On Fuzzy Pushdown Automata and Their Covering

S. R. Chaudhari
Department of Mathematics,
Shivaji University, Kolhapur
(M.S.) 416 004, India

D. D. Komejwar
Doodhsakhar Mahavidyalaya,
Bidri, Kolhapur (M.S.) 416 208,
India

Abstract

Similarity of fuzzy pushdown automata in the sense of transition and output is algebraically embodied by their homomorphism as well as covering. This vary issue is studied in this paper. The ways of obtaining new fuzzy pushdown automata by means of their product is also introduced. Furthermore, we prove that product, homomorphism and covering of fuzzy pushdown automata are internally related. Several algebraic results of homomorphism and covering are also discussed in this paper.

Keywords

Fuzzy automata; Fuzzy pushdown automata; Products; Covering; Homomorphism.

1. INTRODUCTION

Among various generalizations of an automaton, fuzzy automaton was the most widely used generalization introduced by Wee [13], while establishing model of learning system. Since then it has been used in many applications [1, 7, 10, 11, 12]. Many classes of fuzzy automata were introduced and studied in [8], few well known, are Automata with weights, L-semi-group automata, Lattice automata, Boolean automata, Semiring automata and Field automata etc. Reduction/minimization of fuzzy automaton was one the important issue in [3, 9], several methods and algorithms of reduction were proposed [3, 9]. Homomorphism and covering are two algebraic notions related to reduction of automata [4, 5]. Isomorphism gives an equivalent copy of the fuzzy automaton, while covering gives a copy of a fuzzy automaton having fewer states and equally powerful in computing. The problem of reduction of states, in terms of homomorphism and covering, for a fuzzy finite state machines was completely resolved in [6, 7], while for finite automata, in terms of congruences and homomorphism was discussed in [9]. A class, pushdown automata, of automata was generalized to fuzzy pushdown automata by Bucurescu and Pascu [2] and Xing [14]. Xing introduced non-deterministic fuzzy pushdown automata (NFPA) and found that the class of NFPA languages and fuzzy context-free K-grammar languages are equivalent, while Bucurescu and Pascu found that fuzzy pushdown automata accept context sensitive languages by setting a threshold and B-fuzzy automata accept context-free languages.

Closure properties of fuzzy languages accepted by fuzzy automata were discussed by many researchers [7]. We find following a three step mechanism in them:

Step 1: Given: Acceptance of fuzzy languages by fuzzy automaton

Step 2: Construction: Formation of a desired fuzzy automaton

Step 3: Verification: Conclusion Closure property

For the better understanding take the example of a closure property under algebraic union. Step 1: Two fuzzy automata M_{1} and M_{2} accepting languages L_{1} and L_{2} are given Step 2: One construct a desired fuzzy automaton M with the help of M_{1} and M_{2} Step 3: verification of language of M is $L_{1} \cup L_{2}$. One can see that the step 2 (construction) is very important part in the above mechanism for any kind of a closure property. In fact it is the motivating point of defining various products of fuzzy automata. In this paper we take this issue relating to fuzzy pushdown automata, however, in this paper we confine ourselves to step 2 of above mechanism only and postpone the closure properties till the next paper.

The distinctive feature of this work are (i) to construct new fuzzy pushdown automaton from given fuzzy pushdown automata (ii) to discuss decompositions of fuzzy pushdown automaton and (iii) to establish basic foundation for discussing closure properties of fuzzy pushdown automaton languages.

In comparison to existing research on fuzzy automata we have established various algebraic properties such associativity, commutativity, distributivity and certain sort of exchange property of products of fuzzy pushdown automata namely restricted, direct, cascade, cartesian, direct sum and sum.

In section 2 we defined six different products of fuzzy pushdown automata and discuss their interrelations. We use the definition of fuzzy pushdown automata [2] and introduced covering between them. We believe that the notions of covering and homomorphism of fuzzy pushdown automata along with the properties of products will somewhat simplify the construction part for more complex closure properties; this motivates us to introduce covering and homomorphism of fuzzy pushdown automata in section 3 . We also establish interrelationship between covering and homomorphism of fuzzy pushdown automata in this section.

2. PRODUCTS OF FUZZY PUSHDOWN AUTOMATA

Recall that any non-empty finite set is called the alphabet. A finite sequence of letters is called a string or word. For simplicity a string $\left\{a_{i}\right\}_{i=1}^{n}$ of alphabets is written as $a_{1} a_{2} \cdots a_{n}$. The set Σ^{+}denotes the set of all strings over the alphabet \sum. We shall denote $\sum^{*}=\Sigma^{+} \cup\{\Lambda\}$, where Λ is the empty string i.e. string without alphabet letters. The set $\Delta_{\Sigma}=\{(\sigma, \sigma) \mid \sigma \in \Sigma\}$ is called the diagonal of Σ. We know that an automaton is a mathematical model of any real life system with finite number of stages/states, those changes by the action of inputs. A pushdown automaton is an extension of an automaton having stack / pushdown symbols in the sense that its adds a memory for an automaton [5]. Fuzzy automaton [7] is an extension of an
automaton where the transitions are fuzzy rather than crisp. Therefore, naturally fuzzy pushdown automaton is an extension of fuzzy automaton. Mathematically it is given as:

Definition 2.1 [2] A fuzzy pushdown automaton is a 7 - tuple $M=\left(Q, \sum, \Gamma, \mu, H, I, F\right)$, where Q is a finite non-empty set of states, Σ is a finite non-empty set of inputs, Γ is a finite non-empty set of pushdown symbols, $\mu: Q \times\left(\sum \cup\{\Lambda\}\right) \times \Gamma \times Q \times \Gamma^{*} \rightarrow[0,1]$, is a fuzzy transition function, $I: Q \rightarrow[0,1]$, called a set of initial fuzzy states, $H: \Gamma \rightarrow[0,1]$, called a set of pushdown fuzzy symbols and $F: Q \rightarrow[0,1]$ called a set of final fuzzy states.
An FPA $M=\left(Q, \sum, \Gamma, \mu, H, I, F\right)$ is called concentrated at Γ, if μ is restricted to $Q \times\left(\sum \cup\{\Lambda\}\right) \times \Gamma \times Q \times \Gamma$.
To elaborate the second step of the mechanism mentioned in the introduction, we begin to define various products of fuzzy pushdown automata.

