
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

15

Time Efficient String Matching Solution for Single and

Multiple Pattern using Bit Parallelism

Vidya SaiKrishna Akhtar Rasool Nilay Khare

Department Of Computer Science
And Engineering Maulana

Azad National Institute Of
Technology Bhopal-462051,

Department Of Computer Science
And Engineering

Maulana Azad National Institute Of
Technology Bhopal-462051,

Department Of Computer
Science And Engineering

Maulana Azad National Institute
Of Technology Bhopal-462051,

ABSTRACT
Bit Parallelism exploits bit level parallelism in hardware to

perform operations. Bit Parallelism is a technique that is used

to solve string matching problem, when the pattern to be

searched for is less than or equal word size of a system. It is

a technique that takes the advantage of intrinsic parallelism of

the bit operations inside a system word. By using cleverly this

fact, the number of operations that an algorithm performs can

be cut down by a factor of at most w, the number of bits in

system word. Since in current architecture word size is 32 bits

or 64 bits, the speedup is very significant in practice. It is a

form of parallel computing and is used to have a solution to

exact string matching problem. The approach is further

extended for multiple patterns string matching problem.

Keywords

 String matching, Bit parallelism, Suffix Automata.

1. INTRODUCTION

In the recent years bit parallelism plays an important role in

string matching , because „w‟ length of the pattern can be

processed in parallel. This is done by creating bit vectors of

the pattern characters, and then the matching takes place with

the help of bit operations in parallel. Transformation into bits

results in more faster results as they can be performed in

parallel. Bit parallelism although performs better as compared

to other non bit parallel algorithms , but it imposes a

limitation on the pattern size. Traditional algorithms solved

using bit parallelism have a pattern size which is equal to the

word length of the computer system. Therefore increasing the

word size of the system , will make string matching algorithm

work for patterns of larger size. Recent architecture makes use

of 64 bit word size.

 String Matching using bit parallelism can be viewed as

being solved for single Pattern and multiple pattern. In single

pattern string matching problem , there is a single pattern

whose occurrence is to be reported in the text. In multiple

pattern string matching problems, we are given a set of

patterns whose occurrence‟s are to be reported in the text. The

multiple pattern string matching problems are having more

practical applications in real life.

The single pattern string matching problem using bit

parallelism technique is a simulation of a method that

constructs suffix automaton. This method has certain

advantages. Firstly it eliminates the need of constructing

automaton thereby reducing the memory requirement and

secondly the time requirement is also reduced because of the

machine inherent property of bit parallelism.[1] The method is

called Bit Parallel Automaton and it uses the algorithm called

BNDM(Backward Non Deterministic Matching) which is

compared with Boyer Moore string matching algorithm and

KMP(Knuth Morris Pratt) algorithm whose experimental

results are shown.

The BNDM algorithm has numerous variations to further

reduce the time requirement. One of the variations called

TNDM(Two-Way Non deterministic matching) performs two

way searching , which results in longer shifts in the text.[5]

Another variation described is a simplified BNDM algorithm

which results in reduced running time. The BNDM algorithm

is also modified to work for longer patterns. The variations

are briefly described.

2. BIT PARALLELISM
Bit Parallelism is an intrinsic feature of system, which uses bit

array or bit vector. A bit vector is a data structure [9] which

stores individual bits in a compact form and is effective at

exploiting bit level parallelism in hardware to perform

operations quickly as well as reducing memory requirements.

Bit Parallelism can be viewed as kind of parallel computing ,

which makes use of the word size of the computer. This is

because, the processor is capable of processing the entire

word in one memory cycle. To understand this , consider a

simple example. A 16 bit processor will have to perform two

memory cycles to perform addition of two 32 bit numbers. In

the first cycle , the lower order 16 bit numbers are added and

then the second memory cycle performs addition of next

higher order 16 bit numbers.

If string matching problem can be solved making use of the

bit parallelism technique, it will result in faster matches. The

method imposes a limitation on the pattern size. The pattern

size is limited to the word length of the system. The following

section describes the method to solve the string matching

problem using bit parallelism. The method uses an algorithm

called BNDM(Backward Non Deterministic Matching) which

makes use of bit parallel automaton.

