
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.3, May 2012

6

Applications of Symbolic computation in C++
Programming Language

Satabaldiyev Askar Bakytzhanuly Latuta Konstantin Nikolayevich

SuleymanDemirel University SuleymanDemirel University
Almaty, Kazakhstan Almaty, Kazakhstan

ABSTRACT
This paper contains the brief information about symbolic

computation techniques. The location of symbolic

computation within Computer Language classification is

defined. Programming languages (PL) can be divided into two

main areas: imperative PL and declarative PL. Declarative PL

is generally used for logical and functional programming (ex:

PROLOG, LISP, ML, Haskell,…) Symbolic computation

techniques are commonly derived from both, logical and

functional programming.

Imperative programming languages are practically used for

numerical computations. Some of well-known examples of

imperative PL’s are C, C++, Java, MATLAB, etc… But for

last few years, the programming languages mentioned above

have been oriented to solve problems symbolically.

The general idea of this paper is to provide the

implementation of well-known mathematical problems

symbolically solved on the basis of C++ programming

language. It follows some typical examples to illustrate the

properties of symbolic C++.

General Terms
Programming languages, symbolic computation, logical

programming, functional programming

Keywords
Symbolic computation, C++, “symbolic++.h”

1. INTRODUCTION
Symbolic computation relates to algorithms and software for

manipulating mathematical expressions and equations in

symbolic form, as opposed to numeric computation that deals

with

approximations of specific numerical quantities expressed by

those symbols. The software that implements symbolic

calculations might be user for symbolic differentiation,

substitution one expression into another, finding polynomial,

etc...generally for every computation with mathematical terms

for well-known algorithms. Symbolic computations are more

exact rather than numeric solutions. The reason is that

numeric solutions are more approximate and they are oriented

for specific cases, but symbolic computations are more

general. Because of this, symbolic computation methods may

need to take long time and resources to solve problems.

Numeric computation methods are much faster. Some

problems can be better solved using symbolical way, while

other can be solved better in a numerical way[11].

In Computer Science there exist many programming

languages, which are used for numerical applications as

solution to problems.

Programming languages (PL) can be divided into two main

areas: imperative PL and declarative PL. Declarative PL is

generally used for logical and functional programming (ex:

PROLOG, LISP, ML, Haskell,…) Symbolic computation

techniques are commonly derived from both, logical and

functional programming.

Imperative programming languages are practically used for

numerical computations. Some of well-known examples of

imperative PL are C, C++, Java, MATLAB, etc… But for last

few years, the programming languages mentioned above have

been oriented to solve problems symbolically.

General classification of programming languages

is illustrated in Figure 1

Figure1: Classification of programming languages

Programming languages(PL)

Declarative PL

Logical PL PROLOG,
LISP

Functional PL

ML, Haskell, ...

Imperative PL

ALGOL, C, C++

Java, MATLAB

Symbolic computation
techniques

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.3, May 2012

7

Symbolic computation techniques (SCT) are created from

knowledge logical and functional programming techniques.

Some examples of SCT open-source, cost free tools are given

in the following list: Axiom, Bergmann, Calc, CoCoA,

DoCon, DCAS, Eigenmath, Franklin Math, FriCAS, GAP,

etc…

Also there are more than 30 commercial SCT tools. Detailed

information can be found in reference [1], [2], [3], [4], [5],

[6].

There are not much publications about symbolic C++. There is

only one textbook and some papers [7],[8],[9]

There is an extensive library for symbolic C++, namely

“GiNaC”[10], which is widely used for projects with symbolic

C++. The following examples illustrate the basic idea of

symbolic computation applying the core library

“symbolicc++.h”, without using extensive “GiNaC” library.

Figure 2: General procedure for symbolic C++ program

2. APPLICATION OF SYMBOLIC C++

This chapter demonstrates the application of symbolic C++

programming for the most common mathematical subjects,

such as Vector Algebra, Algebra, Polynomials, and Series.

2.1 Vector Algebra

Table 1.List of functions, descriptions and source codes for

examples from vector algebra

2.2 Algebra

Table 2.List of functions, descriptions and source codes for

examples from algebra

Function Description Source code

Df Differentiation diff.cpp

Integrate Integration integ.cpp

2.3 Polynomial

Table 3.List of functions, descriptions and source codes for

examples with polynomials

Function Description Source code

Diff Multivariable

polynomial

differentiation

poly.cpp

Legendre Solution of Legendre

differential equations

legendre.cpp

2.4 Series

Table 4. List of functions, descriptions and source codes

for examples with series

Function Description Source code

 Taylor series expansion taylor.cpp

2.5 Source codes and output

2.5.1 Vector addition and subtraction
// "veca.cpp"

// Vector addition and subtraction

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void){

// 1. Block: Declaration of symbolic variables

 Symbolic x("x", 2), y("y", 2), z("z", 2), s("s", 2);

// 2. Block: Computations

 z = (x + y);

 s = (x - y);

// 3. Block: Output the results

cout<< "Addition z = " << z <<endl;

cout<< "Subtraction s = " << s <<endl;

system("PAUSE");

return 0;

