
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

40

The Binary Tree Roll Operation: Definition, Explanation

and Algorithm

Adrijan Božinovski

School of Computer Science and Information
Technology

University American College Skopje
Treta Makedonska Brigada 60

1000 Skopje, Macedonia

Nevena Ackovska
Faculty of Computer Science and Engineering

University “St. Cyril and Methodius”
Rugjer Boškoviḱ 16

1000 Skopje, Macedonia

ABSTRACT

The paper introduces an operation on a binary tree, called

binary tree roll, or roll of a binary tree. Two versions of the

binary tree roll, counterclockwise and clockwise, are

presented. The operations are mathematically defined and

graphically presented. It is explained how the binary tree roll

actually coincides with the process of turning the entire tree

90 degrees counterclockwise or clockwise. To visually

explain and perform the roll operation, the concepts of a

wedge node, true ancestor, illusory ancestor, illusory root and

illusory ancestral stem of nodes are introduced, as well as the

visual operations of turning and downshift. Both roll

operations are implemented using programming algorithms.

The algorithms are explained, and all the situations that might

be encountered during processing the roll operation are

examined and resolved. Thus, the paper gives a mathematical

introduction of both binary tree roll operations, gives their

visual explanations and offers algorithms for their

implementations using a computer.

General Terms

Algorithm, binary tree

Keywords

binary tree, roll, operation, turning, downshift, algorithm

1. INTRODUCTION
Trees are fundamental concepts in computer science, and are

frequently used to keep track of ancestors or descendants,

sports tournaments, organizational charts of large corporations

and so on [1]. Trees arise naturally as means to describe state

spaces during the course of recursive algorithm processing,

such as backtracking [2, 3], and also games (like tic-tac-toe,

chess etc). Trees are composed of nodes and edges, the latter

serving as links between nodes. The term “tree” implicitly

carries an assumption that the tree is rooted, meaning that a

special node is designated as the root of the tree, and all nodes

that are connected to it are its sub-nodes (also called children

or descendants) – the root is assigned the highest order in the

hierarchy of the tree.

Each (rooted) tree has levels of hierarchy, i.e. a set of nodes

having the same number of predecessors, or ancestors, from

the root. Commonly, the predecessor nodes are displayed

higher in the hierarchy, whereas the descendant nodes are

displayed lower. The root is displayed the highest, and it is the

only node that has no predecessor of its own.

Some trees are ordered inside a level. In ordered trees, the

order in which the sub-nodes of a certain node (called the sub-

nodes‟ parent or ancestor) are arranged is significant – each

sub-node has an assigned position order relative to other sub-

nodes having the same parent node. Binary trees are special

kinds of trees, where each node (including the root) has at

most two sub-nodes. Thus, in a binary ordered tree, the

notions of a left and right sub-node are commonly used.

Tree traversal means processing every node by performing a

certain function on it exactly once (a basic function would be

to print out the node‟s information, for example). Since trees

can be viewed as acyclic undirected graphs [4], the basic

graph traversal techniques, namely depth-first and breadth-

first traversals, are also applicable to trees. Adding the

additional constraints of a root and at most two sub-nodes to

every node, so as to obtain a binary tree, yields three depth-

first traversal techniques, which are preorder, inorder and

postorder, and one breadth-first traversal technique, which is

level-order traversal [1].

The notions of “function” and “operation” on a binary tree are

commonly used as synonyms (e.g. [5, 6, 7]). However, in this

paper, a distinction will be made. A function on a binary tree

is a procedure that does not change the internal structure of

the binary tree. Thus, all traversals of the tree would be

functions, as well as finding the height of the tree, the width

of the tree, the number of nodes in the tree etc. On the other

hand, an operation on a binary tree is a procedure that changes

the internal structure of the binary tree. In other words,

insertion of a node in the tree, deletion of a node in the tree,

tree rotation [8] etc would all be operations on a binary tree.

Because the structure of the binary tree changes when an

operation is performed on it, promotion and demotion of

nodes necessarily takes place, in a sense that nodes get

positioned higher or lower in the hierarchy (i.e. at a shorter or

longer distance from the root, respectively) as a result of the

operation.

