
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

1

Building a Truly Distributed Constraint Solver with JADE

Ibrahim Adeyanju

School of Computing, The Robert Gordon University,

Aberdeen, UK

ABSTRACT

Real life problems such as scheduling meeting between

people at different locations can be modelled as distributed

Constraint Satisfaction Problems (CSPs). Suitable and

satisfactory solutions can then be found using constraint

satisfaction algorithms which can be exhaustive

(backtracking) or otherwise (local search). However, most

research in this area tested their algorithms by simulation on a

single PC with a single program entry point. The main

contribution of our work is the design and implementation of

a truly distributed constraint solver based on a local search

algorithm using Java Agent DEvelopment framework (JADE)

to enable communication between agents on different

machines. Particularly, we discuss design and implementation

issues related to truly distributed constraint solver which

might not be critical when simulated on a single machine.

Evaluation results indicate that our truly distributed constraint

solver works well within the observed limitations when tested

with various distributed CSPs. Our application can also

incorporate any constraint solving algorithm with little

modifications.

General Terms

Algorithms, Agent-Oriented systems

Keywords

Constraint Satisfaction, JADE, DisPeL, Multi-agent systems.

1. INTRODUCTION
Human beings in their daily activities have to make individual

or collective decisions which are restricted by one or more

conditions. Such real life activities can be modelled as

Constraint Satisfaction problems (CSPs) and algorithms

developed to give suitable solutions. A CSP comprises of a

finite set of decision variables, each with a set of alternatives

it can adopt and a set of constraints [1]. CSPs are solved when

all the constraints between decision variables are satisfied by

choices made from their domain. A distributed CSP is one in

which variables and constraints are distributed among

multiple agents in collaboration [2]. In such a scenario, group

objectives are clearly defined but individual objectives

introduce additional complexity on negotiating solutions.

This paper discusses the design and implementation of a truly

distributed constraint solver using a local search algorithm on

several machines. Real life applications of distributed

constraint solvers include dynamic distributed resource

allocation [3] which arises in problems such as distributed

sensor networks, disaster rescue and hospital scheduling.

Another application is building schedulers such as Distributed

Meeting Scheduler and Railway Traffic regulation[4].

The rest of this paper is as follows. Section 2 provides a

critical appraisal of related work while Section 3 discusses the

local search algorithm used in our work. We present details of

the Java Agent DEvelopment framework (JADE) in Section 4

followed by the design and implementation of our application

in Section 5. Evaluation of our application is discussed in

Section 6 while Section 7 concludes our work with a summary

and plans for future work.

2. RELATED WORK
Two broad categories of techniques used in solving Constraint

Satisfaction Problems (CSP), centralised or distributed, are

Exhaustive Search and Local Search. Exhaustive Search also

known as Systematic Backtracking involves starting with a

partial solution that is carefully chosen and incrementally

searching through all the possible combination of different

values of the variables until a complete solution that satisfies

all constraints is found. Exhaustive search algorithms are

guaranteed to find one or more solutions if they exist or could

determine if no solution exists at all. Current backtracking

algorithms include Back-jumping schemes [5,6],

Asynchronous Weak Commitment search [7] and

Asynchronous Forward Checking [8].

Local search involves starting with a partial solution through

random assignment of values to variables involved in a CSP.

An improvement in the random solution is then sought

through successive iterations by exploring different points in

the search space until a valid solution is found or the

maximum time allowed has elapsed. Simulated Annealing

[9,10], Breakout Algorithm [11], Tabu Search [12],

Distributed Breakout Algorithm [13,14] and Distributed

Penalty-driven Local search algorithm [15] are examples of

existing local search algorithm for constraint solving.

Distribution of CSPs across multiple machines, rather than

simulation on a single machine, requires the development of a

distributed system. Several technologies exist for building

such distributed systems. These include Remote Procedure

Calls (RPC) [16,17], .NET Remoting [18,19], Remote Method

Invocation (RMI) [20,21], Common Object Request Broker

Architecture (CORBA) [22,23] and Simple Agent

Communication Infrastructure (SACI) [24,25] among others.

