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ABSTRACT 

In this paper we present a direct method for the numerical 

solution of the constrained optimal control problem when the 

gradient information is not available. At this aim, a new 

control parameterization based on Bernstein basis functions is 

suggested to convert control problem into nonlinear 

programing problem (NLP), and then a recently proposed 

stochastic algorithm called Probabilistic Global Search Johor 

(PGSJ) is considered for the solution of resultant NLP. The 

underlining idea of the PGSJ algorithm is to use probability 

density functions (PDF) to direct the search while no 

recombination operator is used. This algorithm along with the 

new Bernstein-based control parameterization (BCP) is 

compiled into BCP/PGSJ direct method to be applied to 

approximate the solution of the control problem up to the 

accuracy required. This method is lastly implemented while 

simulating some case studies which illustrate the efficiency of 

the method. 

Keywords 

Optimal Control Problem, Constraints, Direct Methods, 

Stochastic Algorithm. 

1. INTRODUCTION 
The optimal control problems frequently arise in many areas 

of science, engineering, management, finance etc. Typical 

applications often occur when natural or artificial processes 

are mathematically modeled by system of nonlinear ordinary 

differential equations involving input and output variables 

respectively known as control and state variables. In this case, 

the problem objective is generally to identifying the best 

control variables to optimize a designed performance index. 

This paper is aimed at addressing a general class of the 

aforementioned problems with the objective of approximating 

the best control function that minimizes a performance index 

of Mayer type ( )ft for any real-valued bounded function  

while the interaction between control and state variables is 

governed by 

( ) ( ( ), ( ), ),x t f x t u t t  

with initial value ( ) ,0 0x t x and the constraint of the 

problem is described by 

( ( ), ( ), ) 0g x t u t t   

where x indicates the state function on the time interval 

0 ft t t  into the n-dimensional Euclidean space,u is the 

control curve on the same time interval into a box subset of 

the form 1 1 2 2[ , ] [ , ] [ , ] m
m ma b a b a b R    , and lastly 

f and g  are functions on n mR R R   into nR and 

qR respectively. 

The optimization of this problem has become a 

multidisciplinary research area in virtue of numerous 

applications in a variety of areas. However, the analytic 

solution for this problem is only available for few relatively 

simple cases, and therefore investigation into numerical 

approaches to approximate an accurate enough solution for 

arising problems is inevitable. In addition, as no method is 

without its own disadvantages, the need for more practical 

methods has not shown any sign of abating.  

The existing numerical methods available in the open 

literature are usually divided into three classes, dynamic 

programing methods, indirect or variational methods, and 

direct methods. 

The idea of dynamic programing was first introduced in the 

middle of the last century [1] and later developed into the 

Bellman principle of optimality [2, 3]. Methods based on this 

principle however, are often inefficient when problems are of 

high dimension. The efforts to address this drawback led to 

the development of iterative dynamic programing (IDP) [4].     

Apart from Bellman principle, the Pontryagin minimum 

principle [5] was also developed almost concurrently, and 

subsequently many more necessary and sufficient conditions 

for optimality derived [6, 7]. Algorithms based on these 

principles usually enforce computing some new variables 

known as co-states using gradient information, and then these 

intermediate variables help to obtain the actual ones, hence 

why these methods called indirect. 

Many effective algorithms already exist based on the 

aforementioned principles however it is sometimes prohibitive 

to use them efficiently due to complexity of arising problems 

when problems are singular, nonsmooth, highly nonlinear or 

multimodal. In these cases, the direct methods seem to be the 

more practical alternative.  

These methods typically use a discretization technique to 

transfer the control problem to a nonlinear programing 

problem (NLP), and then a suitable NLP solver is employed 

to solve the converted problem. The direct methods can also 

be classed into stochastic and deterministic approaches, 

depending on the search strategies applied.  

The deterministic direct methods alike with indirect methods 

are also ineffective, when the smoothness assumption is 

violated. In this situation, the stochastic direct methods seem 

to be the only alternative. Among many stochastic methods, 

Genetic Algorithms (GA) [8], Simulated Annealing (SA) [9], 

Ant Colony Optimization (ACO) [10], Controlled random 
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search (CRS) [11], Partial Swarm Optimization (PSO) [12, 

13], Evolutionary Algorithm (EA) [14], Line-up Competition 

Algorithm (LCA) [15], and ecologically inspired methods 

[16] are already applied on optimal control problems. In this 

study a recently proposed algorithm called Probabilistic 

Global Search Johor (PGSJ) [17] is considered for the 

numerical solution of previously mentioned control problem.  