Definition 2.2 Let $M_{i}=\left(Q_{i}, \sum, \Gamma, \mu_{i}, H, I_{i}, F_{i}\right) \quad i=1,2$ be two fuzzy pushdown automata. Then the restricted direct product of M_{1} and M_{2} is a fuzzy pushdown automaton $M_{1} \wedge M_{2}=\left(Q_{1} \times Q_{2}, \Sigma, \Gamma, \mu_{1} \wedge \mu_{2}, H, I_{1} \wedge I_{2}, F_{1} \wedge F_{2}\right)$ where
$\mu_{1} \wedge \mu_{2}:\left(Q_{1} \times Q_{2}\right) \times\left(\sum \cup\{\Lambda\}\right) \times \Gamma \times\left(Q_{1} \times Q_{2}\right) \times \Gamma^{*} \rightarrow[0,1]$
is defined as: $\mu_{1} \wedge \mu_{2}\left(\left(q_{1}, q_{2}\right), \sigma, z,\left(p_{1}, p_{2}\right), \alpha\right)=$
$\mu_{1}\left(q_{1}, \sigma, z, p_{1}, \alpha\right) \wedge \mu_{2}\left(q_{2}, \sigma, z, p_{2}, \alpha\right), \forall q_{1}, p_{1} \in Q_{1}$,
$\forall q_{2}, p_{2} \in Q_{2}, \sigma \in \sum, Z \in \Gamma, \alpha \in \Gamma^{*}$,
$I_{1} \wedge I_{2}:\left(Q_{1} \times Q_{2}\right) \rightarrow[0,1]$ is defined as
$I_{1} \wedge I_{2}\left(q_{1}, q_{2}\right)=I_{1}\left(q_{1}\right) \wedge I_{2}\left(q_{2}\right), \forall\left(q_{1}, q_{2}\right) \in Q_{1} \times Q_{2}$ and $F_{1} \wedge F_{2}:\left(Q_{1} \times Q_{2}\right) \rightarrow[0,1]$ is defined as
$F_{1} \wedge F_{2}\left(p_{1}, p_{2}\right)=F_{1}\left(p_{1}\right) \wedge F_{2}\left(p_{2}\right), \forall\left(p_{1}, p_{2}\right) \in Q_{1} \times Q_{2}$
Definition 2.3 Let $M_{i}=\left(Q_{i}, \sum_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right), \quad \mathrm{i}=1,2$ be two fuzzy pushdown automata. Then the full direct product of M_{1} and $M_{2} \quad$ is a fuzzy pushdown automaton
$M_{1} \times M_{2}=\left(Q_{1} \times Q_{2}, \Sigma_{1} \times \Sigma_{2}, \Gamma_{1} \times \Gamma_{2}, \mu_{1} \times \mu_{2}, H_{1} \times H_{2}\right.$,
$\left.I_{1} \times I_{2}, F_{1} \times F_{2}\right)$,where
$\mu_{1} \times \mu_{2}:\left(Q_{1} \times Q_{2}\right) \times\left(\left(\sum_{1} \cup\{\Lambda\}\right) \times\left(\sum_{2} \cup\{\Lambda\}\right)\right) \times$
$\left(\Gamma_{2} \times \Gamma_{2}\right) \times\left(Q_{1} \times Q_{2}\right) \times\left(\Gamma_{1}^{*} \times \Gamma_{2}{ }^{*}\right) \rightarrow[0,1]$ is defined as
$\mu_{1} \times \mu_{2}\left(\left(q_{1}, q_{2}\right),\left(\sigma_{1}, \sigma_{2}\right),\left(z_{1}, z_{2}\right),\left(p_{1}, p_{2}\right),\left(\alpha_{1}, \alpha_{2}\right)\right)$
$=\mu_{1}\left(q_{1}, \sigma_{1}, z_{1}, p_{1}, \alpha_{1}\right) \wedge \mu_{2}\left(q_{2}, \sigma_{2}, z_{2}, p_{2}, \alpha_{2}\right)$
, $H_{1} \times H_{2}:\left(\Gamma_{1} \times \Gamma_{2}\right) \rightarrow[0,1]$ is defined as
$H_{1} \times H_{2}\left(z_{1}, z_{2}\right)=H_{1}\left(z_{1}\right) \wedge H_{2}\left(z_{2}\right)$,
$I_{1} \times I_{2}: Q_{1} \times Q_{2} \rightarrow[0,1]$ is defined as $I_{1} \times I_{2}\left(q_{1}, q_{2}\right)=$
$I_{1}\left(q_{1}\right) \wedge I_{2}\left(q_{2}\right)$ and $F_{1} \times F_{2}: Q_{1} \times Q_{2} \rightarrow[0,1]$
$F_{1}\left(p_{1}\right) \wedge F_{2}\left(p_{2}\right), \forall\left(q_{1}, q_{2}\right),\left(p_{1}, p_{2}\right) \in\left(Q_{1} \times Q_{2}\right)$,
$\left(\sigma_{1}, \sigma_{2}\right) \in \sum_{1} \times \sum_{2},\left(z_{1}, z_{2}\right) \in \Gamma_{1} \times \Gamma_{2}, .\left(\alpha_{1}, \alpha_{2}\right) \in \Gamma_{1}^{*} \times \Gamma_{2}^{*}$.

Remark 2.4 Definition 2.3 reduces to Definition 2.2, if $\sum_{1}=\sum_{2}=\sum, \Gamma_{1}=\Gamma_{2}=\Gamma$ and $\mu_{1} \times \mu_{2}$ and $H_{1} \times H_{2}$ are restricted
to
$\left(Q_{1} \times Q_{2}\right) \times\left(\Delta_{\Sigma} \cup\{\Lambda\}\right) \times \Delta_{\Gamma} \times\left(Q_{1} \times Q_{2}\right) \times\left(\Delta_{\Gamma^{*}}\right)$ and $\quad\left(\Delta_{\Gamma}\right)$
respectively. The symbol Δ_{A} demotes the set $\{(a, a): a \in A\}$

Definition 2.5 Let $M_{i}=\left(Q_{i}, \sum_{i}, \Gamma_{i}, \mu_{i}, H_{i} I_{i}, F_{i}\right), i=1,2$ be two fuzzy pushdown automata. Let $w_{\sigma}: Q_{2} \times\left(\Sigma_{2} \cup\{\Lambda\}\right) \rightarrow \Sigma_{1}, w_{z}: Q_{2} \times \Gamma_{2} \rightarrow \Gamma_{1}$ be mappings. Then the concentrated fuzzy pushdown automaton $M_{1} w M_{2}=\left(Q_{1} \times Q_{2}, \Sigma_{2}, \Gamma_{2}, \mu_{1} w \mu_{2}, H_{2}, I_{1} \times I_{2}, F_{1} \times F_{2}\right)$ at Γ_{2} is called the cascade product of M_{1} and M_{2}, where $w=\left(w_{\sigma}, w_{z}\right)$ and $\forall q_{1}, p_{1} \in Q_{1}, \forall q_{2}, p_{2} \in Q_{2}$, $\sigma_{2} \in \sum_{2}, z_{2}, z_{2}^{\prime} \in \Gamma_{2}$, we have
$\mu_{1} w \mu_{2}:\left(Q_{1} \times Q_{2}\right) \times\left(\sum_{2} \cup\{\Lambda\}\right) \times \Gamma_{2} \times\left(Q_{1} \times Q_{2}\right) \times \Gamma_{2} \rightarrow[0,1]$ is
defined as: $\mu_{1} w \mu_{2}\left(\left(q_{1}, q_{2}\right), \sigma_{2}, z_{2},\left(p_{1}, p_{2}\right), z_{2}^{\prime}\right)=$
$\mu_{1}\left(q_{1}, w_{\sigma}\left(q_{2}, \sigma_{2}\right), w_{z}\left(q_{2}, z_{2}\right), p_{1}, w_{z}\left(q_{2}, z_{2}^{\prime}\right)\right) \wedge \mu_{2}\left(q_{2}, \sigma_{2}, z_{2}, p_{2}, z_{2}^{\prime}\right)$,
$I_{1} \times I_{2}: Q_{1} \times Q_{2} \rightarrow[0,1]$ is defined as
$I_{1} \times I_{2}\left(q_{1}, q_{2}\right)=I_{1}\left(q_{1}\right) \wedge I_{2}\left(q_{2}\right)$ and $F_{1} \times F_{2}: Q_{1} \times Q_{2} \rightarrow[0,1]$
is defined as $F_{1} \times F_{2}\left(p_{1}, p_{2}\right)=F_{1}\left(p_{1}\right) \wedge F_{2}\left(p_{2}\right)$.
Definition 2.6 Let $M_{i}=\left(Q_{i}, \sum_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right), \quad i=1,2$ be two fuzzy pushdown automata such that $\sum_{1} \cap \Sigma_{2}=\varnothing$ and $\Gamma_{1} \cap \Gamma_{2}=\varnothing$. Then the cartesian product of $\quad M_{1}$ and M_{2} is fuzzy pushdown automaton $M_{1} \bullet M_{2}=\left(Q \times Q_{2}, \Sigma_{1} \cup \Sigma_{2}, \Gamma_{1} \cup \Gamma_{2}, \mu_{1} \bullet \mu_{2}, H_{1} \bullet H_{2}, I_{1} \bullet I_{2}, F_{1} \bullet F_{2}\right)$, where
$\mu_{1} \bullet \mu_{2}:\left(Q_{1} \times Q_{2}\right) \times\left(\Sigma_{1} \cup \Sigma_{2} \cup\{\Lambda\}\right) \times\left(\Gamma_{1} \cup \Gamma_{2}\right) \times\left(Q_{1} \times Q_{2}\right) \times$
$\Gamma_{1}{ }^{*} \cup \Gamma_{2}{ }^{*} \rightarrow[0,1]$ is defined as:

