
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.4, May 2012

24

Language Identification of Kannada Language using N-
Gram

Deepamala. N
Assistant Professor

Dept. of Computer Science
R.V. College of Engineering

Bangalore, India

Ramakanth Kumar. P
Professor and Head

Dept. of Information Science
R.V. College of Engineering

Bangalore, India

ABSTRACT

Language identification is an important pre-processing step

for any Natural Language Processing task. Kannada Language

is an Indian Language and lot of research is being carried out

on Kannada Language Processing. Major parts of online

documents like websites are combination of Kannada and

English Sentences. Language Identification is a preprocessing

step for NLP tasks like POS tagging, Sentence Boundary

Detection or Data mining technique. In this paper, we present

an n-gram method of language identification for documents

with Kannada, Telugu and English sentences. It has been

shown how performance can be improved by n-gram

processing only last word of the sentence instead of complete

sentence. This method could also be preprocessing step for

Sentence Boundary Detection discussed in [1].

General Terms

Language Identification, Kannada Language.

Keywords

n-gram processing, verb suffix, Langauge Identification.

1. INTRODUCTION
Kannada is one of the 40 most spoken Languages in the world

with majority of the population in Karnataka, India. Most of

the online documents available are combination of Kannada

and English Language. Hence, before applying any Natural

Language processing technique, the language of the sentence

has to be identified. There are different methods of Language

Identification techniques applied and tested for different

languages. In this paper, we present the Language

identification of Kannada Language using N-gram processing

and show how performance can be improved by using only

last word instead of complete sentence.

2. LITERATURE SURVEY

2.1 Language Identification
Language identification problem has been solved using many

techniques for different languages. For Indian Languages,

many researchers have followed different techniques to

achieve script identification. Most of the research is in parsing

the document image to identify the script. Padma and Vijaya

[2, 3] have achieved language identification and script

identification using OCR technique. Mallikarjun et al. [4]

present word level script identification using global and local

features. Scripts are grouped into different classes and water

reservoir principle, contour tracing, etc are used for

identification [5]. Shantanu et al. use Gabor filters combined

with pixel distribution around connected components for

identification of script [8].

2.2 Language Identification using N-gram
N-gram method of language identification is the popular and

reliable method of language identification. Cavnar and

Trenkle [6] and Dunning [7] have used n-gram processing of

text to identify the language. Lena et al. [8] compares three

different algorithms (short words, frequent words and n-gram)

for language identification. Yew Choong et al. [9] tried to

identify the language of the web pages using n-gram

processing method. Muntsa et al. [10] compared 3 method of

language identification (Markov Models, Trigram frequency

vectors and n-gram based text categorization). Shiho et al. use

n-gram statistical analysis to identify person names [11].

Tommi et al. compare 2 distinct methods Naïve Bayes and N-

gram models to identify language of short text [12]. [13]

explains how language can be identified using cumulative

frequency addition method.

3. PRESENT WORK
In this paper, the n-gram technique discussed by Cavnar and

Trenkle [6] is followed. The libtextcat [14] software which is

Language Identification tool coded in C is used for the

experiments and results. The libtextcat code has been

modified to use wchat_t data type(wide characters) instead of

char and string handling functions like wcslen, wcscat,

wcsrchr etc are used. In Kannada Language, characters are

multibyte characters and handling them is simple using wide

characters. It has been observed that wide characters are

assigned 4 bytes in Linux. It is system dependent but since our

implementation is completely in Linux, wchar can be used.

3.1 N-gram processing
The N-gram processing of text as proposed by Cavnar and

Trenkle [6] involves splitting the word into characters of size

n. Where n is bi-gram, tri-gram, quad-gram etc. For example,

the word “PAPER” is decomposed as

Bi-grams: _P, PA, AP, PE, ER, R_

Tri-grams: _PA, PAP, APE, PER, ER_, R__

3.1.1 Train Profile generation
N-gram frequency profiles for different languages are

generated using the steps as mentioned in [6]. In this paper,

we refer to the profiles as Train profile and generation steps

are as in Fig 1.

Different languages will have their own Train profiles. The

train corpus is sent as parameter to the Train profile

generation code. It has following steps:

 Split the text into separate tokens consisting only of

letters and apostrophes. Digit and punctuation are

discarded. Pad the token with sufficient blanks

before and after.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.4, May 2012

25

 Scan down each token, generating all possible N-

grams, for N=1 to 5. Use positions that span the

padding blanks, as well.

 Hash into a table to find the counter for the N-

gram, and increment it. The hash table uses a

conventional collision handling mechanism to

ensure that each N-gram gets its own counter.

 When done, output all N-grams and their counts.

 Sort those counts into reverse order by the number

of occurrences. Keep just the N-grams themselves,

which are now in reverse order of frequency.

First 300 ranks, which are mostly the common occurrence of

character combinations for a particular language, are used.

