
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.22, May 2012

30

Enhanced Software Quality Metrics for Fault Prediction
in Object Oriented Components using SVM Classifier

C.Neelamegam

Sri Venkateswara College of Computer Applications
and Management
Coimbatore,India.

M.Punithvalli
Sri Ramakrishna Engineering College

Coimbatore,Tamilnadu,

India.

ABSTRACT

Software quality metrics are defined as methods for

quantitatively determining the extent to which an object

oriented (OO) software process possess a certain quality

attribute. Increase in software complexity and size is

increasing the demand for new metrics to identify flaws in the

design of OO system. This demand has necessitated this study

to focus on adopting new metrics for measuring class

complexities, for which established practices have yet to be

developed. The proposed system works in two stages. The

first stage presents new software metrics for measuring class

complexity and the second stage analyzes the use of SVM

classifier to predict faulty modules. Four new metrics,

namely, Class Method Flow Complexity Measure, Friend

Class Complexity Metric, Class Complexity from Inheritance

and Class Complexity from Cohesion Measure, are proposed.

These metrics, combined with 20 existing metrics, are used

during prediction using SVM. The performance of prediction

system is analyzed in terms of accuracy, precision, recall and

F Measure. The experimental results showed positive

improvement in the performance of prediction with the

inclusion of the proposed metric and SVM classifier.

Keywords

Class Complexity, Object Oriented Quality Metrics, Software

Fault Prediction, Support Vector machine.

1. INTRODUCTION
Software quality metric is defined as methods for

quantitatively determining the extent to which a software

process, product or project possess a certain quality attribute.

They are used to measure software engineering products

(design, source code, etc), processes (analysis, design, coding,

testing, etc.) and professionals (efficiency or productivity of

an individual designer). The main aim of these techniques is

to accurately identify and/or predict faulty modules which

have direct impact on the three pillars of software product,

namely, time, cost and scope. In the past few decades,

software industries have realized the potential of using metrics

to assess and improve the performance of developed projects,

reduce time-to-market and improve customer satisfaction.

Quality metrics can be categorized into process and product

metrics.

Process metrics focus on improving the software development

and maintenance processes, while product metrics improve

software products by reducing the complexity of design, size

and increase usability. In general, they should, be simple to

understand, be precisely defined, decrease the influence of

manual intervention, be cost effective and be informative.

Techniques and methods that identify and predict faults using

these quality metrics has gained wide acceptance in the past

few decades ([6], [7]).

Existing metrics for fault module detection include CK

metrics and Mood metrics along with traditional general

metrics like simple metrics and program complexity

measures. Traditional metrics do not consider OO paradigms

like inheritance, encapsulation and passing of message and

therefore do not perform well with fault prediction. The OO

metrics have been developed specifically to analyze the

performance of OO system. But, the increase in software

complexity and size is increasing the demand for new metrics

to identify flaws in the design and code of software system.

This demand has necessitated the researchers to focus on

adopting new metrics for which established practices have yet

to be developed. This paper focus on such needs through the

development of four metrics for OO design. In particular, this

work analyzes metrics for measuring class complexities that

can be used as a medium to identify design defects. For this

purpose, four metrics based on flow of information, friend

class/function, inheritance and cohesion are proposed. To

analyze the performance of these metrics on fault module

detection, the study proposes the use of SVM classifier.

The rest of the paper is organized as follows. Section 2

presents the four proposed metrics to calculate the complexity

of the class. The methodology used by proposed prediction

based classifier that uses existing and proposed metrics to

predict faulty class is presented in Chapter 3. Several

experiments were conducted to analyze the performance of

the proposed metrics and SVM classifier to predict faulty

modules. The results are presented and discussed in Section 4.

Section 5 concludes the work with future research directions.

2. PROPOSED METRICS

This section discusses four proposed complexity metrics and

with all the metrics a high value denotes high excessive

functional complexity and indicates serious design flaws that

requires extensive testing and redesigning.