and define
$H_{1} \bullet H_{2}: \Gamma_{1} \cup \Gamma_{2} \rightarrow[0,1]$ by $H_{1} \bullet H_{2}(z)=\left\{\begin{array}{l}H_{1}(z), \text { if } z \in \Gamma_{1} \\ H_{2}(z), \text { if } z \in \Gamma_{2},\end{array}\right.$
$I_{1} \times I_{2}: Q_{1} \times Q_{2} \rightarrow[0,1]$ is defined as $I_{1} \times I_{2}\left(q_{1}, q_{2}\right)=I_{1}\left(q_{1}\right) \wedge I_{2}\left(q_{2}\right)$
and $F_{1} \times F_{2}: Q_{1} \times Q_{2} \rightarrow[0,1]$. is defined as
$F_{1} \times F_{2}\left(p_{1}, p_{2}\right)=F_{1}\left(p_{1}\right) \wedge F_{2}\left(p_{2}\right)$
Definition 2.7 Let $M_{i}=\left(Q_{i}, \sum_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right), \quad \mathrm{i}=1,2$ be two fuzzy pushdown automata such that $Q_{1} \cap Q_{2}=\phi, \Sigma_{1} \cap \sum_{2}=\phi$ and $\Gamma_{1} \cap \Gamma_{2}=\phi$. Then the direct sum of M_{1} and M_{2} is a fuzzy pushdown automaton

$$
\begin{aligned}
& M_{1} \oplus M_{2}=\left(Q_{1} \cup Q_{2}, \Sigma_{1} \cup \Sigma_{2}, \Gamma_{1} \cup \Gamma_{2},\right. \\
& \left.\quad \mu_{1} \oplus \mu_{2}, H_{1} \oplus H_{2}, I_{1} \oplus I_{2}, F_{1} \oplus F_{2}\right), \quad \text { where } \\
& \mu_{1} \oplus \mu_{2}:\left(Q_{1} \cup Q_{2}\right) \times\left(\Sigma_{1} \cup \Sigma_{2} \cup\{\Lambda\}\right) \times
\end{aligned}
$$

$\left(\Gamma_{1} \cup \Gamma_{2}\right) \times\left(Q_{1} \cup Q_{2}\right) \times \Gamma_{1} * \cup \Gamma_{2}{ }^{*} \rightarrow[0,1]$
is defined as :

$$
\mu_{1} \oplus \mu_{2}(q, \sigma, z, p, \alpha)=\left\{\begin{array}{cc}
\mu_{1}(q, \sigma, z, p, \alpha), & \text { if } q, p \in Q_{1}, \sigma \in \sum_{1}, z \in \Gamma_{1}, \alpha \in \Gamma_{1}^{*} \\
\mu_{2}(q, \sigma, z, p, \alpha), & \text { if } q, p \in Q_{2}, \sigma \in \sum_{2}, z \in \Gamma_{2}, \alpha \in \Gamma_{2}^{*} \\
1, & \text { if }(q, \sigma, z) \in Q_{1} \times \sum_{1} \times \Gamma_{1},(p, \alpha) \in Q_{2} \times \Gamma_{2}^{*} \\
0, & \text { or }(q, \sigma, z) \in Q_{2} \times \sum_{2} \times \Gamma_{2},(p, \alpha) \in Q_{1} \times \Gamma_{1}^{*} \\
0, & \text { Otherwise }
\end{array}\right.
$$

$H_{1} \oplus H_{2}: \Gamma_{1} \cup \Gamma_{2} \rightarrow[0,1]$ is defined by $H_{1} \oplus H_{2}(z)= \begin{cases}H_{1}(z), & \text { if } z \in \Gamma_{1} \\ H_{2}(z), & \text { if } z \in \Gamma_{2},\end{cases}$
$I_{1} \oplus I_{2}: Q_{1} \cup Q_{2} \rightarrow[0,1]$ is defined as :
$I_{1} \oplus I_{2}(q)= \begin{cases}I_{1}(q), & q \in Q_{1} \\ I_{2}(q), & q \in Q_{2}\end{cases}$
and $F_{1} \oplus F_{2}: Q_{1} \cup Q_{2} \rightarrow[0,1]$ is defined as :
$F_{1} \oplus F_{2}(p)= \begin{cases}F_{1}(p), & p \in Q_{1} \\ F_{2}(p), & p \in Q_{2}\end{cases}$
Definition 2.8 Let $M_{i}=\left(Q_{i}, \nu_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right), \quad i=1,2$ be two fuzzy pushdown automata such that $Q_{1} \cap Q_{2}=\phi, \Sigma_{1} \cap \Sigma_{2}=\phi$ and $\Gamma_{1} \cap \Gamma_{2}=\phi$. Then the sum of M_{1} and M_{2}, is a fuzzy pushdown automaton $M_{1}+M_{2}=\left(Q_{1} \cup Q_{2}, \Sigma_{1} \cup \Sigma_{2}, \Gamma_{1} \cup \Gamma_{2}, \mu_{1}+\mu_{2}, H_{1}+H_{2}\right.$, $I_{1}+I_{2}, F_{1}+F_{2}$), where
$\mu_{1}+\mu_{2}:\left(Q_{1} \cup Q_{2}\right) \times\left(\sum_{1} \cup \Sigma_{2} \cup\{\Lambda\}\right) \times\left(\Gamma_{1} \cup \Gamma_{2}\right) \times\left(Q_{1} \times Q_{2}\right) \times$ $\Gamma_{1}^{*} \cup \Gamma_{2}^{*} \rightarrow[0,1]$ is defined as:
$\mu_{1}+\mu_{2}(q, \sigma, z, p, \alpha)=\left\{\begin{array}{cc}\mu_{1}(q, \sigma, z, p, \alpha), & \text { if } q, p \in Q_{1}, \sigma \in \sum_{1}, z \in \Gamma_{1}, \alpha \in \Gamma_{1}^{*} \\ \mu_{2}(q, \sigma, z, p, \alpha), & \text { if } q, p \in Q_{2}, \sigma \in \sum_{2}, z \in \Gamma_{2}, \alpha \in \Gamma_{2}^{*} \\ 0, & \text { Otherwise }\end{array}\right.$
and define $H_{1}+H_{2}: \Gamma_{1} \cup \Gamma_{2} \rightarrow[0,1]$ by
$H_{1}+H_{2}(z)= \begin{cases}H_{1}(z), & \text { if } z \in \Gamma_{1} \\ H_{2}(z), & \text { if } z \in \Gamma_{2}\end{cases}$
$I_{1}+I_{2}: Q_{1} \cup Q_{2} \rightarrow[0,1]$ is defined as :
$I_{1}+I_{2}(q)= \begin{cases}I_{1}(q), & q \in Q_{1} \\ I_{2}(q), & q \in Q_{2}\end{cases}$
and $F_{1}+F_{2}: Q_{1} \cup Q_{2} \rightarrow[0,1]$ is defined as :
$F_{1}+F_{2}(p)= \begin{cases}F_{1}(p), & p \in Q_{1} \\ F_{2}(p), & p \in Q_{2}\end{cases}$

3. COVERING AND HOMOMORPHISM OF FUZZY PUSHDOWN AUTOMATA

In this section the notion of covering of FPA is introduced. We have established relation between homomorphism of FPA and covering, beside various properties of covering.

