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ABSTRACT 

Software quality metrics are defined as methods for 

quantitatively determining the extent to which an object 

oriented (OO) software process possess a certain quality 

attribute. Increase in software complexity and size is 

increasing the demand for new metrics to identify flaws in the 

design of OO system. This demand has necessitated this study 

to focus on adopting new metrics for measuring class 

complexities, for which established practices have yet to be 

developed. The proposed system works in two stages. The 

first stage presents new software metrics for measuring class 

complexity and the second stage analyzes the use of SVM 

classifier to predict faulty modules. Four new metrics, 

namely, Class Method Flow Complexity Measure, Friend 

Class Complexity Metric, Class Complexity from Inheritance 

and Class Complexity from Cohesion Measure, are proposed. 

These metrics, combined with 20 existing metrics, are used 

during prediction using SVM. The performance of prediction 

system is analyzed in terms of accuracy, precision, recall and 

F Measure. The experimental results showed positive 

improvement in the performance of prediction with the 

inclusion of the proposed metric and SVM classifier.  

Keywords 

Class Complexity, Object Oriented Quality Metrics, Software 

Fault Prediction, Support Vector machine.  

1. INTRODUCTION 
Software quality metric is defined as methods for 

quantitatively determining the extent to which a software 

process, product or project possess a certain quality attribute. 

They are used to measure software engineering products 

(design, source code, etc), processes (analysis, design, coding, 

testing, etc.) and professionals (efficiency or productivity of 

an individual designer). The main aim of these techniques is 

to accurately identify and/or predict faulty modules which 

have direct impact on the three pillars of software product, 

namely, time, cost and scope. In the past few decades, 

software industries have realized the potential of using metrics 

to assess and improve the performance of developed projects, 

reduce time-to-market and improve customer satisfaction. 

Quality metrics can be categorized into process and product 

metrics.   

Process metrics focus on improving the software development 

and maintenance processes, while product metrics improve 

software products by reducing the complexity of design, size 

and increase usability. In general, they should, be simple to 

understand, be precisely defined, decrease the influence of 

manual intervention, be cost effective and be informative. 

Techniques and methods that identify and predict faults using 

these quality metrics has gained wide acceptance in the past 

few decades ([6], [7]).    

Existing metrics for fault module detection include CK 

metrics and Mood metrics along with traditional general 

metrics like simple metrics and program complexity 

measures. Traditional metrics do not consider OO paradigms 

like inheritance, encapsulation and passing of message and 

therefore do not perform well with fault prediction. The OO 

metrics have been developed specifically to analyze the 

performance of OO system. But, the increase in software 

complexity and size is increasing the demand for new metrics 

to identify flaws in the design and code of software system. 

This demand has necessitated the researchers to focus on 

adopting new metrics for which established practices have yet 

to be developed. This paper focus on such needs through the 

development of four metrics for OO design. In particular, this 

work analyzes metrics for measuring class complexities that 

can be used as a medium to identify design defects. For this 

purpose, four metrics based on flow of information, friend 

class/function, inheritance and cohesion are proposed. To 

analyze the performance of these metrics on fault module 

detection, the study proposes the use of SVM classifier.  

The rest of the paper is organized as follows. Section 2 

presents the four proposed metrics to calculate the complexity 

of the class. The methodology used by proposed prediction 

based classifier that uses existing and proposed metrics to 

predict faulty class is presented in Chapter 3. Several 

experiments were conducted to analyze the performance of 

the proposed metrics and SVM classifier to predict faulty 

modules. The results are presented and discussed in Section 4. 

Section 5 concludes the work with future research directions.  

2. PROPOSED METRICS  

This section discusses four proposed complexity metrics and 

with all the metrics a high value denotes high excessive 

functional complexity and indicates serious design flaws that 

requires extensive testing and redesigning. 

2.1 Class Method Flow Complexity   

Measure (CMFCM) 

The two famous metrics, Cyclomatic complexity and the 

structural fan-in/fan-out, are concerned with the control flow 

of a program and ignore the data or information flow 

complexity. Information flow complexity focus on parameter 

passing and variable access details. Two measures that are 

used during information flow complexity are Fan-In and Fan-

Out. Fan-In measures the information flow into the procedure, 

that is, it is the sum of number of parameters passed to a 

module from outside and global variables read by the same 

module. Fan-out, on the other hand, indicates the sum of 

number of return values of a module and global variables 

written by the same module.  
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According to [14], the module complexity can be 

calculated as in Equation (1).  

CMFCM = (Fan-In * Fan-Out)2 + Code Length              (1)      (1) 

It is known fact that in object-oriented systems, the private 

data (internal data) of an object cannot be directly accessed by 

other objects and therefore programmers use parameter 

passing and return values. The Fan-In (FI) and Fan-Out (FO) 

measures for a method ‘m’ should taken into consideration 

these values and can be calculated using the following 

Equations (2) and (3). 