2.1 Class Method Flow Complexity

Measure (CMFCM)

The two famous metrics, Cyclomatic complexity and the

structural fan-in/fan-out, are concerned with the control flow

of a program and ignore the data or information flow

complexity. Information flow complexity focus on parameter

passing and variable access details. Two measures that are

used during information flow complexity are Fan-In and Fan-

Out. Fan-In measures the information flow into the procedure,

that is, it is the sum of number of parameters passed to a

module from outside and global variables read by the same

module. Fan-out, on the other hand, indicates the sum of

number of return values of a module and global variables

written by the same module.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.22, May 2012

31

According to [14], the module complexity can be

calculated as in Equation (1).

CMFCM = (Fan-In * Fan-Out)2 + Code Length (1) (1)

It is known fact that in object-oriented systems, the private

data (internal data) of an object cannot be directly accessed by

other objects and therefore programmers use parameter

passing and return values. The Fan-In (FI) and Fan-Out (FO)

measures for a method ‘m’ should taken into consideration

these values and can be calculated using the following

Equations (2) and (3).

FI =1+ Nm1 + (NIP+ NPV+ NPU+ NLV + NGVR) + f() (2) (2)

FO = = 1 + Nm2 + (NOP+ NGVW) + f() (3) (3)

where Nm1 is the number of objects called, Nm2 is the number

of objects that call this method, NIP is No. of input parameters,

NPV is the No. of protected variables, NPU is No. of public

variables, NLV is the No. of Local variables, NOP is the number

of parameters written to, NGVR and NGVW
 are number of global

variables read and written to and f() is a function which

returns a value 1 if method ‘m’ returns a value, zero

otherwise.

Another property that has to be considered while considering

OO systems is the coupling among entities. The Coupling

Among Entities (CAE) is calculated as the sum of indirect

coupling metric and direct coupling metric (Equation 4). CAE

= DCM + IDCM (4)

where

DCM=













minParametersofNominMethodsofNo

CtheinparametersofNoCinMethodsofNo

..

..

and ICM=Product of DCM of all methods in the length of two

entities and C is the class and m is the method Consider, for

example, a system with entity relationship as shown in Fig. 1.

Fig. 1 : Sample entity relationship diagram

In this scenario, a direct coupling exists between entities

(Ent-1, Ent-2), (Ent-2, Ent-3) and (Ent-3, Ent-4), while there

is no direct coupling between entities Ent-1 and Ent-4. This

will produce a zero value to DCM(Ent-1, Ent-4). However,

there is a path from Ent-1 to Ent-4 through Ent-2 and Ent-3,

which can be used during the calculation of coupling measure.

Here the length between the entities Ent-1 and Ent-4 is 3 and

the Indirect Coupling Measure is calculated as DCM(Ent-1,

Ent-2) * DCM(Ent-2, Ent-2) * DCM(Ent-3, Ent-4). Now,

Equation (1) can now be rewritten as

CMFCM = (FI + FO) * CAE * MCL (5)

Here, the multiplicative operator in the traditional

complexity measure is replaced by an additive operator. This

modification was done to accommodate coupling among

entities computation. This has the added advantage of

reducing computation complexity. In the equation, MCL is the

module code length and is calculated using Equation (6).

MCL = LOC + MLOC + CLOC + (CL * j) + BL (6)

where LOC is the line of codes with comments and blank

lines, MLOC is the multiline of code which is calculated as

LOC * number of separate statements in the same line, CLOC

is the line of code that contain comments and is calculated as

the sum of LOC and number of comment lines. CL * j

expression denotes the number of lines that contain more than

one comment statement and BL denotes the blank lines. The

proposed CMFCM metric is a method level metric.

2.2 Friend class complexity metric

(FCCM)

A friend class is defined as a function or method that can

access all private and protected members of a class to which it

is declared as a friend. While considering complexity measure

for friend classes, the following characteristics have be noted.

1. On declaration of friend class, all member functions of

the friend class become friend of the class in which the

friend class is declared.