In our work, we used Java Agent DEvelopment Framework

(JADE) [26,27], an open source platform for peer-to-peer

agent applications. We chose JADE because it is open-source

and used more widely to build multi-agent systems.

3. CONSTRAINT SOLVER
Our distributed constraint solver application is built using a

local search algorithm called Distributed Penalty-driven Local

search (DisPeL) [15] as its underlying constraint solver.

DisPeL is a local search algorithm for solving distributed

CSPs, where each agent controls just one variable, by finding

the first solution that satisfies all constraints simultaneously.

Collaborating agents take turns in a fixed ordering to improve

a random initialization. Gradual sequential improvements are

found iteratively rather than the best possible improvement as

in conventional hill-climbing algorithms. This causes a

reduction in communication costs since all improvements are

accepted and the information used in making decisions is

always coherent [15].

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

2

DisPeL‟s core strategy is in its use of two types of penalties

(temporary and incremental) in resolving deadlocks (local

optima) by modifying the underlying cost landscape.

Deadlocks occur when the solution to a CSP cannot be

improved further by agents although no suitable solution has

been obtained. Penalties are used to locally perturb the

solution thereby forcing the agents to try other combination of

values through exploration of other areas in the search space.

Temporary penalties are removed immediately after use while

incremental penalties are only reset when current value of an

agent does not violate any of its constraints. We use the

stochastic version of DisPeL where the decision on whether to

use temporary or incremental penalties is done randomly.

Penalties are used collaboratively. When an agent detects a

deadlock and has to use a penalty, it implements the penalty

on its current value and requests all neighbours with a lower

ordering priority (for incremental penalty) or those neighbours

with a lower ordering priority and violate constraints with self

(for temporary penalty) to implement the same penalty on

their current value assignments. It is also assumed that all

constraints are uni-directed; therefore each agent in DisPeL

will locally evaluate all constraints attached to its variable.

Hence, each agent will communicate in a synchronised

manner with all other agents that are co-constrained with it

exchanging value assignments and requests to impose

penalties [15].

4. JADE FRAMEWORK
Distributed constraint solvers are multi-agent systems since

they attempt to find suitable solutions to CSPs whose agents

are distributed across several locations. Agent-oriented

applications combine artificial intelligence with distributed

system techniques by modelling components as agents. Each

agent is autonomous, proactive, and has the ability to

communicate with other agents to achieve personal and

communal goals [26]. Such applications have a peer to peer

architectural model where any agent is able to send or receive

communication from any other agent within the application.

Open source middleware which provide domain-independent

infrastructure can facilitate communication in multi-agent

systems thereby allowing application developers to focus on

production of the business logic.

Java Agent DEvelopment framework (JADE) is a completely

distributed middleware system with a flexible infrastructure

that allows easy extension [6]. The framework facilitates

development of complete agent-oriented applications by

means of a run-time environment implementing the life-cycle

support features required by agents and the core logic of

agents themselves among other tools. JADE is a software

platform written in Java that provides basic middleware-layer

functionalities which are independent of the specific

application and which simplify the realization of distributed

applications that exploit the software agent abstraction [26].

Each agent in JADE complies with the FIPA (Foundation for

Intelligent Physical Agents) specifications and therefore has

such basic qualities as autonomy, pro-activeness,

responsiveness, and social ability with secondary qualities like

mobility, adaptability and rationality. Any multi-agent system

based on JADE is loosely coupled, peer-to-peer and message

communication between agents are asynchronous. Each agent

has its own thread of execution using this to control its life

cycle and decide autonomously to perform specific tasks.

4.1 JADE Architecture
A JADE platform consists of a runtime environment (also

called containers) that can be distributed over the network and

provides all the services needed for hosting and executing

agents. A special container, called the main container must

always be active in a platform and all other normal containers

register with it as soon as they start and must therefore know

the main container‟s host address and port. A diagram

showing the typical architecture of the JADE platform is

shown in Figure 1. Starting another main container elsewhere

in the network constitutes a different platform to which new

normal containers can possibly register. The main container

manages the container table (CT), which is the registry of

object references and transport addresses of all container

nodes in the platform; manages the global agent descriptor

table GADT), which is the registry of all agents present in the

platform, including their current status and location; and hosts

the AMS (Agent Management Service) and DF (Directory

Facilitator), the two special agents that provide the agent

management service and the default yellow page service of

the platform respectively. The DF is not used in our work

since the number of agents involved in solving the distributed

constraint problem does not change throughout the solution

finding process.

