
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

26

Distributed Cluster Processing to Evaluate Interlaced

Run-Length Compression Schemes

 Ankit Arora Sachin Bagga Rajbir Singh Cheema
 M.Tech (IT) M.Tech (CSE) M.Tech (CSE)

 Guru Nanak Dev University Asr. Thapar University Patiala Guru Nanak Dev Eng. College Ldh.
 Asst. Prof. at LLRIET, Moga Asst. Prof. at LLRIET, Moga Associate Prof. at LLRIET, Moga

ABSTRACT

Parallel computation, a greater advancement in computational

hardware as well as new achievement in current scientific

computing such as image processing involves huge exhaustive

computation and data processing leading towards parallel

architectures. Parallel hardware organization basically a suitable

interconnection among computational hardware, where current

trends now involves clustered organization of distributed

hardware to achieve parallel effects. Cluster environment

consisting multi-computer network nodes provides flexible

architecture towards high complex data parallelism as well as

control parallelism operations. Further detail consists interlaced

graphics mechanism with run-length encoding to achieve high

compression benefits. Run-length compression speedup benefits

have already described in the research IJCA-2011 cluster based

performance evaluation of run-length image compression,

which is now updated to cover interlaced lossy compression

schemes. In general interlacing provides a lossy compression

formulation but acceptable in real-life scenarios. Finally, the

interlaced methodology and cluster based analysis results will be

discussed.

General Terms

Massive Parallelism, Multi-Computer Cluster, Interlaced

Compression, Client Server TCP/IP Sockets.

Keywords

Parallelism, Distributed Clustering, Multi-Computers, Run-

length Image Compression, Interlacing, twips.

1. INTRODUCTION
Massive parallel processing typically suited to high scientific

computations generally not well responded by the

multiprocessor environments having some limited no. of

processor cores, where each core behaves transparently under

the control of operating system, without any interference from

the programmer side. Other advantage of massive parallel

system is that these systems provides not only processor

redundancy but also the resource duplicity such as each

individual machine has its own processor, memory interface

having both primary as well as secondary memory units

controlled by its own operating system. Data parallel operations

covers workload partitioning and distribution over logically

programmed cluster nodes where the control parallel operations

distributes parallel multiple control threads over cluster nodes,

each of these control threads performs different task of

execution. Although the combination of control as well as data

parallel operations can be achieved to obtain multi-programmed

multiple data model. Clusters can be further

organized/interconnected on the basis of their speed and

computational programmability model assigned, in other words

the computational structure for which the machine is designed

according to that the parallel tasks are assigned i.e. the

scheduling over interconnected clusters. Cluster interconnection

Scheduling categorized as CSS (cluster specific scheduling) and

ISS (interconnection specific scheduling), where interconnection

scheduling (external to the clusters) specifies how one server

node assigned/shares its workload to other server node and

cluster specific scheduling (internal to the cluster) specifies how

one server node distributes its workload to its associated

connected clients. In addition to cluster interconnection, the

workload characterization is another important aspect via

scheduling parallel jobs. High computational intensive workload

may be distributed to faster processor cluster [5]. Other related

parallel aspects, the jobs may be moldable to adapt available

parallel architectures of any kind regardless of one specific

hardware paradigm [3]. Earlier research carried out covers

matrix multiplication over parallel cluster hardware,

Multiprocessor Scheduling simulations via Space sharing

policies, clustered approach to run-length image compression or

many more related work with fractal image theory.

2. LITERATURE REVIEW
Previous Literatures reviews around parallel execution stipulate

simulation behind space sharing policies environments

published in research simulated performance analysis of

multiprocessor dynamic space sharing policies (IJCSNS-2009).

This Simulation environment covers space-sharing policies,

their classifications and scheduling via poison distribution is

performed, space sharing structure experiment where multiple

processors are assigned to current active job. Other research

towards parallel clustering involves large matrix multiplication

analysis published in research cluster based parallel computing

framework for evaluating parallel applications (IJCTE-2010).