This paper introduces the operation named binary tree roll or

roll of a binary tree. It can be applied on any binary tree. Two

versions of the roll operations, the counterclockwise and the

clockwise roll, will be defined and explained, both

mathematically and visually. It will be shown that the two

operations are unambiguous and also inverse to one another.

Further in the paper, algorithms for their implementations will

be presented. Since research in the field of binary trees is

ongoing, both theoretically [9, 10, 11] and practically [12, 13,

14], this paper provides a new insight into the structure and

possibilities for working with binary trees.

2. THE DEFINITIONS
The basis for both the counterclockwise and clockwise roll

operation is the well known fact that a binary tree can

unambiguously be generated given its preorder and inorder

traversals, or its inorder and postorder traversals. In other

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

41

words, given a binary tree‟s inorder traversal, along with

either one of its preorder or postorder traversals, the original

binary tree can be reconstructed [15], and this reconstruction

is unique, whereas for given preorder and postorder traversals

only, the reconstruction is not unique [16]. It is important to

mention that this is true if all nodes of the binary tree are

different, i.e. can be differentiated from one another. The

easiest way to differentiate the nodes of a binary tree is using

their data fields, so therefore, throughout this paper, it will be

assumed that all the elements of every binary tree in question

will be different from one another.

The counterclockwise roll of a binary tree, abbreviated

CCW() henceforth, can now be defined. Given binary trees T1

and T2, as well as the preorder(), inorder() and postorder()

functions, which yield the respective traversals, operation

CCW() is defined as

 (1)

In other words, upon CCW(), the preorder traversal of the

original tree is identical to the inorder traversal of the tree

obtained by the counterclockwise roll, and the inorder

traversal of the original tree is identical to the postorder

traversal of the tree obtained by the counterclockwise roll.

Likewise, the clockwise roll of a binary tree, abbreviated

CW() henceforth, can be defined as

 (2)

Similarly, upon CW(), the inorder traversal of the original tree

is identical to the preorder traversal of the tree obtained by the

clockwise roll, and the postorder traversal of the original tree

is identical to the inorder traversal of the tree obtained by the

clockwise roll.

3. EXAMPLES
Figure 1 shows an example of these processes and their

results. The preorder and inorder traversals of T1 are equal to

the respective inorder and postorder traversals of T2. In other

words, using the preorder traversal of T1 as the inorder

traversal of some new tree and the inorder traversal of T1 as

the postorder traversal of the new tree, and thus

unambiguously reconstructing the new tree, will yield tree T2

as a result. Conversely, taking the inorder traversal of T2 and

using it as the preorder traversal of a new tree and the

postorder traversal of T2 and using it as the inorder traversal

of the new tree, unambiguously reconstructing such a tree will

yield tree T1 as a result. Upon any roll operation, the root of

the newly obtained binary tree is different from the root of the

original tree, which is a consequence of definitions (1) and

(2).

Figure 1: Example of a binary tree roll. CCW(T1) = T2.

CW(T2) = T1. The root of every tree is marked with a

rectangle.

Figure 2 shows another example. More specifically, Figure 2a

shows a balanced tree, Figure 2b shows the result obtained by

counterclockwise roll of the tree in Figure 2a and Figure 2c

shows the result obtained by clockwise roll of the tree in

Figure 2a.

Viewing trees T1 and T2 in Figure 1 leads to the thought that

the two trees are turned 90 degrees respective to one another.

Repeated testing has shown that this is indeed the case, and

this has led to the roll operation originally being called

“rotation of a binary tree” [17]. However, this is not always

the case, as presented in Figure 2. The trees in Figure 2b and

Figure 2c are clearly not obtained by simply rotating the tree

in Figure 2a for 90 degrees counterclockwise and clockwise,

respectively, even though, when viewing their respective

traversals, it can be seen that they conform to definitions (1)

and (2) for counterclockwise and clockwise roll, respectively.

In the next section it will be explained why the term “binary

tree roll” (or “roll of a binary tree”) is more appropriate for

the given operation and how the “rotation of a binary tree”

can be thought of as a special case of the roll of a binary tree.