FI =1+ Nm1 + (NIP+ NPV+ NPU+ NLV + NGVR) + f( )     (2)      (2) 

FO = = 1 +  Nm2 + (NOP+ NGVW) + f( )                         (3)       (3) 

where Nm1 is the number of objects called, Nm2 is the number 

of objects that call this method, NIP is No. of input parameters, 

NPV is the No. of protected variables, NPU is No. of public 

variables, NLV is the No. of Local variables, NOP is the number 

of parameters written to, NGVR and NGVW
 are number of global 

variables read and written to and f( ) is a function which 

returns a value 1 if method ‘m’ returns a value, zero 

otherwise.  

Another property that has to be considered while considering 

OO systems is the coupling among entities. The Coupling 

Among Entities (CAE) is calculated as the sum of indirect 

coupling metric and direct coupling metric (Equation 4). CAE 

= DCM + IDCM                                                              (4) 

where 

DCM=













minParametersofNominMethodsofNo

CtheinparametersofNoCinMethodsofNo

..

..   

and ICM=Product of DCM of all methods in the length of two 

entities and C is the class and m is the method Consider, for 

example, a system with entity relationship as shown in Fig. 1.  

 

Fig. 1 : Sample entity relationship diagram 

In this scenario, a direct coupling exists between entities 

(Ent-1, Ent-2), (Ent-2, Ent-3) and (Ent-3, Ent-4), while there 

is no direct coupling between entities Ent-1 and Ent-4. This 

will produce a zero value to DCM(Ent-1, Ent-4). However, 

there is a path from Ent-1 to Ent-4 through Ent-2 and Ent-3, 

which can be used during the calculation of coupling measure. 

Here the length between the entities Ent-1 and Ent-4 is 3 and 

the Indirect Coupling Measure is calculated as DCM(Ent-1, 

Ent-2) * DCM(Ent-2, Ent-2) * DCM(Ent-3, Ent-4). Now, 

Equation (1) can now be rewritten as 

CMFCM = (FI + FO) * CAE  * MCL                         (5) 

Here, the multiplicative operator in the traditional 

complexity measure is replaced by an additive operator. This 

modification was done to accommodate coupling among 

entities computation. This has the added advantage of 

reducing computation complexity. In the equation, MCL is the 

module code length and is calculated using Equation (6). 

MCL = LOC + MLOC + CLOC  + (CL * j) + BL       (6) 

where LOC is the line of codes with comments and blank 

lines, MLOC is the multiline of code which is calculated as 

LOC * number of separate statements in the same line, CLOC 

is the line of code that contain comments and is calculated as 

the sum of LOC and number of comment lines. CL * j 

expression denotes the number of lines that contain more than 

one comment statement and BL denotes the blank lines. The 

proposed CMFCM metric is a method level metric. 

2.2 Friend class complexity metric 

(FCCM) 

A friend class is defined as a function or method that can 

access all private and protected members of a class to which it 

is declared as a friend. While considering complexity measure 

for friend classes, the following characteristics have be noted.  

1. On declaration of friend class, all member functions of 

the friend class become friend of the class in which the 

friend class is declared. 

2. Friend class cannot be inherited and every friendship has 

to be explicitly declared. 

3. The friendship relation is not symmetric 

In the field of OO metrics for fault detection, studies on 

friend classes are minimum, inspite of its extensive usage ([8], 

[9]). Friend constructs are violation of encapsulation and will 

complicate a program, which in turn, makes debugging more 

difficult. Moreover, the task of tracking polymorphism also 

becomes more complex while using friend classes. According 

to Chidamber and Kemerer's principle only those methods 

which require additional design effort should be counted for 

metric measurement and inherited methods and methods from 

friend classes are not defined in the class and therefore, need 

not be included.  However, it has been proved that the 

coupling that exists between friend classes increase fault 

proneness of a class [4]. These methods consider relationship 

and type of association between class attributes and methods 

and do not consider the relationship between friend attributes 

and external attributes. This section proposes a modified 

version, which considers this relationship and extends 

coupling metrics to use these friend metrics. Using these 

metrics, a new coupling measure to determine the class 

complexity is proposed. 

Coupling measure can be either Direct Coupling (DC) or 

Indirect Coupling (IDC). DC here refers to the normal 

coupling factor, while IDC refers to coupling while friend 

functions or classes are used. Thus the new coupling factor is 

defined as a sum of DC and IDC (Equation 7). 

CFNew = DC + IDC                                                          (7) 

DC is calculated using the method specified in Mood 

metric suite. The IDC of a class is calculated as average of 

Method IDC (MIDC) factor. The MIDC is modified to 

identify a factor called actual friend methods, which is 

introduced because generally, a friend class declaration grants 

access to all methods in a class but in reality only a few of 

these methods are actually called by other classes. The MIDC 

combined with this factor is calculated using Equation (8). 
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   

                                                                                            (8) 

where NGF is the number of global functions, NPC is the 

number of messages to other classes and NV is the number of 

references to instance variables of other classes and NMC is the 

number of actual methods in the class which is calculated as 

the difference between the number of methods (NM) and 

Number of Hidden Methods (NHM) in a class (Equation 9). 