Definition 3.1 Let $M_{i}=\left(Q_{i}, \sum_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right), \quad i=1,2$ be two fuzzy pushdown automata. Let $\eta: Q_{2} \rightarrow Q_{1}$ be a surjective partial function, let $\psi: \sum_{1} \rightarrow \sum_{2}$ and $\delta: \Gamma_{1} \rightarrow \Gamma_{2}$ be functions. Then the triplet (η, ψ, δ) is called the covering from M_{1} to M_{2}, symbolically $(\eta, \psi, \delta): M_{1} \rightarrow M_{2}$, if for all $\sigma \in \sum_{1}, z \in \Gamma_{1}, \alpha \in \Gamma_{1}{ }^{*}$ and q, p belongs to domain of η, we have
(i) $\mu_{1}(\eta(q), \sigma, z, \eta(p), \alpha) \leq \mu_{2}(q, \psi(\sigma), \delta(z), p, \delta(\alpha))$
(ii) $I_{1}(\eta(q)) \leq I_{2}(q)$
(iii) $F_{1}(\eta(p)) \leq F_{2}(p)$ and

Theo
(iv) $H_{1}(z) \leq H_{2}(\delta(z))$
rem 3.2 The covering relation is reflexive and transitive, but not symmetric.

The inter relationship between products of fuzzy pushdown automata enable us to ensure that

Theorem 3.3 Let $M_{i}=\left(Q_{i}, \Sigma_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right)$ be fuzzy pushdown automata, $i=1,2$. Then
(a) $M_{1} \wedge M_{2} \leq M_{1} \times M_{2}$, when $\sum_{1}=\sum_{2}=\sum$,
$\Gamma_{1}=\Gamma_{2}=\Gamma$ and $H_{1}=H_{2}=H$
(b) $M_{1}+M_{2} \leq M_{1} \oplus M_{2}$, when $\quad Q_{1} \cap Q_{2}=\phi, \Sigma_{1} \cap \Sigma_{2}=\phi$ and $\Gamma_{1} \cap \Gamma_{2}=\phi$

Proof (a) Let η be the identity function and define $\psi: \Sigma \rightarrow \sum \times \Sigma$ by $\psi(\sigma)=(\sigma, \sigma)$ and
$\delta: \Gamma \rightarrow \Gamma \times \Gamma$ by $\delta(z)=(z, z)$ Then,
$\mu_{1} \wedge \mu_{2}\left(\eta\left(q_{1}, q_{2}\right), \sigma, z, \eta\left(p_{1}, p_{2}\right), \alpha\right)$
$=\mu_{1} \times \mu_{2}\left(\left(q_{1}, q_{2}\right),(\sigma, \sigma),(z, z),\left(p_{1}, p_{2}\right),(\alpha, \alpha)\right)$
$=\mu_{1} \times \mu_{2}\left(\left(q_{1}, q_{2}\right), \psi(\sigma), \delta(z),\left(p_{1}, p_{2}\right), \delta(\alpha)\right)$,
Clearly, $I_{1} \wedge I_{2}\left(\eta\left(q_{1}, q_{2}\right)\right)=I_{1} \wedge I_{2}\left(q_{1}, q_{2}\right)$
$=I_{1}\left(q_{1}\right) \wedge I_{2}\left(q_{2}\right)=I_{1} \times I_{2}\left(q_{1}, q_{2}\right)$
Similarly, $F_{1} \wedge F_{2}\left(\eta\left(p_{1}, p_{2}\right)\right)=F_{1} \times F_{2}\left(p_{1}, p_{2}\right)$ and $H(z)=H(z) \wedge H(z)=H \times H(z, z)=H \times H(\delta(z)) \mathrm{He}$ nce, (η, ψ, δ) is a covering.
(b) Set η, ψ and δ as identity functions.

Case(i) If $q, p \in Q_{1}, \sigma \in \sum_{1}, z \in \Gamma_{1}, \alpha \in \Gamma_{1}^{*}$, then $\mu_{1}+\mu_{2}(\eta(q), \sigma, z, \eta(p), \alpha)=\mu_{1}(q, \sigma, z, p, \alpha)$
$=\mu_{1} \oplus \mu_{2}(q, \psi(\sigma), \delta(z), p, \delta(\alpha))$,
$H_{1}+H_{2}(z)=H_{1}(z)=H_{1} \oplus H_{2}(z)=H_{1} \oplus H_{2}(\delta(z))$
Similarly, $I_{1}+I_{2}\left(\eta\left(q_{1}, q_{2}\right)\right)=I_{1} \oplus I_{2}\left(q_{1}, q_{2}\right)$
and $F_{1}+F_{2}\left(\eta\left(p_{1}, p_{2}\right)\right)=F_{1} \oplus F_{2}\left(p_{1}, p_{2}\right)$
Case(ii) If $q, p \in Q_{2}, \sigma \in \sum_{2}, z \in \Gamma_{2}, \alpha \in \Gamma_{2}{ }^{*}$, then $\mu_{1}+\mu_{2}(\eta(q), \sigma, z, \eta(p), \alpha)=\mu_{2}(q, \sigma, z, p, \alpha)=$
$\mu_{1} \oplus \mu_{2}(q, \psi(\sigma), \delta(z), p, \delta(\alpha))$,
$H_{1}+H_{2}(z)=H_{2}(z)=H_{1} \oplus H_{2}(z)=H_{1} \oplus H_{2}(\delta(z))$
Similarly,
$I_{1}+I_{2}\left(\eta\left(q_{1}, q_{2}\right)\right)=I_{1} \oplus I_{2}\left(q_{1}, q_{2}\right)$ and
$F_{1}+F_{2}\left(\eta\left(p_{1}, p_{2}\right)\right)=F_{1} \oplus F_{2}\left(p_{1}, p_{2}\right)$
Case(iii) If $(q, \sigma, z) \in Q_{1} \times \sum_{1} \times \Gamma_{1}$ and $(p, \alpha) \in Q_{2} \times \Gamma_{2}{ }^{*}$ or $(q, \sigma, z) \in Q_{2} \times \sum_{2} \times \Gamma_{2}$, and $(p, \alpha) \in Q_{1} \times \Gamma_{1}{ }^{*}$,
then $\mu_{1}+\mu_{2}(\eta(q), \sigma, z, \eta(p), \alpha)=0<1$
$=\mu_{1} \oplus \mu_{2}(q, \psi(\sigma), \delta(z), p, \delta(\alpha))$,
In all other cases $\mu_{1}+\mu_{2}(\eta(q), \sigma, z, \eta(p), \alpha)$
$=0=\mu_{1} \oplus \mu_{2}(q, \psi(\sigma), \delta(z), p, \delta(\alpha))$,
Theorem 3.4 Let $M_{i}=\left(Q_{i}, \sum_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right)$ be fuzzy pushdown automata, $i=1,2$,
$Q_{1} \cap Q_{2}=\phi, \Sigma_{1} \cap \Sigma_{2}=\phi$ and $\Gamma_{1} \cap \Gamma_{2}=\phi$. Then
(a). $M_{1} \leq M_{1} \oplus M_{2}$ (b) $M_{2} \leq M_{1} \oplus M_{2}$
(c). $M_{1} \leq M_{1}+M_{2}$
(d). $\quad M_{2} \leq M_{1}+M_{2}$

Proof We discuss (a) only. Let $\eta: Q_{1} \cup Q_{2} \rightarrow Q_{1}$ be a partial surjective mapping defined by $\eta(q)=q, \forall q \in Q_{1}$. Consider $\psi: \Sigma_{1} \rightarrow \sum_{1} \cup \sum_{2}$
and $\delta: \Gamma_{1} \rightarrow \Gamma_{1} \cup \Gamma_{2}$ as the inclusion mappings. Clearly , (η, ψ, δ) is a covering.