The next section includes a description of PGSJ. In the third 

section the Bernstein-based control parameterization (BCP) 

and its advantages are discussed. Subsequently, the 

BCP/PGSJ direct method is evaluated while applying on some 

case studies collected from the literature, and finally 

conclusion is included in the last section. 

2. PGSJ ALGORITHM 
This algorithm has been developed [17] for global 

optimization problems of the following form, 

min ( )f                                     (1) 

   

where f is a real-valued bounded function, and  is a box 

subset 1 1 2 2[ , ] [ , ] [ , ]n na b a b a b   in .nR The main feature 

of PGSJ algorithm is to carefully sampling among feasible 

points in the search space in accordance with some probability 

density functions (PDFs) which are uniformly initialized. 

These PDFs are then iteratively biased toward optimal 

solution, while no recombination operator as it is customary in 

GA and EA algorithms is employed. The details of the 

algorithm are subsequently described. 

2.1 Algorithm Initializations 
In order to facilitate starting the algorithm first some input 

functions and parameters have to be provided which are 

briefly outlined below and explained in the subsequent 

subsections. At this aim, the symbols appear in the first 

column of Table 1 are defined as the corresponding meaning 

in the next column.  

Table 1. The algorithm inputs 

n  Dimension of the problem, 

f  The Objective function, 

D  The box 1 1 2 2[ , ] [ , ] [ , ]n na b a b a b   , 

N  The number of partitions on each interval, 

S  The number of samples in each iteration, 

A  The acceptable probability density, 

b  The number of bisecting procedure, 

  The Scale Factor, 

I  Increment in probability, 
  The accuracy required, 

m  Maximum Number of iterations, 

P  Probability of sampling from complementary search 

space. 

 

 

After reading above inputs, each interval [ , ]i ia b is partitioned 

into N subintervals, a complementary search space is 

initialized as an empty set, and then a PDF i of the 

following form is initialized uniformly for each interval i . 

   

1

( ) ( )
ij

n

i ij I

j

t p t 



     for i ia t b          (2) 

where ijI is the thj subinterval on [ , ],  i ia b  indicates the 

characteristic function, and parameters ijp first initialized 

equally as it is shown in Figure 1.  

 
Fig. 1: The graph of i at initializing point with 5N  . 

The next stage of the algorithm is four nested loops. The 

innermost loop invokes sampling procedure where new trial 

solutions are sampled.  

2.2 The Sampling Loop 
This part of algorithm is designed for sampling S new points 

from the search space according to PDFs. At the first try, 

sampling is done according to a uniform distribution, and then 

it just the matter of generating random points uniformly. 

However, in subsequent iterations as PDFs iteratively are 

updated, distributions in sampling task are no longer uniform. 

In addition, some regions of search space are iteratively added 

to the complementary search space and need to be dealt 

separately. Therefore, different strategy has to be applied for 

sampling in accordance with a general PDF as illustrated in 

Figure 2. 

 
Fig. 2: An illustration of a general PDF of the form (2). 

 

In order to sample a general PDF, a common approach is to 

use the inverse of cumulative density function (CDF) related 

to the PDF along with a uniform pseudo-random point 

generator. Therefore to put this idea into practice, namely to 

generate one point according to the PDF (2), if the 

complementary search space is not empty, with probability 

P a point is sampled from this region, otherwise a random 

number 0 1   is uniformly generated. This number has to 

be satisfied in one of the following conditions,  
  

1

1

0
n

i

i

p

p





 


                                    (3) 

1

1 1

1 1

j j

i i

i i
n n

i i

i i

p p

p p





 

 

 

 

 
    2, ,j n      (4) 
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when condition (3) satisfies, a point uniformly samples from 

the first subinterval, otherwise if condition (4) for 2 j n   

satisfies, the thj  subinterval uniformly samples. This 

procedure then helps to sample a point according to PDF (2). 