3.1.2 Text Language Identification
A n-gram Test profile is generated for the Language which

needs to be identified and is compared with the list of Train

profiles generated for different languages. For each n-gram in

Test profile, the rank at which it matches with the n-gram in

the Train profile is found. The rank is the out-of-place value

for the n-gram from Test profile; this is continued for all the

n-grams in Test profile. The sum of out-of-place values of the

Test profile when compared with a Train profile is recorded

which is called the distance measure. The previous steps are

repeated for different Train profiles of different languages.

The least distance measure value among the recorded distance

measure and its corresponding Train profile’s language is the

most probable language of the Text.

4. PR OPOSED WORK
The proposed implementation can be used to identify the

language of a sentence in a digital online or offline document.

This could be a pre-processing step for tasks like POS

tagging, Content analysis or some other Natural Language

Processing. The implementation is tested mainly on a

document which has sentences of Kannada, Telugu and

English.

4.1 Train Profile generation
The Train profile is generated using only the last word of the

sentences. This reduces the processing time required to

generate the Train profile as the training corpus size reduces

and hence, n-gram processing is reduced. N-gram processing

involves steps to replace space with “_”, calculate substrings

and create n-gram table. The idea behind including only the

last word, in both Telugu and Kannada Language is the

sentence format for majority of sentences. It is as follows:

Eg: ರಾಮನು(Noun) ಕಾಡಿಗೆ(Object) ಹೆ ೋದನು(Verb).

The verb takes different form as discussed in [1] based on

tense, gender and Singular/Plural. Most of the sentences

should have some form of Verb in the sentence’s last word

and hence comparing only the last words should be sufficient

to identify the sentence. The N in N-gram is assumed to be

three or trigram. Since the Corpus size is small because only

last words from sentences are chosen, it has been found that

tri-gram gives better performance.

Fig 1: Train Profile generation steps

Prepare text, Replace all space with ‘_’

Calculate n-gram substrings for the

given string.

Is entry found in

table?

Increment frequency

Make a new entry in

table and set frequency

to 1

Sort and read the table entries in

reverse order and output the

frequencies as Train profile for the

language.

Hash the substring and add into table

Text whose Language n-gram Train

profile is to be generated

NO

YES

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.4, May 2012

26

Fig 2: Language Identification and SBD

4.2 Language Identification:
The Language Identification has been tested on document

containing Kannada, Telugu and English Sentences. Telugu

has been included just to show the accuracy of the

implementation as the sentence format for both Telugu and

Kannada is almost same. For Identification, last word of the

sentences are extracted and sent as parameter to libtextcat

library to identify the Language.

4.3 Performance Measurement
The time taken to trigram process the language using

complete sentence and only the last word of the sentence is

measured. The performance is determined by comparing the

values.

The time is measured as follows:

#include <sys/time.h>

struct timeval *Tps, *Tpf;

void *Tzp;

Tps = (struct timeval*) malloc(sizeof(struct timeval));

Tpf = (struct timeval*) malloc(sizeof(struct timeval));

Tzp = 0;

gettimeofday (Tps, Tzp);

 <code to be timed>

gettimeofday (Tpf, Tzp);

printf("Total Time (usec): %ld\n", (Tpf->tv_sec-Tps-

>tv_sec)*1000000+ Tpf->tv_usec-Tps->tv_usec);

4.4 Sentence Boundary Detection
After the Language has been identified, if the language of the

sentence is Kannada, the algorithm [1] is used to identify if it

is a Sentence Boundary. The Sentence Boundary algorithm

requires the last word of the sentence before “.”. The last

word of sentence is compared with the contents of

ABBREVIATIONS file, to check it is a abbreviation, if not,

then VERBS_SUFFIX file is verified to check if it matches

with any verb suffixes. If matched, then it is considered to be

a sentence boundary or the control is shifted to last word of

the next sentence.

The Language Identification procedure in this paper also

shows that only last word of the sentence is sufficient to

identify the language. So, both [1] and current procedure can

work efficiently together, as the same last word used to

identify the language can be used to identify if it is a Sentence

Boundary. The steps for Language Identification and Sentence

Boundary Detection are as shown in Fig 2.

5. TESTING AND RESULT
The testing has been performed on corpus of Kannada only

sentences, Telugu only sentences and combination of

Kannada, Telugu and English sentences. The Train profile for

Kannada and Telugu has been created using only the last

words of the sentences. Since the train data size decreases, the

n-gram processing time to create the train profile also reduces.

The result of testing using different combination of languages

using complete sentence or only last word is given below in

Table 1. The graph plotted using the processing time for

Start

Search for the delimiter “.” and get

the”last word” of the sentence

Call the libtextcat library to

identify the language of the

sentence.

Language

Identified?

Apply Sentence Boundary

Detection algorithm [1] to identify

the correct sentence boundary

Language not known

No

Yes

Is it

kannada?

Continue and handle

other language

sentences

Yes

No

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.4, May 2012

27

complete sentence and only last word is shown. The graph is

plotted for 341Kbytes if data and corresponding processing

time as shown in Table1. The processing time shown in the

Table 1 is complete processing time including string handling

functions and n-gram processing. The performance analysis of

only n-gram processing of complete sentence and last word

only is shown in Table 2. This excludes the string operation to

fetch last word.