2. Friend class cannot be inherited and every friendship has

to be explicitly declared.

3. The friendship relation is not symmetric

In the field of OO metrics for fault detection, studies on

friend classes are minimum, inspite of its extensive usage ([8],

[9]). Friend constructs are violation of encapsulation and will

complicate a program, which in turn, makes debugging more

difficult. Moreover, the task of tracking polymorphism also

becomes more complex while using friend classes. According

to Chidamber and Kemerer's principle only those methods

which require additional design effort should be counted for

metric measurement and inherited methods and methods from

friend classes are not defined in the class and therefore, need

not be included. However, it has been proved that the

coupling that exists between friend classes increase fault

proneness of a class [4]. These methods consider relationship

and type of association between class attributes and methods

and do not consider the relationship between friend attributes

and external attributes. This section proposes a modified

version, which considers this relationship and extends

coupling metrics to use these friend metrics. Using these

metrics, a new coupling measure to determine the class

complexity is proposed.

Coupling measure can be either Direct Coupling (DC) or

Indirect Coupling (IDC). DC here refers to the normal

coupling factor, while IDC refers to coupling while friend

functions or classes are used. Thus the new coupling factor is

defined as a sum of DC and IDC (Equation 7).

CFNew = DC + IDC (7)

DC is calculated using the method specified in Mood

metric suite. The IDC of a class is calculated as average of

Method IDC (MIDC) factor. The MIDC is modified to

identify a factor called actual friend methods, which is

introduced because generally, a friend class declaration grants

access to all methods in a class but in reality only a few of

these methods are actually called by other classes. The MIDC

combined with this factor is calculated using Equation (8).

MC

N

1i
VPCGFGVWGVR

N

N N N)N (N

MIDC

MC

iiiii
 

 

 (8)

where NGF is the number of global functions, NPC is the

number of messages to other classes and NV is the number of

references to instance variables of other classes and NMC is the

number of actual methods in the class which is calculated as

the difference between the number of methods (NM) and

Number of Hidden Methods (NHM) in a class (Equation 9).

Hidden methods are methods that cannot be called on an

object of the class without the use of the friend construct.

Ent-1 Ent-2 Ent-3

Ent-4

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.22, May 2012

32

NMC = NM – NHM (9) (9)

The number of hidden methods is calculated as the number

of methods in a class that access hidden members of classes

which declare the current class as a friend [12]. NHM is

calculated as the sum of two measures. The first is the number

the hidden methods belonging to other classes accessed by the

class. This measure is called in this study as Number of

EXternal Hidden Methods NHME. The second measure is the

number of hidden methods that are invoked by other classes

from the class. This measure is referred in this study as

Number of Internal Hidden Methods NHMI. Thus NHM is

calculated as

NHM = NHME + NHMI (10)

Using the above metric, the complexity measure can be

calculated by modifying Equation (5) as given below

FCCM = (FI + FO) * CFNEW * MCL (11)

Again, this metric is a method level metric, where a high

value indicates design flaws.

2.3 Class complexity from inheritance

(CCI)

Inheritance a powerful mechanism in OO programming

provides a method for reusing code of existing objects or

establishes a subtype from an existing object, or both.

Inheritance metrics are used to analyze various aspects of a

program in terms of depth, breadth in a hierarchy and its

overriding complexity. It can be used to measure class

complexity as a measure of data / method shared from

ancestor classes. The class complexity while taking

inheritance into consideration depends mainly on the

inheritance type (single, multiple, multi-level inheritance).

Apart from this, while calculating the class complexity with

respect to inheritance, the complexity imposed by inherited

methods and inherited attributes should also be considered.

Thus the proposed CCI metric considers the individual

complexity of a class while taking the properties of

inheritance into consideration (ICC), inherited method

complexity (IMC) and inherited attribute complexity (IAC)

and is calculated using Equation (12).