Many other research covering cluster-based operations involves

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

27

pipelined based parallel implementation of dijkastra algorithm

(FSU.CS research data base). Image compression over the

clustered architecture gives a new dimension to scientific

computing published as cluster based performance evaluation of

run-length image compression (IJCA-2011) [1], where the

images is partitioned among cluster nodes and each of the

intended cluster node performs run-length compression over a

partitioned image chunks. Other Literature around parallel

image compression consists parallel implementation of fractal

image compression in web service environment (IEEE-2011)

[2], wavelets based parallel image compression and analysis

(WASET-2005) [4]. The idea behind this research is similar to

these previous literatures but follows interlacing with run-length

encoding scheme, describes new updated version of earlier

research implemented run-length encoding (IJCA-2011) over

parallel cluster using divide and conquer paradigm. The

previous research is now updated to adapt lossy-based interlaced

mechanisms to achieve more compression benefits for high

resolution (Twips Unit) image. The image used for compression

is same as used in earlier research published. In general the

Interlaced run length-encoding scheme is a lossy compression

technique providing image lose which is acceptable up to some

extents.

2. INTERCONNECTION ANATOMY
Clustered Interconnection composed of client-server model of

computation where one machine acts as a server performing job

partitioning and final consolidation of individual outcomes,

other machines acts as a clients communicated via TCP/IP

sockets performs their intended work assigned by the server.

Each machine behaves independently of others or having

autonomous structure providing flexibility to encourage parallel

theory and applications as described in the figure-1. The

experiment covers nine cluster nodes (Pentium4 3.4 GHZ

processor with 1GB of RAM and WinXP SP2 OS) organized on

the basis of SIMD based computational model for data parallel

operations with the underlying idea of workload partitioning and

distribution via shared memory, this will implements the

asymmetric tightly coupled distributed system [6]. Each cluster

node picks its intended sub task from the shared memory (server

side) whenever the control message instructing initiation of

execution of sub task is received from the server. Control

message is sent by server to ensure the completion of workload

partitioning and for ready status of subtasks. Finally the cluster

node computes their individual outcomes and sent the results

back to server’s shared memory via shared memory interface.

3. LOGICAL PROGRAM STRUCTURE
Logical programming structure consisting client-server

distributed software implemented through VB.6.0 TCP/IP socket

programming using Mswinsock.ocx. The control provides a

listener interface configured via unique port no. and network

address associated with cluster node [9]. Each cluster client

sends a connection establishment request to server via unique

port no., rest of the network communication is then performed

via this connection. Image workload is retrieved and then

computes interlaced run-length compression scheme, finally, the

results sent back to server’s shared memory, where the final

consolidation of individual cluster results will be performed.

Fig1:

Fig 1: Cluster Interconnection Autonomy

4. INTERLACING
Interlacing is generally a technique used by raster scan video

controller in computer graphics to avoid flicking or to provide

user a view that entire image is displayed in one go, the

controller firstly display all of the odd image scan lines and then

all of the even image scan lines, also the refresh rate is of two

Shared Memory

Interconnection

Layer

Server Node

Workload

Partitioning &
Distribution

Logic

Workload

Consolidation

Shared

Memory

Port No, NT Add Port No, NT Add

Local Memory Local Memory

Port No, NT Add

Local Memory

Cluster Communication Network

Port No.

Network address

& Protocol

Client Listener

Port No, NT Add

Local Memory

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

28

level process firstly for odd lines and then for even lines, half

time faster refresh rate than non-interlaced system without

flicking [8]. This user view of seeing entire picture in one go can

be incorporated in compression schemes. As the distance

between image scan lines are very small, so eliminating one

adjacent scan line will not be noticeable or in other words this

type of fidelity is almost ignored by human eye or visually

imperceptible. This technique can be further utilized as lossy

based compressions, although some of the picture information

will be lost but insignificant. In further research, the idea

comprised with run-length encoding scheme over parallel cluster

will be discussed. The analysis results covered row based

interlacing where one row has been eliminated from each pair of

image scan lines. Other version contains both row as well as

column based lossy compression where one row as well as one

column is eliminated from each pair of adjacent horizontal and

vertical scan lines. The technique can be utilized for medical

images extracted from nuclear scanners or tomography systems

and as well as for animations, where a frame emerged over the

display for small extent of time. Quality degradation cannot be

perceived over high-resolution systems

5. PERFORMANCE ANALYSIS
Interface below consisting row as well as column interlaces

mechanisms, the compression results stored either by means of

text or binary mode. As below row as well as row-column

interlacing provides lossy compression, which is visually

imperceptible and not noticeable over a high-resolution system.