2.1 Bit Parallelism in Single Pattern

Matching
BNDM (Backward Non Deterministic Matching) is the

simulation of BDM(Backward Deterministic Matching)

algorithm which uses the concept of Suffix Automaton. After

a brief description to the method using suffix automaton , the

bit parallel approach is described.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

16

Concept of Suffix Automaton

A suffix automaton on a pattern P1...m is a deterministic finite

automaton that recognizes the suffixes of P.[1]The Suffix

Automata can be built in O(m) time. To search a text T for P ,

the suffix automaton of Pr = PmPm−1 . . . P1 (the pattern read

backwards) is built.

An Example to know how the method using suffix automaton

works is explained below in following steps:

Pattern : “k o o b”

Text : “o k b o k o o b o o”

Step 1 : Construct the NFA with ϵ moves corresponding to pr

as shown in figure 1.

Figure 1: NFA corresponding to pr= “book”

Step 2 : The NFA is converted into DFA as shown in figure 2,

which is known as DAWG(Directed Acyclic Word Graph)

Figure 2 : DAWG for Pr= “book”

As clear from the above automaton , it recognizes all the

suffix‟s of the reverse of the pattern. The suffixes are “k”,

“ok”, “ook” and finally “book” which is accepted in the

automaton.

BDM Algorithm

The BDM (Backward Deterministic Matching) uses the suffix

automaton to perform string matching in the text.

A window of length m is slid along the text, from left to right.

The algorithm reads the window right to left and feeds the

suffix automaton with the characters read. During this

process, if a final state is reached, this means that the window

suffix traversed is a prefix of P (because suffixes of Pr are

reversed prefixes of P). Then value of the current window

position is stored in the variable last, possibly overwriting its

previous value. The backward window traversal ends in two

possible forms:[2]

(1) A factor is not recognized i.e a character σ is reached

that does not have a transition in the automaton. In this

case the window suffix read is not a factor of P and

therefore it cannot be contained in any occurrence. The

window is shifted to the right, aligning its starting

position to last, which corresponds to the longest prefix

of P seen in the window. An occurrence cannot be

missed because in that case the suffix automaton

would have found its prefix in the window.[2]

(2) Beginning of the window is reached , thereby recognizing

the pattern P . An occurrence is reported and the

window is shifted exactly in the previous case. [2]

Example: Matching the pattern with the text as shown in table

1.

T= [o k b o] k o o b o o , m=4, last=4

Table 1: Suffix automata search example

1.

T=[o k b o] k o o b o o , o is

Factor of Pr and final state

is not reached , therefore

last remains as it is i.e

Last=4

4.

T= o k b o[k o o b] o o ,

“o b” is a factor of Pr and

final state is not reached ,

therefore last remains as it

is i.e last= 4

2.

T= [o k b o] k o o b o o ,

fails to recognize next b.

Therefore backward

traversal ends and the

window is shifted by last

position.

5.

T= o k b o[k o o b] o o

“o o b” is a factor of Pr and

final state is not reached ,

therefore last remains as it

is i.e last= 4

3.

T=o k b o[k o o b] o o, “b”

is a factor of Pr and final

state is not reached ,

therefore last remains as it

is i.e last= 4

6.

T=o k b o[k o o b] o o “ko

ob” is a factor of Pr and we

reach final state , also the

beginning of the window .

We recognize the word

“koob” and report an

occurrence.

A bit parallel version of the algorithm is used which

eliminates the need of constructing the automata and performs

in the same manner . The algorithm is called BNDM

(Backward Non Deterministic Matching).

Simulation of BDM algorithm using BNDM algorithm

The basic idea of BNDM is that it maintains a set of position

on the reverse pattern that are beginning positions of the

factors of the text positioned in the window. The set is stored

as 0 and 1 where 1 denotes occurrence. The vector D keeps a

list of positions in pattern where the factor begins. This is

shown in figure 3.