Theorem 3.5 Let $M_{i}=\left(Q_{i}, \sum_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right)$ be a fuzzy pushdown automata, $i=1,2,3$ such that $M_{1} \leq M_{2}$. Then
a. $M_{1} \wedge M_{3} \leq M_{2} \wedge M_{3}$
b. $M_{3} \wedge M_{1} \leq M_{3} \wedge M_{2}, \quad$ if $\sum_{1}=\sum_{2}=\sum_{3}, \Gamma_{1}=\Gamma_{2}=\Gamma_{3}$ and $H_{1}=H_{2}=H_{3}$
c. $M_{1} \times M_{3} \leq M_{2} \times M_{3}$ d. $M_{3} \times M_{1} \leq M_{3} \times M_{2}$
e. $M_{1} \omega^{1} M_{3} \leq M_{2} \omega^{2} M_{3}$ f. $M_{3} \omega^{1} M_{1} \leq M_{3} \omega^{2} M_{2}$, if ω^{2} is determined by ω^{1} in a natural way.
g. $M_{1} \oplus M_{3} \leq M_{2} \oplus M_{3} \quad$ h. $M_{3} \oplus M_{1} \leq M_{3} \oplus M_{2}$, If $Q_{i} \cap Q_{j}=\phi, \quad \Sigma_{i} \cap \Sigma_{j}=\phi$ and $\Gamma_{i} \cap \Gamma_{j}=\phi$ for $i, j=1,2,3$
i. $\quad M_{1}+M_{3} \leq M_{2}+M_{3} \quad$ j. $\quad M_{3}+M_{1} \leq M_{3}+M_{2}$, If $Q_{i} \cap Q_{j}=\phi, \quad \sum_{i} \cap \sum_{j}=\phi$ and $\Gamma_{i} \cap \Gamma_{j}=\phi$ for $i, j=1,2,3$

Proof Let $\quad \eta: Q_{2} \rightarrow Q_{1} \quad$ and $\psi: \sum_{1} \rightarrow \sum_{2}, \delta: \Gamma_{1} \rightarrow \Gamma_{2} \quad$ be such that $\mu_{1}(\eta(q), \sigma, z, \eta(p), \alpha) \leq \mu_{2}(q, \psi(\sigma), \delta(z), p, \delta(\alpha))$,
$I_{1}(\eta(q)) \leq I_{2}(q)$,
$F_{1}(\eta(p)) \leq F_{2}(p)$ and $H_{1}(z) \leq H_{2}(\delta(z))$
(a) Define $\eta^{\prime}: Q_{2} \times Q_{3} \rightarrow Q_{1} \times Q_{3}$ by.
$\eta^{\prime}\left(q_{2}, q_{3}\right)=\left(\eta\left(q_{2}\right), q_{3}\right)$. Consider $\psi^{\prime}, \delta^{\prime}$ as identity functions on Σ, Γ respectively.
(b) Similar to (a)
(c) D efine $\eta^{\prime}: Q_{2} \times Q_{3} \rightarrow Q_{1} \times Q_{3}$,
by $\eta^{\prime}\left(q_{2}, q_{3}\right)=\left(\eta\left(q_{2}\right), q_{3}\right)$
$\psi^{\prime}: \sum_{1} \times \sum_{3} \rightarrow \sum_{2} \times \sum_{3}$ by $\psi^{\prime}\left(\sigma_{1}, \sigma_{3}\right)=\left(\psi\left(\sigma_{1}\right), \sigma_{3}\right)$
and $\delta^{\prime}: \Gamma_{1} \times \Gamma_{3} \rightarrow \Gamma_{2} \times \Gamma_{3}$
by $\delta^{\prime}\left(z_{1}, z_{3}\right)=\left(\delta\left(z_{1}\right), z_{3}\right)$.
One can verify easily that

$$
\begin{aligned}
& \mu_{1} \times \mu_{3}\left(\eta^{\prime}\left(q_{2}, q_{3}\right),\left(\sigma_{1}, \sigma_{3}\right)\right. \\
& \left.\left(z_{1}, z_{3}\right), \eta^{\prime}\left(p_{2}, p_{3}\right),\left(\alpha_{1}, \alpha_{3}\right)\right) \\
& \leq \mu_{2} \times \mu_{3}\left(\left(q_{2}, q_{3}\right), \psi^{\prime}\left(\sigma_{1}, \sigma_{3}\right)\right. \\
& \left.\delta^{\prime}\left(z_{1}, z_{3}\right),\left(p_{2}, p_{3}\right), \delta^{\prime}\left(\alpha_{1}, \alpha_{3}\right)\right) \\
& \text { and } I_{1} \times I_{3}\left(\eta^{\prime}\left(q_{2}, q_{3}\right)\right) \leq I_{2} \times I_{3}\left(q_{2}, q_{3}\right) ;
\end{aligned}
$$

$$
F_{1} \times F_{3}\left(\eta^{\prime}\left(p_{2}, p_{3}\right)\right)=F_{2} \times F_{3}\left(p_{2}, p_{3}\right)
$$

$$
\text { and } H_{1} \times H_{3}\left(z_{1}, z_{3}\right) \leq H_{2} \times H_{3}\left(\delta^{\prime}\left(z_{1}, z_{3}\right)\right)
$$

Hence, ($\eta^{\prime}, \psi^{\prime}, \delta^{\prime}$) is a required covering.
(d) Define $\eta^{\prime}: Q_{3} \times Q_{2} \rightarrow Q_{3} \times Q_{1}$,
by $\eta^{\prime}\left(q_{3}, q_{2}\right)=\left(q_{3}, \eta\left(q_{2}\right)\right)$
$\psi^{\prime}: \sum_{3} \times \Sigma_{1} \rightarrow \sum_{3} \times \Sigma_{2}$ by $\psi^{\prime}\left(\sigma_{3}, \sigma_{1}\right)=$ $\left(\sigma_{3}, \psi\left(\sigma_{1}\right)\right)$ and $\delta^{\prime}: \Gamma_{1} \times \Gamma_{3} \rightarrow \Gamma_{2} \times \Gamma_{3}$ by $\delta^{\prime}\left(z_{3}, z_{1}\right)=\left(z_{3}, \delta\left(z_{1}\right)\right)$.

Then $\left(\eta^{\prime}, \psi^{\prime}, \delta^{\prime}\right)$ is a covering
(e) For given $w^{1}=\left(w_{\sigma}{ }_{\sigma}, w_{z}{ }_{z}\right)$,
where $w_{\sigma}^{1}: Q_{3} \times \sum_{3} \rightarrow \sum_{1}, w_{z}^{1}: Q_{3} \times \Gamma_{3} \rightarrow \Gamma_{1}$ we denote $w^{2}=\left(w^{2}{ }_{\sigma}, w^{2}{ }_{z}\right)$,
where $w_{\sigma}^{2}: Q_{3} \times \sum_{3} \rightarrow \sum_{2}, w_{z}^{2}: Q_{3} \times \Gamma_{3} \rightarrow \Gamma_{2}$ such that $\psi \circ w_{\sigma}{ }^{1}=w_{\sigma}{ }^{2}$ and $\delta \circ w_{z}{ }^{1}=w_{z}{ }^{2}$

Define $\quad \eta^{\prime}: Q_{2} \times Q_{3} \rightarrow Q_{1} \times Q_{3}$ by $\eta^{\prime}\left(q_{2}, q_{3}\right)=\left(\eta\left(q_{2}\right), q_{3}\right)$ and take $\psi^{\prime}, \delta^{\prime}$ as identity functions on Σ_{3}, Γ_{3} respectively.

