn; 

18.     root.lSn.rSn = root.lSn.lSn; 

19.     root.lSn.lSn = NULL; 

20.     if(predecessor != NULL) 

21.      predecessor.rSn = root; 

22.     CCW(root.lSn.rSn, root.lSn); 

23.     CCW(root.rSn, root); 

24.    } 

25.    else 

26.    { 

27.     CCW(root.rSn, root); 

28.     define leftmost = root.rSn; 

29.     while(leftmost.lSn != NULL) 

30.      leftmost = leftmost.lSn; 

31.     leftmost.lSn = root; 

32.     define newroot = root.rSn; 

33.     root.rSn = NULL; 

34.     root = newroot; 

35.     if(predecessor != NULL) 

36.      predecessor.rSn = root; 

37.     CCW(leftmost.lSn, leftmost); 

38.    } 

39.   } 

40.  } 

41. } 

Figure 7: The algorithm for the counterclockwise roll (i.e. 

the CCW() operation) 

Line 3 gives the first test. The algorithm is designed to go 

through all nodes of the tree, so that the entire tree would be 

(recursively) rolled. Following some of the links (e.g. sub-

nodes of leaves of the tree) will lead to NULL values, so the 

first test is for whether the algorithm will need to proceed at 

all. Should a NULL value be encountered, the algorithm (i.e. 

the current recursive call) ends immediately, as this first if 

test does not contain an else clause. This is actually the only 

trivial case in the algorithm and is thus used as the termination 

condition for the recursive calls.  

Line 5 tests whether the root of the (sub-)tree contains a null 

right sub-node (i.e. does not contain a right sub-tree). If that is 

the case (presented visually in Figure 8), whatever is given as 

a left sub-node (which may be NULL as well) is placed as the 

right sub-node (Line 7), the left sub-node is set to NULL (Line 

8) and the now right sub-tree is recursively rolled (Line 9). 
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The idea is that, upon CCW(), left sub-trees of the nodes 

become right sub-trees of the nodes. This is the first basic 

case, when there is no right sub-tree that needs to be 

processed, so the left sub-tree is put in its place and processed 

recursively.  

 

Lines 11 and 13 test for whether there is not more than one 

right sub-node. If so, this is the second basic case (presented 

visually in Figure 9). The left sub-node of the root‟s right sub-

node will become the right sub-node of the root‟s right sub-

node (Line 15), whereas the left sub-node of the root‟s right 

sub-node will point to the root (Line 16). The root‟s right sub-

node will become the new root (Line 17). Since the former 

root is now the left sub-node of the new root, whatever was 

present as its left sub-node (it may be NULL as well) is placed 

as its right sub-node (Line 18), and its left sub-node is set to 

NULL (Line 19). Since the root changes when this case is 

reached, the predecessor‟s right sub-node should also be 

changed to point to the new root, if the currently processed 

node (i.e. root) does have a predecessor (Lines 20 and 21). 

Finally, the new root‟s left sub-node‟s right sub-node can be 

processed recursively (Line 22), as well as the new root‟s 

right sub-node (Line 23), minding to include their respective 

predecessor nodes as parameters as well.  

 

Line 25 introduces the most complex case, when the right 

sub-node has also a right sub-tree of its own (presented 

visually in Figure 10). To handle it, the algorithm first invokes 

a recursive call to the root‟s right sub-node (Line 27), so the 

function would reach one of the basic cases and handle them. 

Afterwards, the algorithm finds the leftmost sub-node of the 

root‟s right sub-tree (the “leftmost” node means a node 

containing no left sub-node of its own – Lines 28 to 31), so 

that the current root can be linked to it as its left sub-node. 

The original root‟s right sub-node will become the new root 

(Lines 32 and 34), after the original root‟s right sub-node gets 

set to NULL (Line 33). If a predecessor exists, its right sub-

node is updated to point to the new root (Lines 35 and 36). 

Afterwards, CCW() is recursively invoked upon the former 

root in its new position (Line 37). Again, since the root 

changes when this case is encountered, the predecessor node 

needs to be taken into account and its right sub-node updated. 

