
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

48

Image Processing using IP Core Generator through
FPGA

B.Muralikrishna1
K.Gnana Deepika2
B.Raghu Kanth3

V.G.Swaroop Vemana4

Assistant Professor, Department of ECE, K L University, Vaddeswaram, AP, India - 522 502

1

G Student, Department of ECE, K L University Vaddeswaram, AP, India - 522 502.
2,3,4

ABSTRACT
Xilinx CORE Generator System generates and delivers
parameterizable cores optimized for Xilinx FPGAs. CORE

Generator is mainly used to create high density, high
performance designs in Xilinx FPGAs in less time. The CORE
Generator is included with the ISE WebPack and ISE
Foundation software and comes with an extensive library of
Xilinx LogiCORE IP. These include DSP functions, memories,
storage elements, math functions and a variety of basic elements.
Xilinx provides a flexible Block Memory Generator core to
create compact, high-performance memories running at up to

450 MHz. Block Memory Generator provides single port and
dual port block memory. These memory types differ in selection
of operating modes.Matlab tool is used to convert the image that
is being processed to .coe file format. Xilinx Core Generator is
used to store the coefficient file(.coe) in single port Block ROM
by defining the width and depth of the image and image is
displayed on VGA monitor using Digilent Nexys2 FPGA Board.

Keywords
Xilinx IP CORE Generator, VGA(Videos Graphics
Array),Blocm Memory Generator ,Coefficient File

1. INTRODUCTION
The Block Memory Generator LogiCORE™ IP core automates
the creation of area and performance optimized block memories
for Xilinx FPGAs. Available through the ISE® Design Suite
CORE Generator™ System, the core enables users to create
block memory functions to suit a variety of requirements. Built-
in knowledge about Xilinx device architectures allow it to
leverage specialized FPGA architectural features to create the
most compact, high performance solution. The Block Memory

Generator[1] core uses embedded Block Memory primitives in
Xilinx FPGAs to extend the functionality and capability of a
single primitive to memories of arbitrary widths and depths.
Sophisticated algorithms within the Block Memory Generator
core produce optimized solutions to provide convenient access
to memories for a wide range of configurations.

The Block Memory Generator[2] has two fully independent
ports that access a shared memory space. Both A and B ports

have a Write and a Read interface. In Kintex-7, Virtex-7, Virtex-
6, Virtex-5 and Virtex-4 FPGA architectures, each of the four
interfaces can be uniquely configured with a different data
width. When not using all four interfaces, the user can select a
simplified memory configuration (for example, a Single-Port
Memory or Simple Dual-Port Memory) to reduce FPGA
resource utilization. The Block Memory Generator is not
completely backward-compatible with the discontinued legacy

Single-Port Block Memory and Dual-Port Block Memory cores.
General system over view of Xilinx Core Generator is shown in
the below figure:

Figure 1: Core Generator System Overview

1.1 Single Port BLOCK MEMORY

The Single-Port Block Memory module is generated based on

the user-specified width and depth. This module for Spartan-II
and Virtex is composed of single or multiple 4 Kb blocks called
Select RAM+. The Virtex-II, Virtex-II Pro, Virtex-4, and
Spartan-3 Single-Port Block Memory modules, on the other
hand, are composed of single or multiple 18 Kb blocks called
SelectRAM- II. Since Spartan-II and Virtex both use the 4 Kb
SelectRAM+ blocks, any particular reference to a Virtex
implementation also applies to a Spartan-II, Virtex-E, Virtex-II

Pro, or Spartan-IIE implementation[3].

When Block Memory is enabled, all memory operations occur
on the active edge of the clock input (CLK). The Block Memory
can be configured to be active on the rising edge and the falling
edge. When the block memory is disabled (enable inactive), the
memory configuration and output value remain unaltered.

Figure 2: Core Schematic Symbol

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

49

During Write Operation(WE asserted), the data presented at the
port’s data input is stored in memory at the location selected by

the port’s address input.

1.2 Dual Port BLOCK MEMORY

The Dual Port Block RAM has two independent access ports
that permit shared access to a central pool of memory. The data
width and memory depth of each access port can be
independently configured providing straightforward dual-port
memory functionality or optional data formatting capability.
Both ports are functionally identical, with each port providing
read and write access[4]. Simultaneous reads from the same
memory location may occur, but all other simultaneous, same

location operations should be avoided. Simultaneously reading-
from and writing-to the same location results in the correct data
being written into the memory, but invalid data being presented
at the reading port.