Moreover, the term “roll” will be used to denote the operation

itself, rather than the result of it (as previously implied in

[17]). Also, in all figures, the root of every displayed tree will

be marked with a rectangle, for clarity.

T1

Preorder: S,t,r,i,n,g,s

Inorder: t,S,r,n,i,s,g

Postorder: t,n,s,g,i,r,S

T2

Preorder: g,i,r,S,t,n,s

Inorder: S,t,r,i,n,g,s

Postorder: t,S,r,n,i,s,g

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

42

4. VISUAL EXPLANATION
In order to link the roll operation with the notion of a tree

being turned for 90 degrees in some direction, the turning of a

binary tree is defined as a visual operation, in which the tree is

turned 90 degrees in some direction, so that the rightmost or

leftmost node in the original tree becomes the root of the new

tree, i.e. is placed the highest in the hierarchy. In the first case,

a counterclockwise turn takes place, and the second case a

clockwise turn takes place. Since this operation is purely

visual, it can be stated that only the links get modified so that

the new tree is obtained, whereas the node elements remain in

their original, i.e. “unturned”, positions.

Consider the balanced tree in Figure 3a (it is identical to the

tree in Figure 2a but is repeated here for clarity). Visually,

every ancestor node in the tree should be displayed higher

than its descendant nodes, but, upon turning (Figure 3b and

Figure 3c), some ancestor nodes are displayed lower than their

descendant nodes. Specifically, in Figure 3b node „2‟ has one

of its descendants (node „5‟) displayed higher in the picture,

and in Figure 3c the same applies to node „3‟ (one of its

descendants, node „6‟, is displayed higher in the picture). If

the level of hierarchy is defined as the number of edges that a

node is farther from the root, then it is clear that some internal

(i.e. non-root) nodes are represented visually higher than their

ancestor nodes. Such nodes form an illusory ancestral stem of

nodes, containing nodes that are displayed higher than a

certain node, but are essentially lower in the hierarchy (i.e.

further from the root of the tree) than it. A node that has an

illusory ancestral stem of nodes is called a wedge node, and it

contains both a true ancestor (which is closer to the root of

the tree) and an illusory ancestor, which is the first node

connected to the wedge node along the illusory ancestral stem.

It is possible that the illusory ancestor be the only node of the

illusory ancestral stem (as depicted in Figure 3), but it‟s also

possible that the illusory ancestral stem contain more than one

node. In that case, the illusory root is important, which

represents the node that is as displayed visually the highest

along the illusory ancestral stem of nodes. If the illusory

ancestral stem contains only one node, i.e. only the illusory

ancestor, then it is identical to the illusory root.

To maintain the visual representation that ancestors are

displayed higher than the descendants, another visual

operation needs to be performed, that would result with

another tree, which does not have any illusory ancestral stems.

In other words, all parts of the tree containing illusory

ancestral stems would have to be repositioned, so that all

ancestor nodes would be displayed higher in the hierarchy

than their descendants.

 a) b) c)

Figure 3: Turning of binary trees. a) The original fully balanced tree. b) The tree from a) is turned 90

degrees counterclockwise, with the new root of the tree set to ‘7’. The wedge node is ‘2’, its true ancestor is

‘1’ and its illusory ancestor and illusory root is ‘5’, because the illusory ancestral stem of nodes consists only

of node ‘5’. c) The tree from a) is turned 90 degrees clockwise and the new root of the tree is set to ‘4’. The

wedge node is ‘3’, its true ancestor is ‘1’ and its illusory ancestor and illusory root is ‘6’, because the illusory

ancestral stem of nodes consists only of node ‘6’.

Preorder: 1, 2, 4, 5, 3, 6, 7

Inorder: 4, 2, 5, 1, 6, 3, 7

Postorder: 4, 5, 2, 6, 7, 3, 1

Preorder: 7, 3, 1, 5, 2, 4, 6

Inorder: 1, 2, 4, 5, 3, 6, 7

Postorder: 4, 2, 5, 1, 6, 3, 7

Preorder: 4, 2, 5, 1, 6, 3, 7

Inorder: 4, 5, 2, 6, 7, 3, 1

Postorder: 5, 7, 3, 6, 1, 2, 4

 a) b) c)

Figure 2: Roll of a balanced binary tree. a) The original tree, along with its preorder (underline), inorder

(bold) and postorder (italic) traversals, which are used to build the b) counterclockwise and c) clockwise

rolled tree

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

43

Such an operation is named downshift. When a wedge node

appears upon turning, its true ancestor needs to be linked to

the illusory root, instead of with the wedge node, in the same

direction of linking that the wedge node was linked to.