CCI = ICC + IMC + IAC (12)

where ICC of a class i is calculated as

ICC = NA + 


AN

2i
iICC (13)

Here the ICC of the root of the inheritance tree is zero as it

has no parent. Consider for example Fig.2 where, Class A1

and A2 are inherited from Class A and are examples of single

class inheritance, while Class A3 is inherited from Class A1,

which is inherited from Class A and presents an example of

multi-level inheritance. Class A4 and A5 presents multiple

inheritance as both are inherited from more than one class.

Fig. 2. Example class inheritance hierarchy

From the inheritance hierarchy presented in the figure, the

ICC of Class A and Class B is zero, as both do not have

parent class. The ICC of Class A1 and A2 is calculated as 1 +

0 [ICC(Class A)] = 1. The ICC for Class A3 = 1 + ICC(Class

A1) + ICC(Class A) = 1 + 1 + 0 = 2. Similarly, the ICC(Class

A4) = 2 + ICC(Class A1) + ICC(Class A2) = 2 + 1 + 1 = 4,

where 2 being the number of parents of A4. ICC(Class A5) =

2 + ICC(Class A2) + ICC (Class B) = 2 + 1 + 0 = 3.

The ICC measure thus takes into consideration the depth of

the class in the inheritance hierarchy, number of parents of the

class and their depth in the inheritance hierarchy along with

the type of inheritance. The IMC is calculated as

IMC = (NPD * 1) + (NDD * 2) + (NUD* 3) (14)

where NPD is the number of primary data variables, NDD is the

number of derived data variables and NUD is the number of

user defined data type variables. The classification of data

types is similar to the one proposed by [1], who defined PD as

in-built data types like int, float and char, DD as in-built

structures like arrays and UD as user designed structures

which are formed by combining PD and DD. Examples for

UD includes structure, union and class. As suggested by the

same author, a cognitive weight of 1, 2 and 3 are used along

with NPD, NDD and NUD respectively. These cognitive weights

are assigned according to the cognitive phenomenon

suggested by [17] which assigns weight for PD=1, DD=2 and

UD=3.

Finally, IAC is calculated again by assigning cognitive

weights to the control structures in the method. The control

structures considered are sequence statements, branching

statements, iterative statements and call statements. As

suggested by [17] a value of 1, 2, 3 and 2 are assigned to these

statements respectively.

2.4 Class complexity from cohesion

measure (CCCM)

Cohesion of a class describes how the methods of a class

are related to each other. In general, a high cohesion is

desirable as it promotes encapsulation, while a low cohesion

indicates high likelihood of errors, design change and high

class complexity. This section presents a metric to calculate

class complexity through cohesion measure. Four types of

cohesion methods are used, namely, Cohesion Among

Attribute in a class Measure (CAA), Ratio of Cohesion

Interactions (RCI), Cohesion Among Methods in a class

(CAMC) and Normalized Hamming Distance (NHD) Metric.

Here RCI, CAMC and NHD are calculated using steps as

provided by [5], [2], [10]. The RCI considers the data to

method relationship, the CAMC considers the method-method

interactions The CCCM metric is a metric that is included in

this study to measure the degree of similarity among methods

while considering attribute usage.

 CCCM = CCM + RCI + CAMC / 3 (15)

1) and CCCM is calculated as below. Calculate the number

of methods in a class, M (={m1, m2, …})

2) Calculate the number of instance variables in each

method, Vi ({=V1,V2, V3, …}, i  M)

3) Calculate number of methods using each instance from

V, NVi, as (M  Vi)-1. The value is 1 used to remove the

attributes similarity dependency from the method it is

declared.

Step 4 : Calculate CCCM as

xV)1M(

N
M

1i
Vi




 (16)

To understand the CCM measure, consider the following

code snippet showing four methods of a class.