Table 1. Processing time for complete sentences and last

word of sentence.

Test

Corpus

Language

Type Size of

buffer

Average

Processing

Time (in

usec)

Kannada only

sentences

n-gram

processing

of complete

sentences

217K 956863

Telugu only

sentences

n-gram

processing

of complete

sentences

214K 931643

Kannada,

Telugu and

English

Sentences

n-gram

processing

of complete

sentences

341K 1965652

Kannada only

sentences

n-gram

processing

of only last

word of

sentence

217K 851347

Telugu only

sentences

n-gram

processing

of only last

word of

sentence

214K 824548

Kannada,

Telugu and

English

Sentences

n-gram

processing

of only last

word of

sentence

341K 1742085

Performance Analysis of N-gram processing

0

500000

1000000

1500000

2000000

2500000

Corpus (in KiloBytes)

P
ro

ce
ss

in
g

Ti
m

e
 (

in
 u

se
cs

)

Sentences

Last Word

Table 2. Processing time for n-gram processing of

complete sentence and last word of sentence.

Sentence Time (in

usec)

ವರ್ಷಗಳ ಹಿಂದೆ ಅಥೆನ್ಸಿನ ಸಮೀಪ ಆಲಿವ್ ಮರಗಳ

ಒಿಂದು ತೆ ೀಪು ಇದಿ್ದತು. (complete sentence)

451

ಇದಿ್ದತು. (only last word) 251

ಅದು ಪ್ರಾಚೀನ ವೀರ ಅಕಡೆಮೆಸನ ಸ್ರಾರಕಕ್ೆೀತಾವರಗಿತುು.

(complete sentence)

333

ಸ್ರಾರಕಕ್ೆೀತಾವರಗಿತುು. (last word) 244

6. CONCLUSION
This paper shows how performance can be improved by

identifying the language by applying n-gram processing on

last word of sentences for Kannada and Telugu Language.

The results are encouraging as 99% of the sentences were

identified correctly. The Language Identification technique

described above can also be applied as pre-processing step for

Sentence Boundary Detection for Kannada Language [1].

Since both require last word of the sentence, much of the

processing with respect to string handling is reduced.

7. REFERENCES
[1] Deepamala.N and Ramakanth Kumar.P, “Sentence

Boundary Detection in Kannada Language.”

International Journal of Computer Applications (0975 –

8887) Volume 39– No.9, February 2012.

[2] M.C. Padma, P.A. Vijaya, “Global Approach for Sript

Identification using Wavelet Packet based Features”,

International Journal of Signal Processing, Image

Processing and Pattern Recognition, Vol. 3, No. 3,

September, 2010.

[3] M.C. Padma, P.A. Vijaya, “Script Identification from

Trilingual Documents using Profile based Features”,

International Journal of Computer Science and

Applications, Technomathematics Research Foundation

Vol. 7 No. 4, pp. 16 - 33, 2010.

[4] Mallikarjun Hangarge , B.V. Dhandra, “Offline

Handwritten Script Identification in Document Images”

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.4, May 2012

28

International Journal of Computer Applications (0975 –

8887) Volume 4 – No.6, July 2010

[5] U.Pal and B.B.Chaudhuri, “Multi-Script Line

identification from Indian Documents,” 7th ICDAR, 2003.

[6] W. B. Cavnar and J. M. Trenkle. “N-gram-based text

categorization”. In Proceedings of SDAIR-94, the 3rd

Annual Symposium on Document Analysis and

Information Retrieval, pages 161.175, Las Vegas,

Nevada, U.S.A, 1994.

[7] Ted Dunning. 1994. “Statistical identification of

language”. Technical Report MCCS-94-273, Computing

Research Lab, New Mexico State University.

[8] Lena Grothe, Ernesto William De Luca, Andreas

Nürnberger. "A Comparative Study on Language

Identification Methods." Proceedings of the Sixth

International Language Resources and Evaluation

(LREC'08). Marrakech, 2008. 980-985.

[9] Yew Choong Chew, Yoshiki Mikami, Robin Lee. “

Language Identification of Web Pages Based on

Improved N-gram Algorithm.” IJCSI International

Journal of Computer Science Issues, Vol. 8, Issue 3, No.

1, May 2011

[10] M. Padro and L. Padro, “Comparing methods for

language identication,” Proceedings of the XX Congreso

de la Sociedad Espanola para el Procesamientodel

Lenguage Natural, Barcelona, Spain, 2004.

[11] Shiho Nobesawa and Ikuo Tahara, “Language

Identification for Person Names Based on Statistical

Information.” Proceedings of PACLIC 19, the 19th Asia-

Pacific Conference on Language, Information and

Computation.

[12] Vatanen, Tommi and Väyrynen, Jaakko J. and Virpioja,

Sami. “Language Identification of Short Text Segments

with N-gram Models.” European Language Resources

Association, 2010

[13] B. Ahmed, S. Cha, "Language Identification from Text

Using N-gram Based Cumulative Frequency Addition",

Proceedings of CSIS 2004, Pace University, May 7th,

2004

[14] http://software.wise-guys.nl/libtextcat/