Essentially, that would mean visually pushing downwards the

entire illusory ancestral stem; hence the term “downshift”. In

counterclockwise roll, the downshift is to the left, and in

clockwise roll, the downshift is to the right. Left downshift

happens upon CCW() and right downshift happens upon
CW(), when necessary (there are cases, which will be

explained further in this chapter, when a downshift isn‟t

necessary to complete the roll operation).

Figure 4 demonstrates the process of obtaining a roll of a

binary tree using turning and downshift, after which the

results are the same as in Figure 2b and Figure 2c. Figure 5

displays CCW() using turning and downshift in a tree in

which the illusory ancestral stem contains more than one

node, and therefore the illusory ancestor and the illusory root

are different. Again, the linking of the true ancestor with the

illusory root is the key to performing the downshift.

Depending on the internal structure (i.e. topology) of the tree,

performing a roll operation using turning and downshift might

take several steps to complete. Figure 6 presents a case where,

in order to complete a CW() operation, a clockwise turn and

two consecutive right downshifts are needed. This is because

two right sub-nodes (namely „3‟ and „7‟) contain left sub-trees

of their own, and they all cause illusory ancestral stems after a

clockwise turn, which must be handled by two consecutive

downshifts. It is worth mentioning that, no matter the

sequence of downshifts, as long as all illusory ancestral stems

of nodes are downshifted, the resulting tree will comply with

the appropriate definition for the corresponding roll operation

(in Figure 6, the ending tree complies with definition (2), for

clockwise roll).

In most cases, the downshift is necessary if the roll operation

gets performed visually using turning. However, there are

cases when the downshift is not necessary, and the roll yields

the same result as the turn, both visually and theoretically.

Thus, CCW() is equal to a counterclockwise turn if no left

sub-node in the tree has a right sub-node of its own (tree T1 in

Figure 1 is such an example). Likewise, CW() is equal to a

clockwise turn if no right sub-node in the tree has a left sub-

node of its own (tree T2 in Figure 1 is such an example).

Figure 4: Achieving binary tree roll using turning and downshift

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

44

It is worth mentioning that the turning and the downshift

operations, as well as the notions of a wedge node, true

ancestor, illusory stem of ancestors, illusory ancestor and

illusory root, are visual only and don‟t actually take place or

appear when performing the roll operations defined by

definitions (1) and (2). However, they are useful for

envisioning the roll processes and obtaining the rolled trees

without first obtaining the traversals needed to generate them.

5. MUTUAL INVERSENESS OF THE

ROLL OPERATIONS
From the definitions of CCW() and CW(), i.e. definitions (1)

and (2), it follows immediately that both operations are

inverse respective to one another (trees T1 and T2 in Figure 1

give a good visual demonstration of this property). As another

example, if T1 is the tree represented in Figure 3a and T2 is the

tree represented in Figure 3b, CCW(T1) = T2 and CW(T2) =

Preorder: 1, 2, 4, 5, 8, 7, 9, 3, 6

Inorder: 4, 8, 5, 9, 7, 2, 1, 6, 3

Postorder: 8, 9, 7, 5, 4, 2, 6, 3, 1

Preorder: 3, 1, 2, 7, 5, 4, 8, 9, 6

Inorder: 1, 2, 4, 5, 8, 7, 9, 3, 6

Postorder: 4, 8, 5, 9, 7, 2, 1, 6, 3

Figure 5: CCW() of a tree using turning and downshift. After the turn, the new root of the tree is ‘3’, the wedge node is