Figure 3: Bit parallel Factor search

Each time the window is positioned in the text, D is initialized

and the window is scanned backwards. For each new text

character update D. D=dmdm-1……d1 which keeps the state of

search using m bits of Computer word. Whenever a prefix is

found in the pattern (dm=1), its position is remembered. If the

value in D becomes zero, then there cannot be a match and we

suspend scanning. If m iterations are performed then a match

is reported. The bit mask is stored in bit vector B. This mask

sets the corresponding to positions 1 where pi=c.[5]

The formula to update D is : D‟← (D & B[tj]) << 1

The simulation is done in the following manner.

 One in MSB position of Vector D corresponds to the

condition that a factor has been identified and there is a

transition to final state of DAWG.

 Zero in MSB position of vector D corresponds to the

condition that there is transition to non final state .

 All zero values in D corresponds to the condition that

there is no transition from the present state to other

state. In this case the window is shifted by the value

stored in last position.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

17

BNDM Algorithm

__

BNDM(p=p1p2….pm, T=t1t2….tn)[3]

__

1. Preprocessing

2. For cϵ∑ do B[c] ←0m

3. For iϵ1….m do B[pm-i+1] ← B[pm-i+1]| 0
m-i10i-1

4. Search

5. pos←0

6. while pos<=n-m do

7. j←m, last←m

8. D=im

9. While D!=0m do

10. D←D & B[tpos+j]

11. j←j-1

12. If D & 10m-1 !=0m then

13. If j>0 then last←j

14. Else report an occurrence at pos +1

15. End of if

16. D←D<<1

17. End of While

18. Pos=pos+last

19. End of while

An Example shows how the algorithm works and the working

is shown in table 2:

T=[o k b o] k o o b o o D=1111

B[b]=0001 B[o]=0110 B[k]=1000, m=4, last=4, j=4. Pattern:

“ koob”

Table 2: BNDM example

1. T=[o k b o] k o o b o o

 1 1 1 1 j=3

& 0 1 1 0

D=0 1 1 0

5 T= o k b o[k o o b] o o

 0 1 0 0 j=1

& 0 1 1 0

D=0 1 0 0

2. T=[o k b o] k o o b o o

 1 1 0 0 j=2

& 0 0 0 1 last=4

D=0 0 0 0 We fail to

recognize next b so shift

window by last position

6 T=o k b o[k o o b] o o

 1 0 0 0

& 1 0 0 0 last =4

D=1 0 0 0 j=0 so

occurrence is reported at pos

5.

3. T=o k b o[k o o b] o o

 1 1 1 1 j=3

& 0 0 0 1

D=0 0 0 1

7

.

Shift the window by

pos+last position , which is

equal to 4+4=8. The main

while loop terminates as

pos>(10-4)

4. T= o k b o[k o o b] o o

 0 0 1 0 j=2

& 0 1 1 0

D=0 0 1 0

Analysis of BNDM Algorithm

 Worst case time complexity of the Backward

Nondeterministic DAWG Matching (BNDM) is O(nm).

This is because in the worst case the window will be

shifted by one character position , and also in a fixed

window mismatch occurs when the last character is

scanned .

 Handle class, multiple pattern, and allow errors

 Using bit parallelism, Combine Shift-AND and BDM

 Faster than BDM , Faster than BM [3]

 Update Function D‟← (D & B[tj]) << 1

Variation in BNDM Algorithm

Several modifications have been done in BNDM algorithm

that extends its capacity to search the pattern in the text in

lesser time and also to search for pattern that is longer than the

word size of the computer.

One of the algorithms is a two way modification of BNDM

also called Two-way Non Deterministic DAWG

Matching(TNDM). In this method if the text character aligned

with the end of the pattern is a mismatch , BNDM scans

backwards in the text if the conflicting character occurs

elsewhere in the pattern . In such situation TNDM will scan

forward , i.e it continues by examing text characters after the

alignment.[5]The change of direction will decrease the

number of examined characters.The forward scan ends until a

suffix of the pattern has been found.When the suffix is found

in the forward direction , the window is shifted to text position

of the found suffix. Working in this manner will decrease the

number of examined characters, and will reduce the time for

searching.This is illustrated in figure 4.