After S potential solutions sample, the next loop update the 

PDFs.  

2.3 Probability Updating Loop 
The trial solutions sampled in the previous loop are evaluated 

in this loop, and then the best and the worst trials help to 

update PDFs. For each interval i , ijp in PDF (2) decreases 

to ij ijp p I   if the worst trial locates in thj  subinterval, 

and ikp increases to ik ijp p I   if the best trial found to be 

in the thk  subinterval. The same procedure in this loop 

repeats until the following condition is satisfied, 

0   0

,ij
i n j N

min   max   p A
   

                                   (5) 

and then, the next nested loop is started which is described in 

the next subsection. 

2.4 Partitioning Loop 
After a few cycle of probability updating loop, the best 

subinterval as well as the worst subinterval in each interval 

can be identified. Each partitioning loop remove  the worst 

subintervals from the search space and adds them to a 

complimentary search space, and then bisects the best 

subinterval to retain  the number of subintervals while sharing 

the probability related to both best and worst subintervals 

between new subintervals equally. Figure 3 illustrates a PDF 

after one cycle of this partitioning loop. This loop is cycled 

for b times, and hence we arrive at the outermost loop where 

the algorithm restarts the search to focus search efforts on the 

most promising region. 

 

Fig. 3: An illustration of a PDF after one cycle of 

partitioning loop. 

2.5 Restarting Loop 
The previous nested loops of the algorithm are designed to 

avoid getting trap in local solutions while the outermost loop 

is to speed up the search by scaling down the search space 

centered at the best solution found so far using the scale 

factor . Then the removed regions of search space are again 

added to the complementary search space. The new intervals 

in the new search space are again partitioned into 

N subintervals. Simultaneously, all PDFs are adjusted to the 

change by reinitializing them uniformly on the new intervals. 

This loop is run until either the best solution arrives at a 

neighborhood of global solution of radius  or the number of 

restarting cycles exceeds m . The whole procedure described 

above, is illustrated in Figure 4, where the algorithm is 

depicted using a flowchart diagram.  

 

Fig 4: The PGSJ flowchart

Initialize the subintervals via reading the maximum and minimum of each interval and dividing each one into N subintervals, 

initialize a complementary search space, and initialize PDFs for each interval uniformly in the form of step functions. 
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according to its PDF 

Have S points 
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Evaluate S sampled points, and sort 
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improvement 
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worst ones 
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3. DISCRETIZATION 
As with many other NLP solvers, the PGSJ algorithm is only 

applicable to handle finite dimensional optimization 

problems. However, the solution of the previously described 

continuous time control problem actually requires identifying 

an infinite number of unknowns. Therefore, the original 

control problem has first to be converted into Problem (2). 

There are two common frameworks to directly convert a 

control problem into an NLP problem. They are complete 

discretization and control parameterization.  

In the complete discretization also known as simultaneous 

approach [18], the whole variables of an optimal control 

problem discretized reducing the need for online solution of 

initial value problem; however this converts the original 

problem into a very large scale NLP problem.  

On the other hand, in the control parameterization approach 

only the control functions are parameterized. The basic idea is 

to approximate these functions by a liner combination of a 

basis function with unknown coefficients. The resultant NLP 

problem of identifying the best values for related coefficients 

is then usually of relatively smaller scale. In addition, the state 

functions are not parameterized. Hence, better approximation 

for these functions.  

These advantages help the control parameterization to be a 

popular framework in the direct solution of practical control 

problems. A variety of basis functions have been used in this 

framework, including piecewise constant functions [19, 20], 

piecewise linear functions [12, 14], Chebyshev polynomials 

[21], B-splines functions [22], Lagrange polynomials [23], 

Legendre wavelets [24], and Bézier curves [16]. 

In this work we introduce a new approach for 

parameterization of the control function based on Bernstein 

basis function [25] which suggests a very efficient means of 

function approximation. The same basis function used in [16] 

to parameterize control function, however the suggested 

parameterization has the advantage that time interval does not 

need to be discretized. The approximated control is shown 

below, 

0
0

0

!
( ) ( ) ( )

!( )!( )

n i n ii
fn i

f

n u
u t t t t t

i n it t




  


       (6) 

where n is an arbitrarily chosen positive integer. The larger 

value is chosen for n , the more accurate solution is obtained 

for controlu . This value actually indicates the number of 

unknown coefficients iu (for 1,i n  ) that need to be 

identified. This Bernstein-based control parameterization 

(BCP) is employed in the next section while studying some 

case studies. After converting control problem into NLP 

problem, resultant problem is solved using the PGSJ 

algorithm while the explicit Runge–Kutta method [26] is used 

to integrate the related initial value problem. 