‘4’, its true ancestor is ‘2’, its illusory ancestor is ‘5’ and its illusory root is ‘7’, since the illusory ancestral stem of nodes

consists of nodes ‘5’ and ‘7’. The downshift is performed by linking the true ancestor (‘2’) with the illusory root (‘7’),

instead of the wedge node (‘4’), in the same direction of linking – the illusory root becomes the right sub-node of the true

ancestor, just like the wedge node used to be. The traversals of the starting tree (bottom left) and the ending tree (bottom

right) are given for clarity

Preorder: 1, 2, 3, 6, 4, 5, 7, 9, 8

Inorder: 2, 1, 5, 9, 7, 4, 6, 8, 3

Postorder: 2, 9, 7, 5, 4, 8, 6, 3, 1

Preorder: 2, 1, 5, 9, 7, 4, 6, 8, 3

Inorder: 2, 9, 7, 5, 4, 8, 6, 3, 1

Postorder: 7, 9, 8, 3, 6, 4, 5, 1, 2

Figure 6: CW() of a tree using turning and consecutive downshifts. In the first downshift, the wedge node is ‘3’, its true

ancestor is ‘1’, its illusory ancestor is ‘6’ and its illusory root is ‘5’, since the illusory ancestral stem of nodes consists of

nodes ‘6’, ‘4’ and ‘5’. In the second downshift, the wedge node is ‘7’, its true ancestor is ‘5’ and its illusory ancestor and

root is ‘9’, since the illusory ancestral stem of nodes consists only of node ‘9’. When there are no more illusory ancestral

stems, the roll operation is complete, which can be verified by the traversals of the original tree (bottom left) and the final

tree (bottom right)

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

45

T1. This can also be verified for the trees in Figure 3c (if

considered as T1) and Figure 3a (if considered as T2). Testing

the operations for any binary tree gives the same result.

Therefore, it can be represented mathematically that, for any

given binary tree T, it holds true that

 (3)

and

 (4)

6. ALGORITHMS FOR THE ROLL

OPERATIONS
As a result of a roll operation on a given binary tree, a new

binary tree gets produced, which contains all the elements of

the original binary tree, but rearranged in a different

hierarchical structure, so as to comply with definition (1) or

(2), depending on the direction of roll. The most

straightforward way to accomplish the roll in the desired

direction is to obtain the traversals of the original tree and

then reconstruct the new tree using the appropriate traversal

combinations according to definition (1) or (2). However,

since the tree obtained as the result of the roll always contains

the same elements as the original tree, it is possible to

generate an algorithm that will rearrange the elements so as to

obtain the rolled tree without the need to obtain the traversals

first. An algorithm for the roll operation will now be

presented and explained.

Figure 7 shows the algorithm for CCW(). The algorithm is

given in pseudocode, which most closely resembles the C++

programming language, and the lines are numbered, for a

more detailed explanation. The algorithm is recursive and

employs auxiliary variables defined within it, which are of the

data type of a binary tree node. Normally, a node of a binary

tree contains an information field, as well as links to the left

sub-node and right sub-node of the same node type, called

lSn and rSn respectively in the pseudocode. The

information field can be of any data type, and does not need to

be comparable (i.e. does not have to have relation operators,

such as >, <, == or !=, defined for it). The define directive

will be used to define (i.e. declare and initialize) auxiliary

variables. It is assumed that the node element type can be

compared for equality and inequality to NULL (the null

element, containing no information or value) and any other

node element data type. The assignment operator (=) is also

assumed to be defined for this node element data type. For

clarity, the function header and the subsequent recursive calls

within the algorithm are presented with bold letters.

Line 1 defines the function header. The function return type is

not listed, as the algorithm itself does not produce a return

value (if a return type would have to be listed, void would

be a good choice). The parameters that are requested are the

root of the tree (it is also used as the root of sub-trees in the

subsequent recursive calls) and the root‟s predecessor, i.e. the

node that had the root of the (sub-)tree as its sub-node.

Initially, the predecessor node is NULL (and needs to be

passed as such upon initial function calls), since the root of

the original tree has no ancestor node. The values of both the

root and the predecessor nodes are guaranteed to

change within the function calls (since the roll operation

requires that the root and the internal structure of the tree

change so as to obtain the resulting tree) and that‟s why they

are called by reference, as indicated by the ampersand (&)

preceding them, indicating that the changes, that they‟ll be

subjected to, would need to be carried over as the algorithm

processes further.