Pixel based operations can also be performed rather than twips

based units, later the image by applying interlaced run length

over pixel based image will also be produced. This will not

provide any usual benefits during display, although the size of

the file is reduced up to very large extent but the quality loss

some times not acceptable. In this cluster operation the results

computed by taking twips based image as a basic source because

1 pixel is equivalent to 15 twips so quality loss is acceptable and

imperceptible up to very large extent. Despite of this, file size

for both twips based row interlace and row-column interlace is

same, because when the run-length encoding is performed with

row-column interlace, even the columns are eliminated, once the

memory is allocated to one twip then how many no. of twip of

same color will be stored with in the that memory is vary.

Consider a 4 byte memory for storing 32 bit true color code and

a 2 byte memory for storage of no. of twips of same color value.

Now suppose there are 1200 twips of color red in one scan line

if using row interlace so 2 byte memory is sufficient for this, but

again if column interlaced is also embedded along with it then

same memory will be used for storing this time only 600 twips.

So memory capacity is same, only the underlying value will be

changed (no. of twips). So this provides the benefits only when

the picture is displayed, the speed of row-column interlace will

be faster during display as compare to row interlace. Although,

file size for pixel based interlacing is vary because eliminating

one column pixel means 15 twips elimination at once. So pixel

identity is completely lost but in twips unit format nearly half of

the twips under one pixel are eliminated as in even/odd fashion

(interlacing). So pixel identity is still available partially, that’s

why the memory is still required for that pixel in twips format

during row-col interlacing.

Fig 2: Row Interlaced Run-length Compression over twips based image

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

29

Fig 3: Row-Col Interlaced Run-length Compression over twips based image

Fig 4: Row Interlaced Run-length Compression over pixel based image

Fig 5: Row-Col Interlaced Run-length Compression over pixel based image

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

30

5. PERFORMANCE MEASUREMENTS
The experiment implemented via visual basic 6.0 language tool

with image scan lines as the basic parameter for distribution.

The total numbers of scan lines are then divided among

available or designated cluster size (no. of client machines) for

execution. Each client then performs its intended interlaced

mechanism and finally send result back to the server’s shared

memory. Metrics used for performance measurements are

speedup, efficiency as well as parallel overhead [1]. Following

are the computed results and timing variation (Sec.) graphs-

Fig 7: Row-Interlace Speedup Variations

 Table 1: Row-Interlace Timing Variations

Fig 6: Row-Interlace Timing Variations

 Table 2: Row-Interlace Speedup Variations

No. of Clients Speed Up

1 0

2 1.82

3 2.92

4 3.38

5 4.05

6 5.73

7 6.60

8 7.30

 Table 3 Row Interlace Efficiency Per Cluster Machine

Cluster Clients Time (Ms) Time (Sec)

1 64801.168 65

2 35619.922 36

3 22161.497 22

4 19157.003 19

5 16017.916 16

6 11314.188 11

7 9816.213 10

8 8875.153 9

No. of Cluster

Clients
Time (Sec)

1 0

2 0.91

3 0.98

4 0.85

5 0.81

6 0.96

7 0.94

8 0.91

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

31

 Fig 8: Row Interlace Efficiency per cluster Machine

 Table 4: Row Interlace Parallel Overhead (Sec)

 Fig 9: Row Interlace Parallel Overhead

Consider other performance measurements generally described

as parallel overhead. Parallel overhead is the overhead, which

specifies the time spent in parallel computation managing the

computation rather than computing results. Here  specifies the

time consumed by parallel cluster having p machines and 

refers to the time consumed by single machine for the same task

[1]. The row-interlaced overhead is calculated as described

above in the Table-4.