Figure 1. Relationship between Containers and platforms

on the JADE architecture [27]

Because agent communication is peer-to-peer, each agent

maintains a local agent descriptor table (LADT) which it

searches first when communicating with any other agent and

only involves the main container‟s GADT if the agent‟s

address is not on its LADT and caches it locally for future

use. Agents in JADE are identified by a globally unique name

called an Agent Identifier (AID) consisting basically of the

agent‟s local name and its addresses (usually inherited from

the platform) [26]. Each agent can communicate transparently

regardless of their actual location: same container (e.g. A2 &

A3 in Figure 1), different containers in the same platform (A1

& A2) or different platforms (A4 & A5) provided they know

each other‟s agent identifier [6].

registered

with

Network

Container 2

A4 Main Container

A1

Container 1

A2
AMS DF

A3

Main Container

A5 AMS DF

Platform 1

Platform 2

=

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

3

4.2 Message Transport Service
JADE includes a Message Transport Service (MTS) that

manages all message exchange within and between platforms.

All standard Message Transport Protocols (MTPs) defined by

FIPA are implemented by this service to promote

interoperability between different non-JADE platforms. Each

MTP includes the definition of a transport protocol and a

standard encoding of the message envelope. HTTP-based

MTP are always started by default with the initialization of a

main container while no MTP is activated on normal

containers. This creates a server socket on the main container

host and listens for incoming connections over HTTP at the

URL specified. Whenever an incoming connection is

established and a valid message is received over that

connection, the MTP routes the message to its final

destination which, in general, is one of the agents located

within the distributed platform [26]. The platform uses a

proprietary transport protocol called IMTP (Internal Message

Transport Protocol) internally to perform message routing for

both incoming and outgoing messages using a single-hop

routing table that requires direct visibility among containers.

IMTP is also used to transport internal commands needed to

manage the distributed platform as well as monitor the status

of remote containers. The two main implementations of IMTP

available are Java RMI which is the default option and a

proprietary protocol using TCP sockets that circumvents the

absence of Java RMI in the J2ME environments. The default

Java RMI implementation was used throughout the

development of our distributed constraint solver.

4.3 Agent Tasks - Behaviour scheduling
An agent in JADE carries out its tasks within program

elements called “behaviours”. A behaviour represents a task

that an agent can carry out. An agent can execute several

behaviours concurrently although the scheduling of

behaviours in an agent is not pre-emptive but cooperative.

This means that when a behaviour is scheduled for execution

its action() method is called and runs until it returns.

Therefore it is the programmer who defines when an agent

switches from the execution of a behaviour to the execution of

the next one. When there are no behaviours available for

execution the agent‟s thread goes to sleep in order not to

consume CPU time and is woken up as soon as there is a

behaviour again available for execution [27].

4.4 Agent Communication
The communication paradigm adopted in JADE is the

asynchronous message passing [26]. Each agent has a

message queue where the JADE runtime posts messages sent

by other agents; whenever a message is posted in the message

queue, the receiving agent is notified. The programmer

however determines if and when the agent actually picks up

the message from the queue to process it. This process is

shown in Figure 2. The format of messages in JADE is

compliant with FIPA-ACL message structure specifications

and has fields such as the sender, list of receivers,

communicative act (REQUEST, INFORM, PROPOSE etc),

content, content language and ontology.

5. DESIGN & IMPLEMENTATION
The design of our truly distributed constraint solver

application is discussed under two sections via the User

Interface (Section 5.1) and the underlying Distributed

Constraint Solver (Section 5.2). The user interface is that part

of the application that interacts with the user by allowing the

user to input values and displays the final result of the

computation. The underlying distributed constraint solver

Figure 5. JADE asynchronous message passing paradigm

deals with the structure of the algorithm and how it was

integrated into the JADE platform that was used to allow for

true distribution of the agents on different machines in solving

constraint satisfaction problems.