1. CCW(&root, &predecessor)

2. {

3. if(root != NULL)

4. {

5. if(root.rSn == NULL)

6. {

7. root.rSn = root.lSn;

8. root.lSn = NULL;

9. CCW(root.rSn, root);

10. }

11. else

12. {

13. if(root.rSn.rSn == NULL)

14. {

15. root.rSn.rSn = root.rSn.lSn;

16. root.rSn.lSn = root;

17. root = root.rSn;

18. root.lSn.rSn = root.lSn.lSn;

19. root.lSn.lSn = NULL;

20. if(predecessor != NULL)

21. predecessor.rSn = root;

22. CCW(root.lSn.rSn, root.lSn);

23. CCW(root.rSn, root);

24. }

25. else

26. {

27. CCW(root.rSn, root);

28. define leftmost = root.rSn;

29. while(leftmost.lSn != NULL)

30. leftmost = leftmost.lSn;

31. leftmost.lSn = root;

32. define newroot = root.rSn;

33. root.rSn = NULL;

34. root = newroot;

35. if(predecessor != NULL)

36. predecessor.rSn = root;

37. CCW(leftmost.lSn, leftmost);

38. }

39. }

40. }

41. }

Figure 7: The algorithm for the counterclockwise roll (i.e.

the CCW() operation)

Line 3 gives the first test. The algorithm is designed to go

through all nodes of the tree, so that the entire tree would be

(recursively) rolled. Following some of the links (e.g. sub-

nodes of leaves of the tree) will lead to NULL values, so the

first test is for whether the algorithm will need to proceed at

all. Should a NULL value be encountered, the algorithm (i.e.

the current recursive call) ends immediately, as this first if

test does not contain an else clause. This is actually the only

trivial case in the algorithm and is thus used as the termination

condition for the recursive calls.

Line 5 tests whether the root of the (sub-)tree contains a null

right sub-node (i.e. does not contain a right sub-tree). If that is

the case (presented visually in Figure 8), whatever is given as

a left sub-node (which may be NULL as well) is placed as the

right sub-node (Line 7), the left sub-node is set to NULL (Line

8) and the now right sub-tree is recursively rolled (Line 9).

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

46

The idea is that, upon CCW(), left sub-trees of the nodes

become right sub-trees of the nodes. This is the first basic

case, when there is no right sub-tree that needs to be

processed, so the left sub-tree is put in its place and processed

recursively.

Lines 11 and 13 test for whether there is not more than one

right sub-node. If so, this is the second basic case (presented

visually in Figure 9). The left sub-node of the root‟s right sub-

node will become the right sub-node of the root‟s right sub-

node (Line 15), whereas the left sub-node of the root‟s right

sub-node will point to the root (Line 16). The root‟s right sub-

node will become the new root (Line 17). Since the former

root is now the left sub-node of the new root, whatever was

present as its left sub-node (it may be NULL as well) is placed

as its right sub-node (Line 18), and its left sub-node is set to

NULL (Line 19). Since the root changes when this case is

reached, the predecessor‟s right sub-node should also be

changed to point to the new root, if the currently processed

node (i.e. root) does have a predecessor (Lines 20 and 21).

Finally, the new root‟s left sub-node‟s right sub-node can be

processed recursively (Line 22), as well as the new root‟s

right sub-node (Line 23), minding to include their respective

predecessor nodes as parameters as well.

Line 25 introduces the most complex case, when the right

sub-node has also a right sub-tree of its own (presented

visually in Figure 10). To handle it, the algorithm first invokes

a recursive call to the root‟s right sub-node (Line 27), so the

function would reach one of the basic cases and handle them.

Afterwards, the algorithm finds the leftmost sub-node of the

root‟s right sub-tree (the “leftmost” node means a node

containing no left sub-node of its own – Lines 28 to 31), so

that the current root can be linked to it as its left sub-node.

The original root‟s right sub-node will become the new root

(Lines 32 and 34), after the original root‟s right sub-node gets

set to NULL (Line 33). If a predecessor exists, its right sub-

node is updated to point to the new root (Lines 35 and 36).