}

/*

 Sample output:

 Addition z =

 [x0+y0]

 [x1+y1]

 Subtraction s =

 [x0-y0]

 [x1-y1]

*/

1
• Header files

2
• Declaration of symbolic variables

3
• Symbolic computations

4
• Output results

Function Description Source code

+

-

Vector addition and

subtraction

veca.cpp

| Scalar product sp.cpp

% Cross product cp.cpp

 Gradient grad.cpp

 Divergence diverge.cpp

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.3, May 2012

8

This symbolic computation gives directly the results of vector

addition and subtraction for the given vectors

2.5.2 Scalar product
// "sp.cpp"

// Scalar product

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void){

// 1. Block: Declaration of symbolic variables

 Symbolic x("x", 2), y("y", 2), z("z", 2);

// 2. Block: Computations

 z = (x|y);

// 3. Block: Output the results

cout<< "z = " << z <<endl;

system("PAUSE");

return 0;

}

/*

 Sample output:

 z = x0*y0+x1*y1

*/

This symbolic computation gives directly the result of scalar

product for the given expression

2.5.3 Cross product
// "cp.cpp"

// Cross product

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void){

// 1. Block: Declaration of symbolic variables

 Symbolic x("x", 3), y("y", 3), z("z", 3);

// 2. Block: Computations

 z = (x % y);

// 3. Block: Output the results

cout<< "z = " << z <<endl;

system("PAUSE");

return 0;

}

/*

 Sample output:

 z =

 [x1*y2-y1*x2]

 [y0*x2-x0*y2]

 [x0*y1-y0*x1]

*/

This symbolic computation gives directly the result of cross

product for the given expression

2.5.4 Gradient
// "grad.cpp"

// Gradient example

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void){

// 1. Block: Declaration of symbolic variables

 Symbolic x("x"), y("y"), z("z");

 Symbolic f = x*x+y*y+z*z;

 Symbolic res("res", 3);

// 2. Block: Computations

res(0) = df(f,x);

res(1) = df(f,y);

res(2) = df(f,z);

// 3. Block: Output the results

cout<< "Gradient : "<< res <<endl;

system("PAUSE");

return 0;

}

/*

 Sample output:

Gradient :

 [2*x]

 [2*y]

 [2*z]

*/

This symbolic computation gives directly the result of

gradient for the given expression

2.5.5 Divergence
// "diverge.cpp"

// Divergence

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void){

// 1. Block: Declaration of symbolic variables

 Symbolic x("x"), y("y"), z("z");

 Symbolic f = x*x+y*y+z*z;

// 2. Block: Computations

 Symbolic res = df(f,x) + df(f,y) + df(f,z);

// 3. Block: Output the results

cout<< "Divergence : "<< res <<endl;

system("PAUSE");

return 0;

}

/*

 Sample output:

Divergence : 2*x+2*y+2*z

*/

This symbolic computation gives directly the result of

divergenceof the function above.

2.5.6 Differentiation
// "diff.cpp"

// Differentiation

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.3, May 2012

9

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void){

// 1. Block: Declaration of symbolic variables

 Symbolic x("x");

 Symbolic y = sin(x) + cos(x);

// 2. Block: Computations

 Symbolic res = df(y,x);

// 3. Block: Output the results

cout<< "Differentiation : res = "<< res <<endl;

system("PAUSE");

return 0;

}

/*

 Sample output:

Differentiation : res = cos(x)-sin(x)

*/
The general terms after differentiation with symbolic computation are
shown.

2.5.7 Integration
// "diff.cpp"

// Integration

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void){

// 1. Block: Declaration of symbolic variables

 Symbolic a("a"), t("t"), ;

 Symbolic f = exp(-a * t);

// 2. Block: Computations

 Symbolic res = integrate(f,t);

// 3. Block: Output the results

cout<< "Integration : res = "<< res <<endl;

system("PAUSE");

return 0;

}

/*

 Sample output:

Integration : res = -e^(-a*t)*a^(-1)

*/

The general terms after integration with symbolic computation

are shown.

2.5.8 Multivariable polynomial differentiation
// "poly.cpp"

// Multivariable polynomial differentiation

#include <iostream>

#include "symbolicc++.h"

#include "multinomial.h"

using namespace std;

int main(void){

// 1. Block: Declaration of symbolic variables

 Multinomial <double>a("a");

 Multinomial <double>b("b");

 Multinomial <double>x("x");

 Multinomial <double> p = a*(x^3) + b*(x^2) + 1;

 // 2. Block: Computations

 Multinomial <double> res = Diff(p, "x");

 // 3. Block: Output the results

cout<< "Diff(p,x) => "<< res <<endl;

system("PAUSE");

return 0;

}

/*

 Sample output:

Diff(p,x) => (3)ax^2 + (2)bx

*/

This symbolic computation gives directly the result of

multivariable polynomial differentiation for the given

multinomial

2.5.9 Solution of Legendre differential equations
// legendre.cpp

// Legendre polynomial

#include <iostream>

#include "symbolicc++.h"