Class A Class B

Class A1 Class A2

Class A4 Class A3 Class A5

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.22, May 2012

33

Class Sample

{ AddRecord() { int AccNo; char AccName [];

float Balance;

 …. }

DeleteRecord() { int AccNo;

 …. }

SearchAccount() { int AccNo;

 …. }

UpdateAcc() { int AccNo; float Balance;

float WithDrawals; float Deposits;… }}

From these codes, M=4 (={AddRecord, DeleteRecord,

SearchAccount, UpdateAcc}) and V=5 (={AccNo, AccName,

Balance, WithDrawals, Deposits}).

NV1={AccNo,AccName,Balance, WithDrawals, Deposits} 

{AccNo, AccName, Balance}=3–1=2. Similar calculations for

NV2, NV3, NV4 produces the values 0, 0 and 3 respectively.

With these values the CCM measure can be calculated as

CCCM = (2+0+0+3)/(4*(5-1))=5/16=0.3.

3. Fault prediction using object oriented

metrics

The present study proposes the use of machine learning

algorithm to analyze the performance of the proposed metrics

in predicting design flaws in OO programs. The proposed

method consists of four steps. (i) Selection of metrics (ii)

Dimensionality Reduction (iii) Normalize the metric values

and (iv) Implement prediction model. Here the prediction

model is proposed as a binary classification task, where a

module is predicted as either faulty (complex) or not-faulty

(normal).

3.1 Selection of metrics

3.2 The four proposed metrics are

combined with twenty existing metrics

(Table 1) during fault prediction. The

selected existing metrics were chosen

because of their wide usage in fault

detection. Dimensionality Reduction.

The vital step in designing a classification model is the

selection of a set of input metrics, which unless selected

carefully will result in ‘Curse of dimensionality’ [3]. This

phenomenon can be avoided by the use of dimensionality

reduction procedure, which aims to reduce the number of

input variables by removing irrelevant data and retaining only

those data which are most discriminating.

Please use a 9-point Times Roman font, or other Roman font

with serifs, as close as possible in appearance to Times

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

3.3 Title and Authors
The title (Helvetica 18-point bold), authors' names (Helvetica

12-point) and affiliations (Helvetica 10-point) run across the

full width of the page – one column wide. We also

recommend e-mail address (Helvetica 12-point). See the top

of this page for three addresses. If only one address is needed,

center all address text. For two addresses, use two centered

tabs, and so on. For three authors, you may have to improvise.

3.4 Subsequent Pages
For pages other than the first page, start at the top of the page,

and continue in double-column format. The two columns on

the last page should be as close to equal length as possible.

Table 1. List of selected existing metrics

A

Simple metrics

1) LOC (Total number of lines)

2) BR (Number of methods)

3) NOP (Total Number of Unique Operators)

4) NOPE (Total Number of Unique Operands)

5) RE (Readability with Comment percentage)

6) VO (Volume)

B

Mood Metrics

1) MHF (Method hiding factor)

2) AHF (Attribute hiding factor)

3) MIF (Method inheritance factor)

4) AIF (Attribute inheritance factor)

5) PF (Polymorphism factor)

6) CF (Coupling factor)

C

Chidamber & Kemerer's Metrics

1) WMC (Weighted Methods per Class)

2) DIT (Depth of Inheritance Tree)

3) NC (Number of children)

4) COC (Coupling between object classes)

5) RC (Response for a Class)

6) LCM (Lack of Cohesion in Methods)

D

Program Complexity Measure

1) CC (Cyclomatic Complexity)

2) FI-FO(Fan-In Fan-Out) - Henry's & Kafura's)

In the present study, Sensitivity Analysis of data is used for

this purpose. Sensitivity analysis analyzes the importance of

each input data in relation to a particular model and estimates

the rate of change of output as a result of varying the input

values. The resulting estimates can be used to determine the

importance of each input variable [16]. This study adopts the

Sensitivity Casual Index (SCI) proposed by [13]. SCI is

calculated as follows. For a classifier having architecture as

shown in Fig. 3, given a set of input Vectors, {Vi, n  i  0},

where Vi belongs to the set of metric values collected from the

input dataset with ‘d’ dimensions with single output Y = f(xi),

the SCI for each input dimension is calculated using Equation

(17).