Afterwards, CCW() is recursively invoked upon the former

root in its new position (Line 37). Again, since the root

changes when this case is encountered, the predecessor node

needs to be taken into account and its right sub-node updated.

It may not be immediately apparent how the last case is

connected to the roll operation. However, a closer look will

reveal that it actually deals with the left downshift when

CCW() is invoked upon stems of right sub-nodes (i.e. several

nodes linked as right sub-nodes to one another). This case

takes the root of the (sub-)tree and places it as the leftmost

node of the root‟s right sub-node (which becomes the new

root), but only after recursion calls have been invoked upon

right sub-nodes progressively further down the stem, until one

of the two basic cases, presented in Figure 6 and Figure 7,

gets reached and handled. In this manner, a stem of right sub-

nodes will progressively become a reversed stem of left sub-

nodes, connected to the leftmost node of the sub-tree obtained

as a result of handling one of the basic cases. Thus, left

downshift will be achieved after a counterclockwise turn,

progressively and recursively, one root at a time.

The algorithm for clockwise roll (i.e. CW()), presented in

Figure 11, is a complete “mirror image” of the algorithm for

CCW(). In fact, if everything “left” is replaced with “right”

and vice versa in the CCW() algorithm, the CW() algorithm

will be obtained (it is also necessary to replace “CCW” with

“CW”). The procedure is completely analogous with the one

for CCW().

7. CONCLUSION
A new operation, called binary tree roll, has been proposed.

The counterclockwise and clockwise roll of a binary tree have

been presented and defined. It has been shown that they are

proper operations, in a sense that their results are

unambiguous, and that they change the internal structure of

the tree. The concepts of turning and downshift have been

introduced as a means of simplifying and visualizing the

concept of the binary tree roll. It has been shown that both roll

operations are inverses to one another. The algorithm and

code for the counterclockwise roll operation has been

presented and explained, as well as the algorithm for

clockwise roll operation. It is believed that the new operation

will be useful in dynamical hierarchical structures, which

need to introduce changes (e.g. new supervisor promotion)

and yet preserve some properties of the original structure,

such as hierarchical structure traversal.

Figure 10: If the root (O) contains a right sub-node

(RS) with a right sub-tree of its own (R), first CCW()

is (recursively) invoked upon R, so it would be handled

by a basic case, or this same case (if R contains a right

sub-tree of its own). Then, it is necessary to find the

leftmost sub-node (LM) of the root’s right sub-node,

i.e. of RS. In that case, O becomes the left sub-node of

LM, whereas the right sub-node of O is set to NULL

(so as not to point to RS anymore), and RS becomes

the new root. CCW() is then recursively invoked upon

O in its new position (bolded circle)

Figure 9: The second basic case: if the root (O)

contains a left sub-tree (L), just a single right sub-node

(R), which in turn contains just a left sub-tree of its

own (LS), then, after the transformation, CCW() is

recursively invoked upon L and LS in their new

respective positions (bolded circles)

Figure 8: The first basic case: if the root (O) contains

just a left sub-tree (L), upon CCW() it becomes the

right sub-tree, while the root’s left sub-tree is set to

NULL. The now right sub-tree of the root is

recursively processed using CCW() (bolded circle)

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

47

1. CW(&root, &predecessor)

2. {

3. if(root != NULL)

4. {

5. if(root.lSn == NULL)

6. {

7. root.lSn = root.rSn;

8. root.rSn = NULL;

9. CW(root.lSn, root);

10. }

11. else

12. {

13. if(root.lSn.lSn == NULL)

14. {

15. root.lSn.lSn = root.lSn.rSn;

16. root.lSn.rSn = root;

17. root = root.lSn;

18. root.rSn.lSn = root.rSn.rSn;

19. root.rSn.rSn = NULL;

20. if(predecessor != NULL)

21. predecessor.lSn = root;

22. CW(root.rSn.lSn, root.rSn);

23. CW(root.lSn, root);

24. }

25. else

26. {

27. CW(root.lSn, root);

28. define rightmost = root.lSn;

29. while(rightmost.rSn != NULL)

30. rightmost = rightmost.rSn;

31. rightmost.rSn = root;

32. define newroot = root.lSn;

33. root.lSn = NULL;

34. root = newroot;

35. if(predecessor != NULL)

36. predecessor.lSn = root;

37. CW(rightmost.rSn, rightmost);

38. }

39. }

40. }

41. }

Figure 11: The algorithm for the clockwise roll (i.e. the

CW() operation)

8. REFERENCES
[1] Sedgewick, R. 1998. Algorithms in C++, Parts 1-4:

Fundamentals, Data Structures, Sorting, Searching.