#include "legendre.h"

using namespace std;

int main(void){

int n=5;

 Symbolic x("x");

 Legendre P(n,x);

 // Calculate the first few Legendre polynomials

cout<< "P(0) = " << P <<endl;

for(int i=1;i<=n;i++)

 {

P.step();

cout<< "P("<< i << ") = " << P <<endl;

 }

cout<<endl;

 // Show that the Legendre differential equation is satisfied

for n = 5

 Symbolic result;

result = df((1-x*x)*df(P.current(),x),x) +

(n*(n+1))*P.current();

cout<< result <<endl; // ==> 0

return 0;

}

/*

Sample output:

 P(0) = 1

 P(1) = x

 P(2) = 3/2*x^(2)-1/2

 P(3) = 5/2*x^(3)-3/2*x

 P(4) = 35/8*x^(4)-15/4*x^(2)+3/8

 P(5) = 63/8*x^(5)-35/4*x^(3)+15/8*x

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.3, May 2012

10

 0

*/

This symbolic computation shows the first few Legendre

polynomials

2.5.10 Taylor series expansion
// taylor.cpp

// Taylor

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int factorial(int N){

int result=1;

for(int i=2;i<=N;i++) result *= i;

return result;

}

int main(void){

int i, j, n=3;

 Symbolic u("u"), x("x"), result;

 Symbolic u0("",n), y("",n);

 u = u[x];

u0(0) = u*u+x;

for(j=1;j<n;j++) u0(j) = df(u0(j-1),x);

 // initial condition u(0)=1

u0(0) = u0(0)[u==1,x==0];

y(0) = u;

for(i=1;i<n;i++) y(i) = df(y(i-1),x);

 // substitution of initial conditions

for(i=1;i<n;i++)

 for(j=i;j>0;j--) u0(i) = u0(i)[y(j)==u0(j-1)];

for(i=0;i<n;i++) u0(i) = u0(i)[u == 1];

 // Taylor series expansion

result = 1;

for(i=0;i<n;i++)

result += (Symbolic(1)/factorial(i+1))*u0(i)*(x^(i+1));

cout<< "u(x) = " << result <<endl;

system("PAUSE");

return 0;

}

/*

Sample output

u(x) = x+3/2*x^(2)+4/3*x^(3)+1

*/

This symbolic computation gives directly the result of Taylor

series expansion for the given series.

3. CONCLUSION
This paper gives brief information about symbolic

computation techniques. The location of symbolic

computation within programming language is illustrated.

Nowadays, imperative programming languages, such as C++,

are generally used for numerical computations. The approach

described in this paper can give the key idea to expand

solution techniques.

Accordingly, symbolic computation techniques can be

expanded to solve any sort of problems.

The general idea of this paper is to provide the

implementation of well-known mathematical problems

symbolically solved on the basis of C++ programming

language. The properties of symbolic C++ have been

illustrated using typical examples.

4. ACKNOWLEDGMENT
The authors would like to express gratitude to the research

department of the University of Technology (em. Niyazi Ari,

Prof. Dr. sch. Techn. ETH) Zurich, Switzerland.

5. REFERENCES
[1] Comparison of computer algebra systems

http://en.wikipedia.org/wiki/Comparison_of_computer_a

lgebra_systems

[2]Digital Math by Alphabet

http://www.cs.ru.nl/~freek/digimath/xindex.html

[3] Mathematics in Open Project Directory

http://www.dmoz.org/Science/Math/Software

[4] Combinatorial Software and Databases

http://www.mat.univie.ac.at/~slc/divers/software.html

[5] Oberwolfach References on Mathematical Software

http://orms.mfo.de/about

[6] The Scientific Computation System axiom http://axiom-

developer.org/axiom-website/rosetta.html

[7] SymbolicC++: An Introduction to Computer Algebra using

Object-Oriented Programming, ISBN-10: 1852332603

[8] Introduction to Symbolic C++

http://issc.uj.ac.za/symbolic/introsymb.pdf

[9] Samples of Symbolic C++ developers at web resource

http://issc.uj.ac.za/symbolic/symbolic.html

[10] An open framework for symbolic computation within the

C++ programming languagehttp://www.ginac.de

[11] “Applications of Symbolic computation in MATLAB” by

Zhaparov M.K., Guvercin S.

http://en.wikipedia.org/wiki/Comparison_of_computer_algebra_systems
http://en.wikipedia.org/wiki/Comparison_of_computer_algebra_systems
http://www.cs.ru.nl/~freek/digimath/xindex.html
http://www.dmoz.org/Science/Math/Software
http://www.mat.univie.ac.at/~slc/divers/software.html
http://orms.mfo.de/about
http://axiom-developer.org/axiom-website/rosetta.html
http://axiom-developer.org/axiom-website/rosetta.html
http://issc.uj.ac.za/symbolic/introsymb.pdf
http://issc.uj.ac.za/symbolic/symbolic.html
http://www.ginac.de/