5.1 Graphical User Interface (GUI)
The graphical user interface would allow a user to input some

values for an agent involved in the DisCSP before it is active

and starts communicating with other agents in order to solve

the problem. The results are shown on a dialog box. The

graphical user interface for the distributed constraint solver is

shown in Figure 3. This user interface can be used only once

by a single agent involved in solving a DisCSP in

collaboration with other agents; the application must be

restarted in order to solve any other DisCSP. The application

can only be exited using the “Exit Application” button or the

“Exit Application” menu item under the “File” menu which

shows a confirmation dialog before exiting. An error dialog

box is popped up if any of the input fields contain an invalid

value and the information on the dialog gives a hint as to the

possible cause of the error.

The “Start Agent” button is used to activate an agent involved

in solving a DisCSP in collaboration with other active agents

on the same main container though they might be on different

machines. The agent would only be started if all input fields

are found to be correct from all validation checks done. This

button is disabled afterwards to ensure that another agent

cannot be started using this application instance. The “Clear

All Inputs” button is used to clear all inputs entered before the

agent is started and is also disabled once the agent is started as

no input adjustments are allowed afterwards.

The “Start Main Container on this Host” button is used to start

the main container on the same host as the agent and must be

used before any normal agent is started. The menu item is

disabled if the main container is started successfully or an

agent is started on the same host. Care must be taken to click

this button on just one of the machines that are involved in

solving a DisCSP because there would be no communication

between the agents if each agent host starts its own main

container. The “Exit Application” button exits the application

displaying a confirmation dialog box and the program only

exits if no active agent is using the interface; in other words,

no agent is started yet or a DisCSP has been solved (partially

or fully) and agent‟s communication with others is complete.

The “Help” menu contains a single menu item (“About”)

which pops up information about the author, the version and

copyright notices. Basic instructions to guide the user to enter

correct and valid inputs values are shown on the upper section

of the interface. This ensures that the user reads them first

prepare the

message to A2

A1 A2

Distributed JADE runtime

send the

message
post the message in A2's

message queue

get the message

from the queue

and process it

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

4

Figure 3. User Interface for the Distributed Constraint Solver

before entering values in the input boxes provided in the

lower section of the user interface. The Agent’s variable name

is assumed to be same as the agent‟s name since each agent

has only one variable. Validation checks are also done to

ensure that this input field is not blank before the agent is

started. The Agent’s domain value field takes the domain

values for this agent‟s variable which must be separated by

comma. We restricted valid domain value type for this

application to Integers. The Maximum Iterations input field

takes an Integer value that indicates the cycle after which the

agent would stop communicating with neighbouring agents in

the DisCSP if a solution has not been found.

The Constraint Expressions field allows the user to input the

constraints between the agent and other agents in form of

mathematical expressions. Our application accepts only

comparison (>, <, !=, =, >=, <=) constraints expression to

between just two variables i.e. the agent and any another

agent. Each constraint expression starts with the agent‟s

variable name followed by the operator, then the other agent‟s

variable name. Each constraint expression must as well be

separated by a comma if the agent has constraints with more

than one agent.

The Farthest Agent Distance field accepts an Integer value

that is used for termination detection by ensuring that all

agents in the DisCSP have obtained solutions to their local

problems. The value gives an estimate of the number of

agents in between the two farthest agents in the DisCSP that

do not have direct constraints together but are indirectly

connected through other agents. The Address of Main

Container field takes a string value that indicates the address

(usually HTTP address, fully qualified with computer name

and domain name) where the main container that routes

messages between JADE agents is located. The main

container must be started first before other agents can join the

JADE platform when trying to solve a DisCSP. The loop-back

address of the host („localhost‟) could be used if the agent is

starting on the same machine as the main container.