Addison-Wesley.

[2] Brassard, G. and Bratley, P. 2002. Fundamentals of

Algorithmics. Prentice Hall of India

[3] Bozinovski, A. and Bozinovski, S. 2004. N-queens

pattern generation: An insight into space complexity of a

backtracking algorithm. In Proceedings of the 3rd

International Symposium on Information and

Communication Technologies. Las Vegas, Nevada,

USA, 281-286

[4] Sedgewick, R. 2002. Algorithms in C++, Part 5: Graph

Algorithms. Pearson

[5] Freedman, R. Binary Tree Operations. Notes on CS340:

Data Structures and Algorithm Analysis. Department of

Computer Science, Northern Illinois University.

http://faculty.cs.niu.edu/~freedman/340/340notes/340btre

eop.htm. Accessed 10 January 2012

[6] Mostafa, H. 2005. Fast Binary Tree Operations. The

Code Project.

http://www.codeproject.com/KB/recipes/BinaryTree.asp

x. Accessed 10 January 2012

[7] Kruse, G. W. 2007. Binary Tree Operations. CS240:

Computer Science II. Department of Information

Technology and Computer Science. Juniata College.

http://jcsites.juniata.edu/faculty/kruse/cs240/bintree.htm.

Accessed 10 January 2012

[8] Sleator, D. D., Tarjan, R. E., and Thurston, W. P. 1988.

Rotation distance, triangulations, and hyperbolic

geometry. Journal of the American Mathematical

Society. Vol 1. No 3. 647-681

[9] Chen, W. Y. C. and Yang, L. L. M. 2008. On

Postnikov‟s hook length formula for binary trees.

European Journal of Combinatorics. Doi:

10.1016/j.ejc.2007.11.025

[10] Doshi, N., Sureja, T., Akbari, B., Savaliya, H., and

Daxini, V. 2010. Width of a Binary Tree. International

Journal of Computer Applications. Vol 9. No 2. 41-43

[11] Arora, N., Tamta, V. K., and Kumar, S. 2012. Modified

Non-Recursive Algorithm for Reconstructing a Binary

Tree. International Journal of Computer Applications.

Vol 43. No 10. 25-28

[12] Zhou, A., Huang, S., and Wang, X. 2007. BITS: A

Binary Tree Based Web Service Composition System.

International Journal of Web Services Research. Vol 4.

No 1. 40-58

[13] Duarte, E. P. Jr, Pires, K., and Tavares, R. A. E. 2010.

An efficient strategy for storing and searching binary

trees in WORM external memory. Journal of Information

Science. Vol 36. No 6. 751-762

[14] Wang, D., Zheng, J., and Zhou, Y. 2011. Binary tree of

posterior probability support vector machines. Journal of

Zhejiang University – Science C. Vol 12. No 2. 83-87

[15] Burgdorff, H. A., Jajodia, S., Springsteel, F. N., and

Zalcstein, Y. 1987. Alternative methods for the

reconstruction of trees from their traversals. BIT

Numerical Mathematics. Vol 27. No 2. 133-140

[16] Narahari, Y. 4.2 Binary Trees. Data Structures and

Algorithms. Computer Science and Automation. Indian

Institute of Science.

http://lcm.csa.iisc.ernet.in/dsa/node87.html. Accessed 10

January 2012

[17] Božinovski, A. 2011. Linear-Time Binary Tree

Generation Algorithms for Arbitrary Input String

Reproduction upon Depth-First Traversal and Rotation of

a Binary Tree. International Conference on Innovative

Technologies IN-TECH. Bratislava, Slovakia. 58-61