4. CASE STUDIES 
In order to evaluate the efficiency of BCP/PGSJ direct method 

the PGSJ algorithm [17] along with BCP parameterization 

technique as well as Runge–Kutta method [26] are coded 

using C++/Cli programming language. The new method is 

then implemented on some typical problems while the control 

functionu is approximated by polynomial of the form (6) 

with 5n  . Additionally, only 40000 function evaluations is 

allowed while running PGSJ, and the main parameters are set 

as follow,  7, 50,  0.5,  5,  and 0.9.N S A b         

4.1 A Biological Case 
The first problem is of the linear quadratic form. It is based on 

a biological model and selected from [16, 27]. 

2

1 1

2 2
2 1

(1)               

       ( ) ( ) ( )

           ( ) 3 ( ) ( )

min  J = x

x t x t u t

x t x t u t

 

 





 

The exact analytic solution for this problem is available 

through applying Pontryagin's minimum principle [5]. This 

problem is solved using BCP/PGSJ to assess the performance 

of this method against this exact analytical solution. 

4
2 2

4 4

4
* 2 2
1 4 4

8 8
* 4 4
2 4 2 4 2 4 2

3 3
( )

3 1 3 1

3 3
( )

3 1 3 1

9 3 3(1 3 )
( )

(3 1) (3 1) (3 1)

t t

t t

t t

e
u t e e

e e

e
x t e e

e e

e e
x t e e

e e e


 

 




 

 


  

 
 

 
 


  

  

 

In this circumstance, the method obtains a solution of 2.791 

for this problem. The results of the computations are 

compared and depicted in Figure 5 and Figure 6. 

 
Fig. 5: Control functions related to the case study 4.1. 

 
Fig. 6: State functions related to the case study 4.1. 
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4.2 Continuous Stirred Tank Reactor   

Problem 
The second case study is a chemical process which has been 

modeled [28] by the following nonlinear differential 

equations. 

1
1 1 2 1

1

1
2 2 2

1

2 2 2
3 1 2

25
( 0.25) ( 0.5)exp( ) (1 )( 0.25)

2

25
0.5 ( 0.5)exp( )

2

0.1

x
x x x u x

x

x
x x x

x

x x x u

       


   


  







 

The objective of this problem is to minimize the value of 

3( )fJ x t  while 0.78ft  , the initial value assumed to be 

(0) [0.09,0.09,0.0]Tx   and 0 ( ) 5u t  for 0 0.78t  . This 

problem appears in the list of benchmark problems collected 

in the hand book of test problems [29]. It is a multimodal 

problem having a local solution of 0.2442J  and a global 

one 0.1330J   [13, 28]. 

 
Fig. 7: The optimal control for the case study 4.2. 

 
Fig. 8: The optimal state for the case study 4.2. 

According to a comparative study [14], some EA methods 

may acquire the solution of 0.1355 at reasonable 

computational efforts while using IDP, it is still likely to trap 

into the local solution. Sun et.al, [15] also solved this problem 

where the best solution obtained is 0.1332 at approximately 

40000 function evaluations. With the same parameter setting 

as in 4.1 the BCP/PGSJ algorithm obtains the average solution 

of 0.1334, and the best solution of 0.1332. Table 2 shows the 

number of function evaluations while this problem is being 

solved, and the graphs of optimal control and states related to 

this solution are as in Figure 7 and 8. 