Figure 4 : TNDM Pattern Search

ALGORITHM TNDM(p=p1p2….pm, T=t1t2….tn)

1. For cϵ∑ do B[c] ←0m

2. For iϵ1….m do B[pm-i+1] ← B[pm-i+1]| 0
m-i10i-1

3. Init_shift(P,restore[])

4. epos←m

5. while epos<=n do

6. i←0;last←m

7. D←B[tepos]

8. if (D & 1)=0 then

9. do /*forward scan for the suffix */

10. i←i+1

11. D←D & (B[tepos+i]<<i)

12. While (D ≠ 0 and D & 10i=0m)

13. if D=0m then

14. Goto over

15. epos←epos + i; last←restore[i]

16. do

17. i←i+1

18. if D & 10m-1 ≠ 0m then

19. if i<m then last←m-i

20. else report an occurrence at epos–m

 +1 ;goto over

21. D←D<<1

22. D←D & B[tepos-i]

23. while D ≠ om

24. over: epos←epos+last

25. end of while

ALGORITHM Init_shift (p=p1p2….pm, restore[])

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

18

1. D ←1m

2. last←m

3. for i=m downto 1

4. D=D & B[pi]

5. if D & 10m-1 ≠ 0 then

6. if i>0 then last←i

7. restore[m-i+1] ←last

8. D=D<<1

Example: Text : “obookookbook”

 Pattern : “book”

Suffix of the Pattern are “k”, “ok”, “ook”, “book”

The underlined character denotes the last character fetched. The

working is explained in table 3.

Table 3 :TNDM Search Example

Text

Window

D i epos Last Explanation

oboo 0110 0 4 4 Lowest bit is 0,

so forward scan

for suffix.

obook 0010 1 4 4 D ≠ 0 and D &

10 ≠ 0, so leaves

the loop.

book 0010 1 5 4 Suffix found,

epos and last are

updated.

book 0100 2 5 2 D ≠ 0

book 1000 3 5 1 A match

reported, epos

updated.

ooko 0110 0 6 4 Lowest bit is 0,

so forward scan

for suffix.

ooko 0100 1 6 4 D ≠ 0, D & 10 =

0

ookook 0100 2 6 4 D ≠ 0, D

& 100 ≠ 0,

leaves the loop,

epos and last are

updated.

ookook 1000 3 8 4 D & 1000 ≠ 0.

ookook 0000 4 8 4 D = 0, leaves the

loop, epos

updated.

book 0001 1 12 4 Lowest bit is 1.

book 0010 2 12 4 D & 1000 = 0

book 0100 3 12 4 D & 1000 = 0.

book 1000 4 12 4 D & 1000 ≠ 0, i

= m, occurence

reported.

Experimental results prove that TNDM reduces the number of

examined characters and thus results in faster searching.

3. BIT PARALLELISM IN MULTIPLE

PATTERN MATCHING
The Bit parallel approach can be extended to search for

multiple patterns inside the text. The method also works for

larger pattern sets. For large pattern sets , the bit parallel

approach can be beneficial in terms of execution speed and

memory requirement. In reference [8] , bit parallel approach

for multipattern sets is described.

 The method uses a bit vector B[c] which is initialised in a

way such that the ith bit is 0 if the character appears in any of

the patterns in position i . The automaton has a transition from

state i to state i + 1 on character c if ith bit in B[c] is 0.

Another vector D is used which is initialized to all 1‟s. When

the character c is read from the text D is updated as D =

(D<<1) | B[c] . After the update, ith bit in D is 0 if i − 1th bit

was 0 (the previous state i − 1 was active) and ith bit is 0 in

B[c] (there is a transition from state i − 1 to i on c).