Figure 3: Core Schematic Symbol

2. VGA(VIDEO GRAPHICS ARRAY)
The term Video Graphics Array (VGA) refers either to an analog
computer display standard, the 15-pin D-subminiature VGA
connector, or the 640×480 resolution itself. VGA is referred to
as an "array" instead of an "adapter" because it was implemented
from the beginning as a single chip, replacing the Motorola 6845
and dozens of discreet logic chips covering a full-length ISA
board that the MDA,CGA, and EGA used. This also allowed it
to be placed directly on a PC's motherboard with a minimum

difficulty (it only required video memory, timing crystals and an
external RAMDAC).

2.1 vga display port

The Spartan-3E FPGA Starter Kit board includes a VGA display
port via a DB15 connector. Connect this port directly to most PC
monitors or flat-panel LCDs using a standard monitor cable. The
VGA connector is the left-most connector along the top of the
board as shown in the below figure.

Figure 4: Core Schematic Symbol

Figure 5: VGA Connections from Spartan-3E Starter Kit
Board

The Spartan-3E FPGA directly drives the five VGA signals via
resistors. Each color line has a series resistor, with one bit each

for VGA_RED, VGA_GREEN, and VGA_BLUE. The series
resistor, in combination with the 75Ω termination built into the
VGA cable, ensures that the color signals remain in the VGA-
specified 0V to 0.7V range. The VGA_HSYNC and
VGA_VSYNC signals using LVTTL or LVCMOS33 I/O
standard drive levels[5]. Drive the VGA_RED, VGA_GREEN,
and VGA_BLUE signals High or Low to generate the eight
colors as shown in the below table.

Figure 6: 3-bit display color codes

2.2 Signal timing for 60hz,640x480 VGA

Display

CRT-based VGA displays use amplitude-modulated, moving
electron beams (or cathode rays) to display information on a
phosphor-coated screen. LCDs use an array of switches that can
impose a voltage across a small amount of liquid crystal, thereby

changing light permittivity through the crystal on a pixel-by-
pixel basis. Although the following description is limited to CRT
displays, LCDs have evolved to use the same signal timings as
CRT displays. Consequently, the following discussion pertains
to both CRTs and LCDs.

Within a CRT display, current waveforms pass through the coils
to produce magnetic fields that deflect electron beams to
transverse the display surface in a raster pattern, horizontally

from left to right and vertically from top to bottom.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

50

Figure 7: CRT display Timing Example

information is only displayed when the beam is moving in the
forward direction—left to right and top to bottom—and not
during the time the beam returns back to the left or top edge of
the display. Much of the potential display time is therefore lost
in blanking periods when the beam is reset and stabilized to
begin a new horizontal or vertical display pass.

Modern VGA displays support multiple display resolutions, and
the VGA controller dictates the resolution by producing timing
signals to control the raster patterns. The controller produces
TTL-level synchronizing pulses that set the frequency at which
current flows through the deflection coils, and it ensures that
pixel or video data is applied to the electron guns at the correct
time.

The VGA controller generates the horizontal sync (HS) and

vertical sync (VS) timings signals and coordinates the delivery
of video data on each pixel clock. The pixel clock defines the
time available to display one pixel of information. The VS signal
defines the refresh frequency of the display, or the frequency at
which all information on the display is redrawn. The minimum
refresh frequency is a function of the display’s phosphor and
electron beam intensity, with practical refresh frequencies in the
60 Hz to 120 Hz range. The number of horizontal lines displayed

at a given refresh frequency defines the horizontal retrace
frequency.

3. EXPERIMENTAL SETUP

3.1 IP core generator

The core generation process produces the logic for the core,
partitions it into configurable logic blocks (CLBs), and then

places the CLBs relative to each other. This logic design coupled
with a CLB-floor-plan or physical design is what makes our
cores predictable. The relative locations are maintained as the
core is integrated into the overall design and placed anywhere in
a large FPGA[6].