 


n

1i
ijiij |)V(f)V(f|SCI (17)

where |.| denotes absolute value and ij is a small constant

added to the jth component Vj of Vi.

3.5 Normalization

This step is used to normalize each input to the same range

and makes sure that the initial default parameter values are

appropriate and every input at the start has equal important.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.22, May 2012

34

Fig. 3 : Classifier architecture

Further, normalization is performed to improve the training

process of the classifier. Normalization is performed by

estimating the upper and lower bounds for each metric value

and then scale them using Equation (18).

)Vmin()Vmax(

)Vmin(V
V

jj

jj'
j






 (18)

where '
jV is the normalized or scaled value, min(Vj) and

max(Vj) are the maximum and minimum bounds of the metric

‘j’ from ‘n’ observations respectively. The result of

normalization thus, maps each input value to a closed interval

[0, 1].

3.6 Prediction model

The steps to build the prediction model are given below.

Step 1 : Identify a classifier

Step 2 : Identify the feature vector to be used as input

Step 3 : Partitioning method (Training and Testing sets)

Step 4 : Train and test the classifier using n-fold cross-

validation method

The present study uses SVM for fault prediction. Input

feature vector is created using metrics described in Section 2

and salient data is identified using the procedures described in

Sections 3(A) and 3(B). The partitioning method used to

separate the normalized, dimensionality reduced input data

into training and testing set is the hold-out method. In the

present study, two-thirds of the data is used during training

and the rest of the one-third is used as testing set. Given a set

of input data set, the Support Vector Machine (SVM)

classifier marks each given input as belonging to one of two

categories (faulty or not-faulty).

4. EXPERIMENTAL RESULTS

The proposed fault-detection classifier systems using

software metrics was developed using MATLAB and all the

experiments were conducted on a Pentium IV machine with

4GM RAM. To analyze the applicability of SVM and the

affect of the new metrics on fault identification, experiments

were conducted with a commercial real-time C++ project

from a software company in Coimbatore, India. Obliging to

the privacy issues of the company, only the details of the

software system from which metrics were calculated is

mentioned here. The details were collected from various

historical reports maintained by the company. The project

contains around 45000 LOC with 1771 modules. After

studying the error reports, around 1502 modules were found

to have no errors (non-faulty modules) and the 269 were

faulty modules.

The feature vector created has 24 dimensions (20 existing

and 4 proposed). The feature vector V was created using the

24 software metric values (20 existing and 4 proposed). This

vector was first normalized to an interval [0, 1] to ensure that

all the 24 values have equal importance. Dimensionality

reduction was next performed on this set to select

discriminating metrics by calculating SCI of each input

dimension over the entire normalized dataset with =0.1.

After calculation of SSI, the metrics were arranged in

descending order of SSI and the top 15 metrics were selected.

The resultant feature vector, after dimensionality reduced

consist of LOC, BR, NOP, NOPE, RE, VO, MHF, PF, WMC,

NC, RC, CMFCM, FCCM, CCI and CCCM. It can be seen

that the resultant reduced dataset consists of only those

metrics which has impact on complexity measure. Further, the

SCI of all the four proposed metrics were high and came after

all the simple metrics and WMC metric, which shows that the

proposed metrics have relevant information with respect to the

task of identifying faulty modules while considering

complexity. The reduced dataset with 15 metrics is then

divided into training (943 modules) and testing (628) datasets.

Four performance metrics were used during evaluation.

They are accuracy, precision, recall and F-measure, which are

derived from the confusion matrix. A 10-fold cross validation

method was used with all experiments. The performance of

the SVM algorithm is compared with that of Back

Propagation Neural Network (BPNN) and K-Nearest

Neighbour (KNN) algorithms. For SVM classifier, the

regularization parameter was set to 1, the kernel function used

was Gaussian and bandwidth of the kernet was set to 0.5. For

K-NN classifier, k was set to 3. For BPNN classifier, 2 hidden

nodes with learning rate of 0.2 were used. ‘t’ test proposed by

[15] was performed at 95 % confidence level (0.05 level) to

analyze the significant difference between SVM and BPNN,

SVM and KNN. This method was adopted because it is more

suited for classifiers adapting 10-fold cross-validation method

[11]. The traditional student ‘t’ test, method produces more

false significant differences due to the dependencies that

exists in the estimates.