The assumption in this method is that all the patterns

p1p2…..pr have equal size m and m<=w, where w is word size

of the computer.[8]

ALGORITHM MultiplePatternSearch(text=t1t2..tn)

1. POS←0.

2. textLength←stringLength(text)

3. N←0// N denotes Number Of Occurrence

4. D=1m

5. While(POS<= textLength)

6. D=D<<1 | text[B[POS]]

7. If(MSB[D]=0)

8. POS←POS+1

9. N←N+1

10. GOTO Step 4

11. POS←POS+1

12. End of While

Example : Text= “hhello”

 Pattern = { “hello”, “world”}

The Bit Vectors are set in the following manner.

B[h]=11110, B[e]=11101,B[l]=10011,B[o]=01101 ,

B[w]=11110, B[r]=11011, B[d]=01111

The Automaton recognizing the set of patterns is shown in

figure 4

Figure 4 : NFA finding occurrence of character class

pattern.

The character class pattern is “[h,w],[e,o],[l/r],[l],[o/d]”

Table 2 shows bit parallel simulation of above automata.

Table 2 : Multiple pattern search example

1 Text = hhello

D 11110

B[h] 11110 OR

D 11110

D[0]=0 , so shift

To next state

3. Text = hhello

D 11100

B[e] 11101 OR

D 11101

D[1]=0, so shift to next

State

2. Text = hhello

D 11100

B[h] 11110 OR

D 11110

D[1]=1 , so it

remains

in the same state

4. Text = hhello

D 11010

B[l] 10011 OR

D 11011

D[2]=0, so shift to next

state

5. Text = hhello

D 10110

B[l] 10011 OR

D 10110

D[3]=0, so shift to

next

state

6. Text = hhello

D 01100

B[o] 01101 OR

D 01101

D[4]=0, so shift to next

State, which is the final

state

And the pattern is

recognized.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

19

The method used for multiple pattern search is based on

filtering approach. The filter method works in three phases. In

the first phase , the pattern is preprocessed. In the second

phase, matching takes place and in the third phase the matches

generated by the method needs to be verified for more

accurate results.

The filtering process can be improved by using Q-grams of

the pattern.[8]. In this method ,the pattern is first transformed

into a sequence of Q-grams. After this filtering takes place

with the character class patterns built from the transformed

pattern set. The matches are finally verified using Rabin Karp

method.[8]

4. EXPERIMENTAL RESULTS
Experimental results have proven that Bit Parallel Automaton

using the BNDM algorithm results in more better results than

the Boyer Moore Algorithm . The Experiment was conducted

on patterns of different sizes and the time is reported in

seconds .The following experimental conditions have been

used.

Experimental Conditions:

Processor : Intel Core i7-260 M CPU,2.80 Ghz

 RAM : 8 GB

 System Type: 64 Bit Operating System

 OS : Windows 7 Professional

 Text Size : 230 MB

 Pattern Size : 4,6,8,10,12 characters

The following graph shown in figure 4 shows a comparative

Analysis of Boyer Moore algorithm and BNDM algorithm

along with tabular result.

Table 4 : Performance Comparison of Boyer Moore and

 BNDM

Pattern
Size In
Characters

Boyer Moore BNDM

Time In Milliseconds

4 374 343

6 203 168

8 328 272

10 368 296

12 141 94

Figure 5 : Comparative Analysis of Boyer Moore and

BNDM.

The TNDM algorithm is also compared with the BNDM

algorithm and the experiment was conducted on a text size of

265 MB. In the experiment we have considered the text in

which there are very small occurrences of the pattern . In such

case , the TNDM algorithm will reduce the number of

examined characters and thus results in faster searching.

Figure 6 shows the comparative analysis of both the

algorithms.

Table 5 : Performance Comparison of TNDM and

 BNDM

Pattern Size
in
Characters

TNDM BNDM

Time in Milliseconds

4 125 178

6 103 125

8 78 135

10 93 109

12 94 102

Figure 6 : Comparative Analysis of TNDM and BNDM.

The bit parallel multiple pattern string matching algorithm is

also compared with the traditional Aho-Corasick algorithm.