5.2 Constraint solving technique
The Distributed Constraint Solver (DCS) underlying our GUI

discussed in Section 5.1 is based on the Distributed Penalty-

driven Local search (DisPeL) [15] algorithm. Here, we

discuss the implementation of a DisPeL DCS with JADE to

ensure true distribution of the agents on different machines. It

should be emphasized that all versions of DisPeL were

previously simulated on single machines by the original

author and our implementation of a true DCS is novel. Real

distribution of DisCSPs leads to other important research

problems. The problems we encountered while implementing

a DisPeL DCS on several machines are in next Sub-Sections.

5.2.1 Ownership of the DisCSP
When DisPeL algorithm was simulated to solve DisCSPs on a

single machine; all the constraint expressions were either

randomly generated [15] or entered through the same GUI

[29]. It was relatively easy to identify constraint expressions

for each variable. However, to run DisPeL on several

machines, we have to address the problem of who initialises

the DisCSP and sorts out all the constraint expressions.

Ideally, each agent involved in the solving a DisCSP should

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

5

only know about other agents that it has constraints with but

the algorithm solves the problem based on the fact that the

whole DisCSP is known from the beginning before starting

the process towards finding a suitable solution and that the

DisCSP is static (unchanged) throughout until a solution is

found or the maximum iterations allowed is reached. Some

important features of the DisPeL algorithm such as ordering

all variable names lexicographically or using the Distributed

Agent Ordering scheme is based on this fact and might be

difficult to circumvent. We address this problem by ensuring

that each agent only knows about the agents it is constrained

with and its local CSP are entered manually from the agent‟s

GUI. Each agent also has an estimate of the size of the whole

DisCSP from farthest agent distance entered on its GUI. We

also assumed that all agents involved in the DisCSP are

started near simultaneously to ensure that the problem is

complete before the process towards finding a solution starts.

5.2.2 Constraints and global constants validation

Also closely related to the problem of DisCSP ownership is

the validation of constraint expressions and global constants

like the maximum number of iterations. This does not pose a

problem when the constraint solver is implemented on a

single machine with single interface for taking all inputs. For

instance, if agent A and B have constraints “A>B” between

them, it must be ensured that the same equivalent expression

(“A>B” on agent A‟s interface and “B<A” on agent B) is

typed on their interfaces to avoid conflicts. Global constants

like the “maximum number of iterations” should also be

identical for all agents as used in the original algorithm. To

address this problem, we validate equivalent expressions

across constrained agents by passing the constraint operators

with other messages that were communicated between agents.

Conflicting constraints are then ignored in the process of

finding a solution to the DisCSP. We did not think having the

same values of the “maximum number of iterations” was

critical to finding a solution to our kind of DisCSPs since this

could mean stopping all agents if any of them has a different

value from any other one. Therefore, we did not validate the

“maximum number of iterations” input across agents.

5.2.3 Termination Detection
The constraint solving process has to be terminated when all

of the agents obtain solutions to their constraints. Such

termination detection is relatively easy when all agents are

implemented on a single machine and have a single

application entry since each agent can be checked to have

obtained a solution before the application is terminated. The

termination detection is more complex when agents are

situated on different machines with multiple application

entries. We address this problem as suggested by original

author of our constraint algorithm [15] by using the same

method as Distributed Breakout Algorithm [13].

5.2.4 Unreliable network communication
Since the agents involved in the DisCSP could be located on

different machines connected through a computer network

(local network preferably), the issues of communication

delays, network congestion, packet corruption and time-outs

are also paramount. There would be no cause to consider this

issue when all the agents are on the same machine. We used

the remedy suggested by the author of our constraint solver

[15] where agents are allowed to resume activity if messages

have not been received after a reasonable amount of time.

Agents in such situation assume that their neighbours‟ values

are unchanged.

6. EVALUATION
We tested extensively our truly distributed constraint solver

application with sample DisCSPs. Test cases were designed

based on the functional requirements of our application.

Seven DisCSPs having up to a maximum of four agents were

formulated for this purpose. The formulated DisCSPs are

shown in Table 1. The diameter of agent network was taken as

the farthest agent distance parameter used in termination

detection. This can be obtained by drawing the agent tree for a

DisCSP and counting the number of agents from the top to the

bottom of agent tree as illustrated in Figure 4.