Table 2 shows the performance based on Accuracy,

Precision, Recall and F Measure and SD denotes the standard

deviation. Sig denotes the significance status and a value

‘Yes’ denotes that there is a significance performance

difference between SVM and the corresponding model, while

a ‘No’ represents insignificant performance. A ‘+’ sign

denotes that SVM has outperformed the corresponding

classifier, while ‘– ’ sign denotes the opposite.

Table 2. Prediction performance

SVM BPNN KNN

Accuracy

Mean 91.6 77.38 85.29

SD 1.16 6.562 4.216

Sig

Yes(+) Yes(+)

Precision

Mean 91.3 89.04 93.72

SD 0.04 0.016 0.029

Sig

Yes(+) No (–)

Recall

Mean 99.9 80.12 91.09

SD 0 0.081 0.046

Sig

Yes(+) Yes(+)

F Measure

Mean 0.95 0.874 0.901

SD 0.01 0.049 0.026

Sig

Yes(+) Yes(+)

V1

V2

Vd

:
:
:
:

Y

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.22, May 2012

35

 From the results, it is clear that the performance of SVM

showed higher accuracy than both BPNN and KNN algorithm

in terms of classification accuracy, as indicated by Yes (+) in

significance column. While considering the precision of

classifiers, SVM showed significant improvement with BPNN

but was insignificant with KNN. However, the recall

performance showed significant positive improvement when

compared with both BPNN and KNN. The last parameter, F

measure is the harmonic mean of precision and recall by

taking both into consideration, The results show that both

BPNN and KNN shows degraded performance when

compared with SVM.

All these results show that SVM can be considered as the

right candidate for identifying faulty modules. Fig. 4a to 4d

shows the Mean accuracy, precision, recall and F measure

while testing the classification algorithm with only existing 20

metrics (E20), existing and proposed metric (EP24 metrics).

From the figures, it can be seen that the inclusion of the four

new metrics has increased the performance of the classifiers.

While comparing E20 and EP24 metrics, the EP24 metrics

showed 7.58% accuracy improvement when compared with

E20 metric set. Similarly, 8.12% and 9.69% efficiency gain

with respect to precision and recall was seen with E24 metric

set. All these results prove that the proposed metrics are

efficient in identifying classes that have high complexity and

flaws and therefore can be used by software industries to

improve the design of OO software products.

0

20

40

60

80

100

M
e
a
n
 A

c
c
u
r
a
c
y

SVM BPNN KNN

(a) Accuracy

E20 EP24

75

80

85

90

95

M
e
a
n
 P

r
e
c
is

io
n

SVM BPNN KNN

(b) Precision

E20 EP24

0

20

40

60

80

100

M
e
a
n
 R

e
c
a
ll

SVM BPNN KNN

(c) Recall

E20 EP24

0.7

0.75

0.8

0.85

0.9

0.95

1

M
e
a
n
 F

 M
e
a
s
u
r
e

SVM BPNN KNN

(d) F Measure

E20 EP24

Fig. 4. Performance of proposed metrics

5. CONCLUSION

This paper identified OO modules with faults in two stages.

The first stage identified four new software metrics to

measure class design complexity and second stage used SVM

classifier to predict faulty modules. The four new metrics

proposed are Class Method Flow Complexity Measure

(CMFCM), Friend Class Complexity Metric (FCCM), Class

Complexity from Inheritance (CCI) and Class Complexity

from Cohesion Measure (CCCM). These metrics were

combined with 20 existing traditional metrics during

prediction. Sensitivity index was used to select relevant

metrics for classification after normalization. The

experimental results showed positive improvement in the

performance of prediction with the inclusion of the proposed

metric and SVM classifier. In future, evaluation of the

proposed metrics using criteria as suggested by [18] is

planned. Moreover, the use of ensemble classification is also

planned to increase the reliability and maintainability of the

software product by increasing the accuracy of flaw module

prediction.