Then

$$
\begin{aligned}
& \mu_{1} w^{1} \mu_{3}\left(\eta^{\prime}\left(q_{2}, q_{3}\right), \sigma_{3}, z_{3}, \eta^{\prime}\left(p_{2}, p_{3}\right), z_{3}^{\prime}\right)= \\
& \mu_{1} w^{1} \mu_{3}\left(\left(\eta\left(q_{2}\right), q_{3}\right), \sigma_{3}, z_{3},\left(\eta\left(p_{2}\right), p_{3}\right), z_{3}^{\prime}\right) \\
& =\mu_{1}\left(\eta\left(q_{2}\right), w^{1}{ }_{\sigma}\left(q_{3}, \sigma_{3}\right), w_{z}^{1}\left(q_{3}, z_{3}\right),\right. \\
& \left.\eta\left(p_{2}\right), w_{z}^{1}\left(q_{3}, z_{3}^{\prime}\right)\right) \wedge \mu_{3}\left(q_{3}, \sigma_{3}, z_{3}, p_{3}, z_{3}^{\prime}\right) \\
& \leq \mu_{2}\left(q_{2}, \psi\left(w^{1}{ }_{\sigma}\left(q_{3}, \sigma_{3}\right)\right), \delta\left(w_{z}^{1}\left(q_{3}, z_{3}\right)\right), p_{2}, \delta\left(w_{z}^{1}\left(q_{3}, z_{3}^{\prime}\right)\right)\right) \\
& \wedge \mu_{3}\left(q_{3}, \sigma_{3}, z_{3}, p_{3}, z_{3}^{\prime}\right) \\
& =\mu_{2}\left(q_{2}, w^{2}{ }_{\sigma}\left(q_{3}, \sigma_{3}\right), w^{2}{ }_{z}\left(q_{3}, z_{3}\right), p_{2}, w^{2}{ }_{z}\left(q_{3}, z_{3}^{\prime}\right)\right) \\
& \wedge \mu_{3}\left(q_{3}, \sigma_{3}, z_{3}, p_{3}, z_{3}^{\prime}\right) \\
& =\mu_{2} w^{2} \mu_{3}\left(\left(q_{2}, q_{3}\right), \sigma_{3}, z_{3},\left(p_{2}, p_{3}\right), z_{3}^{\prime}\right) \\
& =\mu_{2} w^{2} \mu_{3}\left(\left(q_{2}, q_{3}\right), \psi^{\prime}\left(\sigma_{3}\right), \delta^{\prime}\left(z_{3}\right),\left(p_{2}, p_{3}\right), \delta^{\prime}\left(z_{3}^{\prime}\right)\right), \\
& \operatorname{Clearly}, I_{1} \wedge I_{3}\left(\eta^{\prime}\left(q_{2}, q_{3}\right)\right)=I_{1} \wedge I_{3}\left(\eta\left(q_{2}\right), q_{3}\right) \\
& =I_{1}\left(\eta\left(q_{2}\right)\right) \wedge I_{3}\left(q_{3}\right) \\
& \leq I_{2}\left(q_{2}\right) \wedge I_{3}\left(q_{3}\right)=I_{2} \wedge I_{3}\left(q_{2}, q_{3}\right) \text { and } \\
& F_{1} \wedge F_{3}\left(\eta^{\prime}\left(p_{2}, p_{3}\right)\right)=F_{2} \wedge F_{3}\left(p_{2}, p_{3}\right)
\end{aligned}
$$

Hence, ($\eta^{\prime}, \psi^{\prime}, \delta^{\prime}$) is a required covering.
(f) Given $w^{1}=\left(w_{\sigma}^{1}, w_{z}^{1}\right)$, where $w_{\sigma}^{1}: Q_{1} \times \Sigma_{1} \rightarrow \Sigma_{3}$, $w_{z}^{1}: Q_{1} \times \Gamma_{1} \rightarrow \Gamma_{3}$ define functions
$w^{2}{ }_{\sigma}: Q_{2} \times \Sigma_{2} \rightarrow \Sigma_{3}$ and $w_{z}^{2}: Q_{2} \times \Gamma_{2} \rightarrow \Gamma_{3}$
$w^{1}{ }_{\sigma}\left(\eta\left(q_{2}\right), \sigma_{1}\right)=w^{2}{ }_{\sigma}\left(q_{2}, \psi\left(\sigma_{1}\right)\right)$
and
$w^{1}\left(\eta\left(q_{2}\right), z_{1}\right)=w^{2}{ }_{z}\left(q_{2}, \delta\left(z_{1}\right)\right)$. Denote $w^{2}=\left(w^{2}{ }_{\sigma}, w^{2}{ }_{z}\right)$.
Since η is a surjective function, ψ, δ are functions and \sum, Γ are finite, such w^{2} exists, but not unique.

Clearly $\quad \eta^{\prime}: Q_{3} \times Q_{2} \rightarrow Q_{3} \times Q_{1}$ defined
by $\eta^{\prime}\left(q_{3}, q_{2}\right)=\left(q_{3}, \eta\left(q_{2}\right)\right)$ defines a required covering $\left(\eta^{\prime}, \psi, \delta\right)$.
(g) Define
$\eta^{\prime}: Q_{2} \cup Q_{3} \rightarrow Q_{1} \cup Q_{3}$ by $\eta^{\prime}(q)=\left\{\begin{array}{cl}\eta(q), & \text { if } q \in Q_{2} \\ q, & \text { otherwise }\end{array}\right.$ and
$\psi^{\prime}: \Sigma_{1} \cup \Sigma_{3} \rightarrow \Sigma_{2} \cup \Sigma_{3}$ and $\delta^{\prime}: \Gamma_{1} \cup \Gamma_{3} \rightarrow \Gamma_{2} \cup \Gamma_{3}$
respectively as $\psi^{\prime}(\sigma)=\left\{\begin{array}{cc}\psi(\sigma), & \text { if } \sigma \in \Sigma_{1} \\ \sigma, & \text { otherwise }\end{array}\right.$ and
$\delta^{\prime}(\mathrm{z})=\left\{\begin{array}{cc}\delta(\mathrm{z}), & \text { if } \mathrm{z} \in \Gamma_{1} \\ z, & \text { otherwise }\end{array}\right.$ Then
for $q, p \in Q_{2}, \sigma \in \Sigma_{2}, z \in \Gamma_{2}, \alpha \in \Gamma^{*}{ }_{2}$
or $q, p \in Q_{3}, \sigma \in \Sigma_{3}, z \in \Gamma_{3}, \alpha \in \Gamma_{3}^{*}$, we have
$\mu_{1} \oplus \mu_{3}\left(\eta^{\prime}(q), \sigma, z, \eta^{\prime}(p), \alpha\right)$
$\leq \mu_{2} \oplus \mu_{3}\left(q, \psi^{\prime}(\sigma), \delta^{\prime}(z), p, \delta^{\prime}(\alpha)\right)$
If $(q, \sigma, z) \in Q_{1} \times \sum_{1} \times \Gamma_{1},(p, \alpha) \in \mathrm{Q}_{3} \times \Gamma_{3}{ }^{*}$
or $(q, \sigma, z) \in Q_{3} \times \sum_{3} \times \Gamma_{3},(p, \alpha) \in \mathrm{Q}_{1} \times \Gamma_{1}{ }^{*}$ and
$(q, \sigma, z) \in Q_{2} \times \Sigma_{2} \times \Gamma_{2},(\mathrm{p}, \alpha) \in \mathrm{Q}_{3} \times \Gamma_{3}{ }^{*}$
or $(q, \sigma, z) \in Q_{3} \times \sum_{3} \times \Gamma_{3},(\mathrm{p}, \alpha) \in \mathrm{Q}_{2} \times \Gamma_{2}{ }^{*}$, then
$\mu_{1} \oplus \mu_{3}\left(\eta^{\prime}(q), \sigma, z, \eta^{\prime}(p), \alpha\right)=1$
$=\mu_{2} \oplus \mu_{3}\left(q, \psi^{\prime}(\sigma), \delta^{\prime}(z), p, \delta^{\prime}(\alpha)\right)$.
In all other remaining cases we have equality follows directly by the definition.