Table 5: Row-Col. Interlace Timing Variations

 Fig 10: Row col Interlace Timing Variations

 Table 6: Row-Col. Interlace Speedup Variations

 No. of Clients Speed Up

1 0

2 1.95

3 2.83

4 3.82

5 4.40

6 5.21

7 5.44

8 5.38

No. of

Cluster

Clients
P *  P *  – 

1 65 0

2 72 7

3 66 1

4 76 11

5 80 15

6 66 1

7 70 5

8 72 7

No. of Cluster

Clients

Time (Ms) Time

(Sec)

1 36188.348 36

2 18488.367 19

3 12744.959 13

4 9454.881 10

5 8210.707 8

6 6941.466 7

7 6647.326 7

8 6714.897 7

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

32

 Fig 11: Row col Interlace Speedup

Table 7: Row-Col. Interlace Efficiency per cluster machine

 Fig 12: Row col Interlace Efficiency

 Table 8: Row-Col. Interlace Parallel overhead

 Fig 13: Row col Interlace Overhead

 Table 9: Compression Results

No. of

Cluster

Clients
P *  P *  – 

1 36 0

2 38 2

3 39 3

4 40 4

5 40 4

6 42 6

7 49 13

8 56 20

No. of Cluster

Clients
Time (Sec)

1 0

2 0.97

3 0.94

4 0.95

5 0.88

6 0.86

7 0.77

8 0.67

Compression

Type

Mode Unit File Size

JPEG Image JPG Pixel 102 KB

Run length Binary Twips 96KB

Row Interlace with

Run-length

Binary Twips 48.5KB

Row Col Interlace

with Run-length

Binary Twips 48.5KB

Row Interlace with

Run-length

Binary Pixel 3.08 KB

Row Col Interlace

with Run-length

Binary Pixel 2.61 KB

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

33

6. CONCLUSION & FUTURE WORK
Experiment estimated using multi-computer cluster with lossy-

based compression schemes produce very effective results as

described in the Table-9. As described above the compression

results are very beneficial for online data transmission over the

network, where video conferencing and animations consumes

less bandwidth over distant data transmissions, also lossy effects

perceptible only over low resolution system as above covered

pixel based operations shows quality degradations, whereas

twips based image shows high resolution and quality loss is

imperceptible. Although pixel based interlaced compression can

not be discarded in real-life because after decompression still the

image shows their interior effects or their inner components

strength and shades. Future versions will cover more improved

parallel architectures to enhance the capability of such

compression schemes. Because from this research it has been

concluded that maximum time will be consumed during large

workload transmission from machine to machine. So this can be

improved via mesh or multiple interconnection transmission

lines, still the results are very efficient.

7. REFERENCES
[1] Ankit Arora, Amit chhabra Nov 2011, Cluster Based

Performance evaluation of Run length Image Compression,

Vol.33, International Journal of Computer Application,

Foundation of Computer Science, New York.

[2] Yan Fang Oct 2011, parallel implementation of fractal

image compression in web service environment (IEEE-

2011).

[3] Gerald Sabin, Matthew Lang 2006, Moldable parallel job

scheduling using job efficiency: an iterative approach

12th International Conference, Springer Verlag Berlin

Heidelberg ISBN: 978-3-540-71034-9.

[4] M. Kutila, J. Viitanen, Parallel Image Compression and

Analysis of Wavelets, Word Academy of Science

Engineering and Technology 2005.

[5] TD Nguyen, 1996 Parallel Application Characterization for

Multiprocessor Scheduling, Department of Computer

Science and Engineering, Box 352350 University of

Washington, Seattle, WA 98195-2350 USA.

[6] Kai Hwang and Faye A. Briggs, Computer Architecure and

parallel processing, Tata McGraw Hill Publishing Ltd.

1985, Computer Science Series, ISBN: 007-066354-8.

[7] Joseph JaJa, Introduction to Parallel Algorithms, University

of Maryland 03/24/1992, ISBN-13: 9780201548563,

Addison-Wesley Professional

[8] John Amanatides, Antialiasing of Interlaced Video

Animation 1990, ACM-0-89791-344-2/90/008/0077.

[9] Carl Franklin, Visual Basic 6.0 Internet Programming 1999,

ISBN-10: 0471314986, Wiley Publishing Ltd.