We observe from Table 1 that all the tested DisCSPs gave

correct outputs with the only one not solved showing the

interim results when the maximum iteration was reached.

There is sometimes a variation in the number of iterations

reached across constrained agents when a final solution was

obtained because of the asynchronous nature of the JADE. A

screenshot from one of the agent‟s GUI during our evaluation

for test case 7 is shown in Figures 5.

Figure 4. Calculating agent network diameter

7. CONCLUSION
This paper discussed our work on the development of a truly

Distributed Constraint Solver application based on a local

search algorithm (DisPeL) on different machines. The JADE

framework class libraries were used to implement a multi-

agent system that enables the true distribution of CSPs.

We intend to extend our application to allow each agent have

multiple variables in addition to being truly distributed on

several machines. The type of constraint expressions handled

by our software will also be extended to allow Comparison,

Boolean and Arithmetic operations between more than two

variables. Variables other than Integers like Double, String

and other objects like Date that would be more useful in real

life applications will also be considered in future version of

our application. Finally, we would consider distributing the

agents in our constraint solver over a wide area network other

than a local network.

A

B

D

E

C

>= <

!=

=

1

2

3

Diameter of this

agent network = 3

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

6

Figure 5. Agent D’s GUI screenshot in Test case 7

Table 1 DisCSPs formulated for testing our application and results

Test

case

Agents and their

domain values

Constraint

expressions

Maximum

Iterations

Network

diameter

Final

Results

Iterations

used
Remarks

1
A {1,2,3,4,5}

B {2,4,6,8,10}

A>B
100 1

A= 4

B= 2
3

Final

Solution

2
A {1,2,3,4,5}

B {6,7,8,9,10}

A=B
100 1

A= 2

B= 6
100

Interim

Solution

3

A {1,2,3,4,5}

B {2,4,6,8,10}

C {1,3,5,7,9}

A>B

A<C

100 2

A= 5

B= 4

C= 9

6

6

4

Final

Solution

4

A {1,2,3,4,5}

B {2,4,6,8,10}

C {1,3,5,7,9}

A!=B

A<C

B>C

100 2

A= 1

B= 6

C= 3

6
Final

Solution

5

A {1,2,3,4,5}

B {2,4,6,8,10}

C {1,3,5,7,9}

D {6,7,8,9,10}

A=B

A!=C

B!=D

C>D

100 2

A= 2

B= 2

C= 7

D= 6

6
Final

Solution

6

A {1,2,3,4,5}

B {2,4,6,8,10}

C {1,3,5,7,9}

D {6,7,8,9,10}

A=B

B>C

C<=D

100 3

A= 2

B= 2

C= 1

D= 8

7

8

9

8

Final

Solution

7

A {1,2,3,4,5}

B {2,4,6,8,10}

C {1,3,5,7,9}

D {6,7,8,9,10}

A<B

A>C

A<=D

B=D

C!=D

100 3

A= 4

B= 6

C= 3

D= 6

8
Final

Solution

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.8, May 2012

7

8. ACKNOWLEDGEMENTS
The author is grateful to Dr. Hatem Ahriz of The Robert

Gordon University, Aberdeen for his very useful feedback.

9. REFERENCES
[1] Dechter R. Constraint Processing. San Francisco, CA:

Morgan Kaufmann; 2003.

[2] Makoto Y, Edmund H D, Toru I, Kazuhiro K. The

Distributed Constraint Satisfaction Problem:

Formalization and Algorithms. IEEE TKDE. 1998;

10(5): 673-685.

[3] Pragnesh J M, Hyuckchul J, Milind T, Wei-Min S,

Shriniwas K. Dynamic Distributed Resource Allocation:

A Distributed Constraint Satisfaction Approach. In

Proceedings of CP‟01. Springer, London; 2001: 685-700.

[4] Lamma E, Mello P, Milano M. A distributed constraint-

based scheduler. Artificial Intelligence in Engineering.

1997; 11(1): 91-105.

[5] Dechter R, Enhancement schemes for constraint

processing: Backjumping, learning, cutset

decomposition. Artificial Intelligence. 1990; 41(3): 273-

312.