Clearly, $I_{1} \oplus I_{3}\left(\eta^{\prime}(q)\right) \leq I_{2} \oplus I_{3}(q)$,
$F_{1} \oplus F_{3}\left(\eta^{\prime}(p)\right) \leq F_{2} \oplus F_{3}(p)$ and
$H_{1} \oplus H_{3}(z) \leq H_{2} \oplus H_{3}(\delta(z))=H_{2} \oplus H_{3}\left(\delta^{\prime}(z)\right)$
One can prove (h), (i) and (j) similar to (g).
We now define homomorphism of fuzzy pushdown automata and find its relation with the covering.

Definition 3.6 Let $M_{i}=\left(Q_{i}, \sum_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right), \quad i=1,2$ be two fuzzy pushdown automata. Let $\delta_{1}: Q_{1} \rightarrow Q_{2}, \delta_{2}: \sum_{1} \rightarrow \sum_{2}$ and $\quad \delta_{3}: \Gamma_{1} \rightarrow \Gamma_{2} \quad$ be functions. Then the triplet $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ is called a fuzzy pushdown automaton homomorphism from M_{1} to M_{2}, symbolically $\left(\delta_{1}, \delta_{2}, \delta_{3}\right): M_{1} \rightarrow M_{2}$, if for all $q, p \in Q_{1}, \sigma \in \sum_{1}, z \in \Gamma_{1}, \alpha \in \Gamma_{1}{ }^{*}$,
(i) $\mu_{1}(q, \sigma, z, p, \alpha) \leq \mu_{2}\left(\delta_{1}(q), \delta_{2}(\sigma), \delta_{3}(z), \delta_{1}(p), \delta_{3}(\alpha)\right)$
(ii) $I_{1}(q) \leq I_{2}\left(\delta_{1}(q)\right)$
(iii) $F_{1}(p) \leq F_{2}(\alpha(p))$ and
(iv) $H_{1}(z) \leq H_{2}\left(\delta_{3}(z)\right)$
homomorphism $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ is called monomorphism (epimorphism, isomorphism), if the functions δ_{1}, δ_{2} and δ_{3}
are injective (surjective, bijective respectively). In the case of an isomorphism, we shall write $M_{1} \cong M_{2}$.

If equality holds simultaneously in all the conditions of the above definition, then $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ is termed as a strong homomorphism.

Theorem 3.7 Let $M_{i}=\left(Q_{i}, \sum_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right), \quad i=1,2$ be two fuzzy pushdown automata. If $(\alpha, \beta, \gamma): M_{1} \rightarrow M_{2}$ is a homomorphism with α injective, then $M_{1} \leq M_{2}$.

Proof Denote $\eta=\alpha^{-1}, \psi=\beta$ and $\delta=\gamma$. Then (η, ψ, δ) is the required covering.

The above theorem lead to
Corollary 3.8 Isomorphic fuzzy pushdown automata covers each other.

Theorem 3.9 Let $M_{i}=\left(Q_{i}, \sum_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right), \quad i=1,2$ be two fuzzy pushdown automata. If $(\alpha, \beta, \gamma): M_{1} \rightarrow M_{2}$ is a strong epimorphism, then $M_{2} \leq M_{1}$.

Proof \quad Since $\quad \beta$ and $\gamma \quad$ are \quad surjective, for $\sigma_{2} \in \sum_{2}, z_{2} \in \Gamma_{2}, \alpha_{2} \in \Gamma_{2}^{*}$ there exists at least one $\sigma_{1} \in \sum_{1}, z_{1} \in \Gamma_{1}, \alpha_{1} \in \Gamma_{1}^{*}$ such that
$\beta\left(\sigma_{1}\right)=\sigma_{2}, \gamma\left(z_{1}\right)=z_{2}$ and $\gamma\left(\alpha_{1}\right)=\alpha_{2}$. By axiom of choice select one such $\sigma_{1} \in \sum_{1}, z_{1} \in \Gamma_{1}$ and define functions $\psi: \Sigma_{2} \rightarrow \Sigma_{1}$ by $\psi\left(\sigma_{2}\right)=\sigma_{1}$ and $\delta: \Gamma_{2} \rightarrow \Gamma_{1}$ by $\delta\left(\mathrm{z}_{2}\right)=z_{1}$.

Now, letting $\eta=\alpha$, one can easily checked that $((\eta, \psi, \delta)$ is the covering $M_{2} \leq M_{1}$.

We now state few more properties of isomorphism, those are consequences of the definition only and hence we omit their proofs.

Theorem 3.10 Let $M_{i}=\left(Q_{i}, \sum_{i}, \Gamma_{i}, \mu_{i}, H_{i}, I_{i}, F_{i}\right)$, $i=1,2,3$, be a fuzzy pushdown automata. Then following are true whenever the products are defined
a. $M_{1} \wedge\left(M_{2} \oplus M_{3}\right) \cong\left(M_{1} \wedge M_{2}\right) \oplus\left(M_{1} \wedge M_{3}\right)$
b. $M_{1} \wedge\left(M_{2}+M_{3}\right) \cong\left(M_{1} \wedge M_{2}\right)+\left(M_{1} \wedge M_{3}\right)$
c. $M_{1} \times\left(M_{2} \oplus M_{3}\right) \cong\left(M_{1} \times M_{2}\right) \oplus\left(M_{1} \times M_{3}\right)$
d. $M_{1} \times\left(M_{2}+M_{3}\right) \cong\left(M_{1} \times M_{2}\right)+\left(M_{1} \times M_{3}\right)$
g. $M_{1} \bullet\left(M_{2} \oplus M_{3}\right) \cong\left(M_{1} \bullet M_{2}\right) \oplus\left(M_{1} \bullet M_{3}\right)$
h. $M_{1} \bullet\left(M_{2}+M_{3}\right) \cong\left(M_{1} \bullet M_{2}\right)+\left(M_{1} \bullet M_{3}\right)$

Further,
e. $M_{1} \omega\left(M_{2} \oplus M_{3}\right) \cong\left(M_{1} \omega^{1} M_{2}\right) \oplus\left(M_{1} \omega^{2} M_{3}\right)$
f. $M_{1} \omega\left(M_{2}+M_{3}\right) \cong\left(M_{1} \omega^{1} M_{2}\right)+\left(M_{1} \omega^{2} M_{3}\right)$,
where ω^{1} and ω^{2} are determined by ω in a natural way.