 

 

It may not be immediately apparent how the last case is 

connected to the roll operation. However, a closer look will 

reveal that it actually deals with the left downshift when 

CCW() is invoked upon stems of right sub-nodes (i.e. several 

nodes linked as right sub-nodes to one another). This case 

takes the root of the (sub-)tree and places it as the leftmost 

node of the root‟s right sub-node (which becomes the new 

root), but only after recursion calls have been invoked upon 

right sub-nodes progressively further down the stem, until one 

of the two basic cases, presented in Figure 6 and Figure 7, 

gets reached and handled. In this manner, a stem of right sub-

nodes will progressively become a reversed stem of left sub-

nodes, connected to the leftmost node of the sub-tree obtained 

as a result of handling one of the basic cases. Thus, left 

downshift will be achieved after a counterclockwise turn, 

progressively and recursively, one root at a time. 

The algorithm for clockwise roll (i.e. CW()), presented in 

Figure 11, is a complete “mirror image” of the algorithm for 

CCW(). In fact, if everything “left” is replaced with “right” 

and vice versa in the CCW() algorithm, the CW() algorithm 

will be obtained (it is also necessary to replace “CCW” with 

“CW”). The procedure is completely analogous with the one 

for CCW().  

7. CONCLUSION 
A new operation, called binary tree roll, has been proposed. 

The counterclockwise and clockwise roll of a binary tree have 

been presented and defined. It has been shown that they are 

proper operations, in a sense that their results are 

unambiguous, and that they change the internal structure of 

the tree. The concepts of turning and downshift have been 

introduced as a means of simplifying and visualizing the 

concept of the binary tree roll. It has been shown that both roll 

operations are inverses to one another. The algorithm and 

code for the counterclockwise roll operation has been 

presented and explained, as well as the algorithm for 

clockwise roll operation. It is believed that the new operation 

will be useful in dynamical hierarchical structures, which 

need to introduce changes (e.g. new supervisor promotion) 

and yet preserve some properties of the original structure, 

such as hierarchical structure traversal.  

  

Figure 10: If the root (O) contains a right sub-node 

(RS) with a right sub-tree of its own (R), first CCW() 

is (recursively) invoked upon R, so it would be handled 

by a basic case, or this same case (if R contains a right 

sub-tree of its own). Then, it is necessary to find the 

leftmost sub-node (LM) of the root’s right sub-node, 

i.e. of RS. In that case, O becomes the left sub-node of 

LM, whereas the right sub-node of O is set to NULL 

(so as not to point to RS anymore), and RS becomes 

the new root. CCW() is then recursively invoked upon 

O in its new position (bolded circle) 

 

  

Figure 9: The second basic case: if the root (O) 

contains a left sub-tree (L), just a single right sub-node 

(R), which in turn contains just a left sub-tree of its 

own (LS), then, after the transformation, CCW() is 

recursively invoked upon L and LS in their new 

respective positions (bolded circles) 

 

Figure 8: The first basic case: if the root (O) contains 

just a left sub-tree (L), upon CCW() it becomes the 

right sub-tree, while the root’s left sub-tree is set to 

NULL. The now right sub-tree of the root is 

recursively processed using CCW() (bolded circle) 
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1. CW(&root, &predecessor) 

2. { 

3.  if(root != NULL) 

4.  { 

5.   if(root.lSn == NULL) 

6.   { 

7.    root.lSn = root.rSn; 

8.    root.rSn = NULL; 

9.    CW(root.lSn, root); 

10.   } 

11.   else 

12.   { 

13.    if(root.lSn.lSn == NULL) 

14.    { 

15.     root.lSn.lSn = root.lSn.rSn; 

16.     root.lSn.rSn = root; 

17.     root = root.lSn; 

18.     root.rSn.lSn = root.rSn.rSn; 

19.     root.rSn.rSn = NULL; 

20.     if(predecessor != NULL) 

21.      predecessor.lSn = root; 

22.     CW(root.rSn.lSn, root.rSn); 

23.     CW(root.lSn, root); 

24.    } 

25.    else 

26.    { 

27.     CW(root.lSn, root); 

28.     define rightmost = root.lSn; 

29.     while(rightmost.rSn != NULL) 

30.      rightmost = rightmost.rSn; 

31.     rightmost.rSn = root; 

32.     define newroot = root.lSn; 

33.     root.lSn = NULL; 

34.     root = newroot; 

35.     if(predecessor != NULL) 

36.      predecessor.lSn = root; 

37.     CW(rightmost.rSn, rightmost); 

38.    } 

39.   } 

40.  } 

41. } 

Figure 11: The algorithm for the clockwise roll (i.e. the 

CW() operation) 
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