Table 2. Solution of the case study 4.2 using BCP/PGSJ 

Iteration Function evaluation Value of J  

5 2665 0.2282 

15 7982 0.1748 

25 13223 0.1657 

35 18671 0.1541 

45 23987 0.1463 

55 29312 0.1403 

65 34645 0.1373 

75 39971 0.1332 

 

4.3 State Constrained Control Problem 
The next problem is modeled by the following differential 

equations, 

 

1 2

2 2

2 2 2
3 1 2

4

0.005

1

x x

x x u

x x x u

x



  

  











 

The initial value for this problem is (0) [0, 1,0,0]Tx   , while 

the constraint is determined by, 

 2
1 4( ) 8( ( ) 0.5) 0.5 0x t x t       for   0 1.t   

 

The objective of this problem is to minimize the value of 

3( )fx t while 1ft  , and the control function is bounded 

by 5 ( ) 15u t   . In order to handle this constraint a new 

state variable is introduced to the above system of differential 

equations. 

 2
5 1 4max(0, 8( 0.5) 0.5)x x x     

  

with the initial value at 5(0) 0x  . In addition, the 

performance index is also augmented with a penalty 

factor 5( )fx t where the penalty parameter is any large 

enough number. The objective of the problem is then equal to 

minimizing 

3 5( ) ( )f fx t x t . 

This problem has been solved by Neuman and Sen [30] using 

cubic splines. Vlassenbroeck [21] has also applied a 

Chebyshev polynomial method where the best solution 

is 0.74096 .  

The BCP/PGSJ method with the same parameter setting as 

previous problems averagely obtains the solution 

of 0.7712 without violating the constraints. Figures 9 to11 

illustrate the optimum control and stats as well as constraint 

obtained using this method. However, this result can be 

improved when the algorithm is allowed for further function 

evaluations. At the first attempt to enrich the above solution, 

the method allowed to run the PGSJ algorithm for 60000 
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function evaluations which results in the solution of 0.7539.  

In the second attempt we used up to 80000 function 

evaluations, and 6n  to attain the solution of 0.7409  

 
Fig. 9: The optimal control for the case study 4.3. 

 
Fig. 10: The graphs of states in the case study 4.3. 

4.4 Rayleigh's problem 
The forth problem is also a continuous inequality constraint 

control problem collected from [19] which is described by the 

following system of differential equations 

1 2

2
2 1 2 2

2
3 2 1

(1.4 0.14 ) 4

x x

x x x x u

x u x



    

 







 

while the inequality constraint being 

1

1
( ) ( ) 0

6
u t x t        for  0 4.5t   

the initial value at (0) [ 5, 5,0]Tx    and the objective is to 

minimize the value of 3( )fx t while 4.5ft  .  

Using the same constraint handling technique as in previous 

problem we first define the following differential equation, 

  
1 1

4

1

1 1
( ) ( ) 0

6 6

1
0 ( ) ( ) 0

6

u x u t x t

x

u t x t


  

 
  


  

with initial value at 4(0) 0x  , and therefore the new 

augmented performance index is 

3 4( ) ( )f fx t x t  

where  is a penalty parameter.  

 

We use the aforementioned parameter setting for PGSJ 

algorithm as in first problem and polynomial of degree 5 in 

BCP parameterization where the best value of 47.6947 is 

obtained for the performance index. Figure 16 shows that the 

graph of the constraint never exceeds the vertical axe. 

Additionally, Figures 12 to 15 illustrate the optimal control, 

and states which are agree with those results obtained in [19]. 

 
Fig. 11: The graph of the constraint in the case study 4.3. 

 
Fig. 12: The optimal control for the case study 4.4.  

5. CONCLUSION 

In this paper we proposed a new direct method for the 

solution of a general form of optimal control problem 

involving with state and control constraints. The constrained 

problem is converted into an equivalent unconstrained 

problem by introducing new state variable to the system of 

differential equations, and then a new suggested Bernstein-

based control parameterization is applied to reduce the 

original problem into a nonlinear programing problem while 

the time interval is not discretized hence eliminating the 

trouble of handling switching times. The resultant problem is 

then solved using PGSJ algorithm. This BCP/PGSJ direct 
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method was implemented using C++/Cli programming 

language which facilitates evaluating this method while some 

case studies simulated. The results of simulations show the 

efficiency of the proposed method. 

 

 
Fig. 13: The graph of 1x in the case study 4.4. 

 
Fig. 14: The graph of 2x for the case study 4.4. 

 
Fig. 15: The graph of 3x in the case study 4.4. 
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Fig. 16: The graph of the constraint of the case study 4.4. 
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