Figure 8: Xilinx IP core Design Flow

The CORE Generator contains a library of LogiCORE
parameterizable cores, AllianceCORE cores, and data sheets.
The LogiCORE category contains cores that are designed and

supported by Xilinx, while the AllianceCORE category contains
the cores that are designed and supported by our AllianceCORE
partners. The "IP(Core Generator & Architecture wizard) can be
launched from ISE as shown in th below figure:

STEP BY STEP IP CORE INITIALIZATION PROCEDURE
FOR LOADING COE FILE IN BRAM

Figure 9: Selecting " IP(Core Generator & Architecture
wizard) " from ISE

"Block Memory Generator" is one of the IP core that is provided
by the Xilinx IP Core Generator which is present under the
"Memory and Storage Element".

Figure 10: Selection of "Memories and Storage
Elements"

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

51

The following Procedure is followed in order to select ""Block
Memory Generator”:

Figure 11: Selection of "Block memory Generator" IP
core

3.2 BLOCK Memory generator

Figure 12: "Block memory Generator" IP core Wizard

Block Memory Generator wizard is launched showing different
memory types and IP Symbol."Single Port ROM" is selected
under memory types and the values for read width and read
depth are specified based on horizontal width and vertical length
of the Image that is being processed.

After defining all of your parameters, simply click on the
Generate button. The output is an optimized CORE for the
targeted FPGA device with the following files.

A tailored Xilinx netlist with complete relative placement
information to guarantee performance VHDL or Verilog
instantiation code

 A VHDL behavioral model

 A symbol for schematic capture tools

Figure 13: "Block memory Generator" IP core Wizard

3.3 Coefficient File Format(.coe)

coe file stands for Coefficient file that contains the contents of
the Block Memory for the specified read depth and read width
values of the image. The size of the image that is available is
640x480 and this data is stored as .coe file in single port Block
ROM using Xilinx Core Generator. Matlab function

IMG2coe8(imgfile, outfile)[7] is used to convert
bmp,jpeg,png,gif and tif image file formats to .coe file format.

Figure 14: Initializing .coe file

Click Next for further steps and click "Generate" button in Block
Memory Generator wizard and the message that the "IP core

successfully created " is shown in the Xilinx ISE environment.

Figure 15: Successful Creation of IP Core

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

52

4. RESULTS

4.1 Initial Set up of Hardware and the

Output

Figure 16: Digilent Nexys2 FPGA Board with VGA cable

connected Through Serial (RS-232) Communication

The original image read into the Matlab function will contain 8-
bits of red, 8-bits of green, and 8-bits of blue. The 8-bit color
byte stored in the .coe file will contain only the upper 3 bits of
red, the upper 3 bits of green, and the upper 2 bits of blue. This
is done because, the Nexys-2 board supports only 8-bit VGA
colors.

Figure 17: Original Image

The resulting 8-bit color image will be of reduced quality from

the original image as can be seen in below figure:

Figure 18: Image After processing through Core
Generator

5. CONCLUSION
To increase software development productivity, efficient code
reuse is important. With field-programmable gate array (FPGA)
hardware, reusable code blocks often called IP blocks are
created. Xilinx Core Generator provides such flexibility to create
IP cores for high performance memories. Block Memory
Generator is one of the IP core that is provided by Xilinx Core
Generator which allows to store larger images. Matlab tool is

used to convert image of any type to .coe file format and is
stored in Single Port BLOCK ROM.The data in .coe file is read
and the IP core is successfully created in Xilinx ISE
environment. The top level design in ISE is synthesized and
download.bit file is loaded into Digilent Nexys2 FPGA Board
and is displayed on VGA monitor.

6. REFERENCES
[1] http://www.xilinx.com/ise/products/coregen_overview.pdf

[2] http://www.xilinx.com/support/documentation/ip_documen
tation/sp_block_mem.pdf

[3] http://www.xilinx.com/support/documentation/ip_documen
tation/sp_block_mem.pdf

[4] http://www.nalanda.nitc.ac.in/industry/appnotes/xilinx/docu

ments/dsp/docs/mem_dp_block.pdf

[5] Xilinx Inc., Spartan-3e FPGA starter kit Board user guide

[6] http://www.xilinx.com/tools/coregen.htm

[7] VHDL_NEXYS_Example24