6. REFERENCES

[1] Arockiam, L. and Aloysius, A. (2011) Attribute

Weighted Class Complexity: A New Metric for

Measuring Cognitive Complexity of OO Systems, World

Academy of Science, Engineering and Technology,

58,Pp. 808-813.

[2] Bansiya, J., Etzkorn, L., Davis, C. and Li, W. (1999) A

class cohesion metric for object-oriented designs, Journal

of Object-Oriented Program, Vol. 11, No. 8, Pp. 47-52.

[3] Bellman, R. (1961) Adaptive Control Processes,

Princeton University Press.

[4] Briand, L.C., Devanbu, P.T. and Melo, W.L. (1997) An

Investigation into Coupling Measures for C++,

International Conference on Software Engineering,

Pp.412-421.

[5] Briand, L.C., Morasca, S. and Basili, V.R. (1999)

Defining and validating measures for object-based high-

level design, IEEE Transactions on Software

Engineering, Vol. 25, No. 5, Pp. 722-743.

[6] Catal, C and Diri, B. (2009) Investigating the effect of

dataset size, metrics sets, and feature selection

techniques on software fault prediction problem,

Information Science, Elsevier, Vol. 179, Pp. 1040-1058.

[7] Chowdhury, I. and Zulkernine, M. (2011) Using

complexity, coupling, and cohesion metrics as early

indicators of vulnerabilities, Journal of Systems

Architecture, Elsevier, Vol. 57, Pp. 294-313.

[8] Counsell, S. and Newson, P. (2000) Use of Friends in

C++ Software: An Empirical Investigation. Journal of

Systems and Software, Vol.53, No.1, Pp.15.21.

[9] Counsell, S., Newson, P. and Mendes, E. (2004) Design

Level Hypothesis Testing Through Reverse Engineering

of Object-Oriented Software, International Journal of

Software Engineering, Vol.14, No.2, Pp.207.220.

[10] Counsell, S., Swift, S. and Crampton, J. (2006) The

interpretation and utility of three cohesion metrics for

object-oriented design, ACM Transactions on Software

Engineering and Methodology (TOSEM), Vol. 15, No. 2,

Pp.123-149.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.22, May 2012

36

[11] Dietterich, T. (1998) Approximate statistical tests for

comparing supervised classification learning algorithms,

Neural Computation, Vol. 10, Pp. 1895–1924.

[12] English, M., Buckley, J., Cahill, T. and Lynch, K. (2005)

An Empirical Study of the Use of Friends in C++

Software, International Workshop on Program

Comprehension, Pp. 329.332.

[13] Goh, T.H. and Wong, F. (1991) Semantic extraction

using neural network modeling and sensitivity analysis,

Proceedings of IEEE International Joint Conference on

Neural Networks, Pp. 18–21.

[14] Henry, S.M. and Kafura, D. (1981) Software structure

metrics based on information flow, IEEE Transactions on

Sofware Engineering, Vol. SE-7, Pp. 510-518.

[15] Nadeau, C. and Bengio, Y. (2003) Inference for the

generalization error, Machine Learning, Vol. 52, Pp.239–

281.

[16] Saltelli, A., Chan, K. and Scott, E.M. (2000) Sensitivity

Analysis, John Wiley & Sons.

[17] Wang. Y, (2002) On Cognitive Informatics, IEEE

International Conference on Cognitive Informatics, Pp.

69-74.

[18] Weyuker. E.J. (1988) Evaluating Software Complexity

Measures, IEEE Transactions on Software Engineering,

Vol.14, No.9, Pp. 1357-1365.