Following theorem is exchange type of products in relation to covering

Theorem 3.11 Let $M_{i}=\left(Q_{i}, X_{i}, Y_{i}, \delta_{i}, \sigma_{i}\right)$ be a fuzzy pushdown automata, $i=1,2,3,4$. Then
a. $\quad\left(M_{1} \wedge M_{2}\right) \times\left(M_{3} \wedge M_{4}\right) \leq\left(M_{1} \times M_{3}\right) \wedge\left(M_{2} \times M_{4}\right)$, if $\quad \sum_{1}=\sum_{2}, \quad \sum_{3}=\sum_{4}$;
$\Gamma_{1}=\Gamma_{2}, \Gamma_{3}=\Gamma_{4}$ and $H_{1}=H_{2}, H_{3}=H_{4}$
Further, for given ω^{1} and ω^{2} one can naturally define ω^{3} such that
b. $\left(M_{1} \omega^{1} M_{2}\right) \times\left(M_{3} \omega^{2} M_{4}\right) \leq\left(M_{1} \times M_{3}\right) \omega^{3}\left(M_{2} \times M_{4}\right)$
c. $\left(M_{1} w^{1} M_{2}\right) \wedge\left(M_{3} w^{2} M_{4}\right) \leq\left(M_{1} \times M_{3}\right) w^{3}\left(M_{2} \times M_{4}\right)$
d. $\left(M_{1} \omega^{1} M_{2}\right) \wedge\left(M_{3} \omega^{2} M_{4}\right) \leq\left(M_{1} \wedge M_{3}\right) \omega^{3}\left(M_{2} \wedge M_{4}\right)$
e. $\left(M_{1} \omega^{1} M_{2}\right) \bullet\left(M_{3} \omega^{2} M_{4}\right) \leq\left(M_{1} \bullet M_{3}\right) \omega^{3}\left(M_{2} \bullet M_{4}\right)$, if \sum_{i} 's and Γ_{i} 's are pair - wise disjoint.
Proof: We prove (b) and (e) only.
Proof: Let $w^{1}=\left(w_{\sigma}^{1}, w_{z}^{1}\right)$ and $w^{2}=\left(w_{\sigma}^{2}, w_{z}^{2}\right)$.
(b) Define

$$
\begin{aligned}
& w_{\sigma}^{3}:\left(Q_{2} \times Q_{4}\right) \times\left(\sum_{2} \times \sum_{4}\right) \rightarrow \sum_{1} \times \sum_{3} \text { and } \\
& w_{z}^{3}:\left(Q_{2} \times Q_{4}\right) \times\left(\Gamma_{2} \times \Gamma_{4}\right) \rightarrow \Gamma_{1} \times \Gamma_{3} \text { as }
\end{aligned}
$$

$$
w_{\sigma}^{3}\left(\left(q_{2}, q_{4}\right),\left(\sigma_{2}, \sigma_{4}\right)\right)
$$

$$
=\left(w_{\sigma}^{1}\left(q_{2}, \sigma_{2}\right), w_{\sigma}^{2}\left(q_{4}, \sigma_{4}\right), w_{z}^{3}\left(\left(q_{2}, q_{4}\right),\left(z_{2}, z_{4}\right)\right)\right.
$$

$$
=\left(w_{z}^{1}\left(q_{2}, z_{2}\right), w_{z}^{2}\left(q_{4}, z_{4}\right)\right.
$$

Clearly $w^{3}=\left(w_{\sigma}^{3}, w_{z}^{3}\right)$,
$\eta\left(\left(q_{1}, q_{3}\right),\left(q_{2}, q_{4}\right)\right)=\left(\left(q_{1}, q_{2}\right),\left(q_{3}, q_{4}\right)\right) \quad$ and $\quad \psi, \delta \quad$ as identity functions on $\sum_{2} \times \sum_{4}, \Gamma_{2} \times \Gamma_{4}$ respectively determines a required covering.
(e) Define $\quad w_{\sigma}^{3}:\left(Q_{2} \times Q_{4}\right) \times\left(\sum_{2} \cup \Sigma_{4}\right) \rightarrow \Sigma_{1} \cup \Sigma_{3}$ and $w_{z}^{3}:\left(Q_{2} \times Q_{4}\right) \times\left(\Gamma_{2} \cup \Gamma_{4}\right) \rightarrow \Gamma_{1} \cup \Gamma_{3}$

Respectively as

$$
\begin{aligned}
& w_{\sigma}^{3}\left(\left(q_{2}, q_{4}\right), \sigma\right)=\left\{\begin{array}{ll}
w_{\sigma}^{1}\left(q_{2}, \sigma\right), & \text { if } \sigma \in \sum_{2} \\
w_{\sigma}^{2}\left(q_{4}, \sigma\right), & \text { if } \sigma \in \sum_{4}
\end{array}\right. \text { and } \\
& w_{z}^{3}\left(\left(q_{2}, q_{4}\right), z\right)= \begin{cases}w_{z}^{1}\left(q_{2}, z\right), & \text { if } \mathrm{z} \in \Gamma_{2} \\
w_{z}^{2}\left(q_{4}, z\right), & \text { if } \mathrm{z} \in \Gamma_{4}\end{cases}
\end{aligned}
$$

Denote $w^{3}=\left(w^{3}{ }_{\sigma}, w^{3}{ }_{z}\right)$, Clearly
$\eta\left(\left(q_{1}, q_{3}\right),\left(q_{2}, q_{4}\right)\right)=\left(\left(q_{1}, q_{2}\right),\left(q_{3}, q_{4}\right)\right)$ and ψ, δ as identity functions on $\Sigma_{2} \cup \Sigma_{4}, \Gamma_{2} \cup \Gamma_{4}$ respectively, determines a required covering.

4. CONCLUSION

Algebraic counterparts namely covering and homomorphism of reduction and equivalent respectively of fuzzy pushdown automata are discussed. Covering between various products of fuzzy pushdown automata are established. It is expected that the theory developed in this paper will be helpful in establishing equivalence between the languages accepted by fuzzy pushdown automata and fuzzy context-free languages.

5. REFERENCES

[1] Astrain J. J., Garitagoitia J. R., Gonzalez J. R. De Mendivil, Villadangos J., Fariña F., Approximate String Matching Using Deformed Fuzzy Automata, Fuzzy Optim. Decis. Mak., 3 (2) (2004), 141-155.
[2] Bucurescu I., Pascu A., Fuzzy pushdown automata, J. Comput.. Math., 10 (1981), 109 - 119
[3] Cheng W., Mo Z., Minimization algorithm of fuzzy finite automata, Fuzzy Sets Syst., 141(3) (2004), 439-448
[4] Eilenburg S., Automata, Languages and machines, Vol.-A, Academic press, London, 1974.
[5] J. Hopcroft J. E., Ullman J. D., Introduction to automata theory, languages and computation, (Addson-Wesley, New York, 1979).
[6] Kumbhojkar H. V., Chaudhari S. R., On covering of Products of fuzzy finite state machines, Fuzzy Sets Syst., 125 (2002), 215-222.
[7] Mordenson J. N., Malik D. S., Fuzzy Automata and Languages Theory and Applications, (Chapman and Hall/CRC, 2002).
[8] Mizumoto M., Toyada J., Tanaka K., Various kinds of automata, with weights, J. Comput. System Sci.10(2) (1975), 219-236.
[9] Petkovic T. , Congruences and homomorphisms of fuzzy automata, Fuzzy Sets Syst. 157 (2006), 444458.
[10] Qing E. W. , Wang T., Huang Y. X. , Li J. S., State fusion of fuzzy automata with application on target tracking, Comput. Math. with Appli., 57 (2009), 949-960.
[11] Qing E. W., Cui G., Application of Fuzzy Automata to Fuzzy Signal, Processing of Intern. Conf. on Comput. Sci. and Software Engg., 5 (2008), 1283-1286.
[12] Ramaswami V., Girijamma H, Conversion of Finite Automata to Fuzzy Automata for String Comparison, Int. J. of Computer Applications, 37(8) (2012), 1-4.
[13] Wee W.G, Fu K.S., A formulation of fuzzy automata and its application as a model of learning systems, IEEE Trans. Syst. Sci. Cyber, 5 (1969), 215-23.
[14] Xing H., Fuzzy pushdown automata, Fuzzy Sets Syst., 158, (2007), 1437-1449.