[6] Chen X, van Beek P. Conflict-Directed Backjumping

Revisited. JAIR. 2001; 14: 53-81.

[7] Makoto Yokoo. Asynchronous Weak-commitment Search

for Solving Distributed Constraint Satisfaction Problems.

In Proceedings of CP‟95. Springer, London; 1995:88-

102.

[8] Meisels A, Zivan R. Asynchronous Forward-checking for

DisCSPs. Constraints. 2007; 12(1): 131-150.

[9] Ioannidis Y E, Wong E. Query optimization by simulated

annealing. In Proceedings of the international conference

on Management of data. ACM, NY; 1987: 9-22.

[10] Wong D F. On simulated annealing in EDA. In

Proceedings of the International Symposium on Physical

Design. ACM, NY; 2012: 63-64.

[11] Morris P. The breakout method for escaping from local

minima. In: Proceedings of the National Conference on

Artificial Intelligence. 1993: 40-45.

[12] Glover F, Laguna M. Tabu Search. Kluwer Academic

Publishers, Norwell, MA, USA; 1997.

[13] Hirayama K, Yokoo M. The distributed breakout

algorithms. Artificial Intelligence. 2005; 161(1): 89-115.

[14] Zhang W, Wittenburg L. Distributed breakout revisited.

In Proceedings of the national conference on Artificial

intelligence. 2002: 352-357.Basharu M B. Modifying

Landscapes with Penalties in Iterative Improvements for

Solving Distributed Constraints Satisfaction Problems.

[PhD Thesis]. Aberdeen: Robert Gordon University;

2006.

[15] Birrell A D, Nelson B J. Implementing remote procedure

calls. ACM Transaction on Computer Systems. 1984;

2(1): 39-59.

[16] Gomes-Soares P. On remote procedure call. In

Proceedings of the conference of the Centre for

Advanced Studies on Collaborative research. IBM Press.

1992; 2: 215-267.

[17] Don W. Browning. .Net Remoting. Manning Publications

Co., Greenwich, CT, USA; 2002.

[18] Ingo Rammer. Advanced .Net Remoting. Apress,

Berkely, CA, USA; 2002.

[19] Maassen J, Van-Nieuwpoort R, Veldema R, Bal H,

Kielmann T, Jacobs C, Hofman R. Efficient Java RMI for

parallel programming. ACM Transaction on

Programming Languages and Systems. 2001; 23(6): 747-

775.

[20] Waldo J. Remote Procedure Calls and Java RMI. IEEE

Concurrency. 1998; 6(3): 5-7.

[21] Bethea W L. Adding parametric polymorphism to the

common object request broker architecture (CORBA). In

Addendum to the proceedings of OOPSLA '00. ACM,

NY; 2000: 119-120.

[22] Felber P.; Guerraoui R. Programming with object groups

in CORBA. IEEE Concurrency. 2000; 8(1): 48-58.

[23] Albuquerque R L, Hubner J F, de Paula G, Sichman J S,

Ramalho G. KSACI: A Handheld Device Infrastructure

for Agents Communication. In Proceedings of the

International Workshop on Intelligent Agents. Springer,

London; 2001: 423-435.

[24] Labrou Y, Finin T, Peng Y. Agent Communication

Languages: The Current Landscape. IEEE Intelligent

Systems. 1999; 14(2): 45-52

[25] Bellifemine F, Caire G, Greenwood D. Developing multi-

agent systems with JADE. Chichester: John Wiley &

Sons; 2007.

[26] Bellifemine, F, Rimassa, G, Poggi, A. JADE - A FIPA

compliant Agent Framework. In Proceedings of the

International Conference and Exhibition on the Practical

Application of Intelligent Agents and Multi-Agents.

London, 1999.

[27] Caire G. JADE Tutorial- Jade Programming for

Beginners. Torino, Italy: Telecom Italia Laboratory

(TILAB); 2003. Available from: http://jade.tilab.com/

[28] Lee D. SIDCOT: A Smart Interface for Constraint

Programming. [Unpublished BSc. Thesis]. Aberdeen:

Robert Gordon University; 2006