Both the algorithms give very small variations in searching

time , when worked for different number of patterns, but the

speed up achieved using bit parallel approach is about 1.0 as

compared to Aho-Corasick algorithm. Figure 7 shows the

comparative analysis of both the algorithms, when executed

on a text size of 273 MB.

Table 6 : Performance Comparison of Aho Corasick

 and BNDM

Pattern
Size In
Characters

Aho
Corasick BNDM

Time In Milliseconds

3 1049 426

6 1050 399

9 1057 410

12 1060 450

Figure 7 : Comparative Analysis of Aho Corasick and Bit

parallel Multiple pattern algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

20

5. APPLICATION AREAS OF BIT

PARALLEL STRING MATCHING
In general bit parallel string matching algorithms are the most

efficient as compared to the other algorithms. The main idea

of the bit-parallel algorithms is that they store several data

items into a single computer word and then update them in

parallel using a single computer operation . String matching is

often used in different areas such as text editors, virus

scanning, digital libraries , web search engines, intrusion

detection.

Bit-parallel algorithms are very efficient for approximate

string matching. This problem has many applications in

computational biology viz. finding DNA subsequences after

possible mutations, locating positions of a disease(s) in a

genome etc.

6. CONCLUSION
Experimental results have proven that the Bit Parallelism

approach to string matching increases the speed of matching

as compared to Suffix automata which uses the BDM

algorithm. It is also faster as compared to Boyer-Moore

algorithm.

Several variations of BNDM algorithm further improve the

performance of the traditional BNDM algorithm. The bit

parallel approach for solving the multiple pattern string

matching ,also performs better than the Aho-Corasick

algorithm, whose experimental results are shown. The

performance of Aho-corasick algorithm degrades as the

pattern size increases , as depending upon the pattern size ,

the size of the trie grows enormously. The bit parallel

algorithm becomes practical in applications where we have a

large pattern set ,such as application including intrusion

detection, bioinformatics and antivirus scanning.

7. FUTURE WORK
In future the BNDM algorithm and the multiple pattern bit

parallel algorithm can be implemented on a GPGPU

(Graphics Processing Unit) for even faster performance.

8. REFERENCES
 [1] Gonzalo Navarro and Mathieu Raffinot. A Bit

Parallel approach to Suffix Automata : Fast

Extended String Matching. In M. Farach (editor), Proc.

CPM'98, LNCS 1448. Pages 14-33, 1998.

[2] G. Navarro,M. Raffinot, Fast and flexible string matching

by combining bit-parallelism and suffix automata,ACM

J. Experimental Algorithmics (JEA) 5 (4) (2000).

[3] M. Crochemore et al., A bit-parallel suffix automaton

approach for (δ, γ)-matching in music retrieval, in: Proc.

10th Internat. Symp. on String Processing and

Information Retrieval (SPIRE‟03), in: Lecture Notes in

Computer. Sci., vol. 2857, 2003, pp. 211–223

[4] R. Baeza-Yates, G. Gonnet, A new approach to text

searching, Comm. ACM 35 (10) (1992) 74–82.

[5] Hannu Peltola and Jorma Tarhio , Alternative Algorithms

for Bit-Parallel String Matching, String Processing and

Information Retrieval, 2003 - Springer

[6] http://en.wikipedia.org/wiki/bit-level_parallelism

[7] http://en.wikipedia.org/wiki/string_searching_algorith m

[8] Leena Salmela, J. Tarhio and J. Kytojoki “MultiPattern

String Matching with Very Large Pattern Sets”, ACM

Journal of Experimental Algorithmics, Volume 11, 2006.

[9] G. Myers , “ A fast bit-vector algorithm for

approximate string matching based on dynamic

programming ”, J. ACM, 46 (3) (1999), pp. 395–415

[10] G. Novarro, “ A guided tour to approximate string

matching”, ACM Comput. Surv., 33(1)(2001),pp 31-88

[11] Heikki Hyyro, Kimmo Fredrikson, Gonzalo Novarro,

“Increased Bit Parallelism for Approximate and Multiple

String Matching”, Journal of Experimental Algorithmics,

Vol 10 , 2005