Hidden methods are methods that cannot be called on an 

object of the class without the use of the friend construct.  

Ent-1 Ent-2 Ent-3 

Ent-4 
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NMC = NM – NHM                                                            (9)         (9) 

The number of hidden methods is calculated as the number 

of methods in a class that access hidden members of classes 

which declare the current class as a friend [12]. NHM is 

calculated as the sum of two measures. The first is the number 

the hidden methods belonging to other classes accessed by the 

class. This measure is called in this study as Number of 

EXternal Hidden Methods NHME. The second measure is the 

number of hidden methods that are invoked by other classes 

from the class. This measure is referred in this study as 

Number of Internal Hidden Methods NHMI. Thus NHM is 

calculated as 

NHM = NHME + NHMI                                                                            (10) 

Using the above metric, the complexity measure can be 

calculated by modifying Equation (5) as given below 

FCCM = (FI + FO) * CFNEW * MCL                                 (11) 

Again, this metric is a method level metric, where a high 

value indicates design flaws.   

  

2.3 Class complexity from inheritance 

(CCI) 

Inheritance a powerful mechanism in OO programming 

provides a method for reusing code of existing objects or 

establishes a subtype from an existing object, or both. 

Inheritance metrics are used to analyze various aspects of a 

program in terms of depth, breadth in a hierarchy and its 

overriding complexity. It can be used to measure class 

complexity as a measure of data / method shared from 

ancestor classes. The class complexity while taking 

inheritance into consideration depends mainly on the 

inheritance type (single, multiple, multi-level inheritance). 

Apart from this, while calculating the class complexity with 

respect to inheritance, the complexity imposed by inherited 

methods and inherited attributes should also be considered. 

Thus the proposed CCI metric considers the individual 

complexity of a class while taking the properties of 

inheritance into consideration (ICC), inherited method 

complexity (IMC) and inherited attribute complexity (IAC) 

and is calculated using Equation (12). 

CCI = ICC + IMC + IAC                                                  (12) 

where ICC of a class i is calculated as  

ICC = NA + 


AN

2i
iICC                                                         (13) 

Here the ICC of the root of the inheritance tree is zero as it 

has no parent. Consider for example Fig.2 where, Class A1 

and A2 are inherited from Class A and are examples of single 

class inheritance, while Class A3 is inherited from Class A1, 

which is inherited from Class A and presents an example of 

multi-level inheritance. Class A4 and A5 presents multiple 

inheritance as both are inherited from more than one class.  

 
 

Fig. 2. Example class inheritance hierarchy 

 

From the inheritance hierarchy presented in the figure, the 

ICC of Class A and Class B is zero, as both do not have 

parent class. The ICC of Class A1 and A2 is calculated as 1 + 

0 [ICC(Class A)] = 1. The ICC for Class A3 = 1 + ICC(Class 

A1) + ICC(Class A) = 1 + 1 + 0 = 2.  Similarly, the ICC(Class 

A4) = 2 + ICC(Class A1) + ICC(Class A2) = 2 + 1 + 1 = 4, 

where 2 being the number of parents of A4. ICC(Class A5) = 

2 + ICC(Class A2 ) + ICC (Class B) = 2 + 1 + 0 = 3. 

The ICC measure thus takes into consideration the depth of 

the class in the inheritance hierarchy, number of parents of the 

class and their depth in the inheritance hierarchy along with 

the type of inheritance. The IMC is calculated as  

IMC = (NPD * 1) + (NDD * 2) + (NUD* 3)                        (14) 

where NPD is the number of primary data variables, NDD is the 

number of derived data variables and NUD is the number of 

user defined data type variables. The classification of data 

types is similar to the one proposed by [1], who defined PD as 

in-built data types like int, float and char, DD as in-built 

structures like arrays and UD as user designed structures 

which are formed by combining PD and DD. Examples for 

UD includes structure, union and class. As suggested by the 

same author, a cognitive weight of 1, 2 and 3 are used along 

with NPD, NDD and NUD respectively. These cognitive weights 

are assigned according to the cognitive phenomenon 

suggested by [17] which assigns weight for PD=1, DD=2 and 

UD=3. 

Finally, IAC is calculated again by assigning cognitive 

weights to the control structures in the method. The control 

structures considered are sequence statements, branching 

statements, iterative statements and call statements. As 

suggested by [17] a value of 1, 2, 3 and 2 are assigned to these 

statements respectively. 

2.4 Class complexity from cohesion 

measure (CCCM) 

Cohesion of a class describes how the methods of a class 

are related to each other. In general, a high cohesion is 

desirable as it promotes encapsulation, while a low cohesion 

indicates high likelihood of errors, design change and high 

class complexity. This section presents a metric to calculate 

class complexity through cohesion measure. Four types of 

cohesion methods are used, namely, Cohesion Among 

Attribute in a class Measure (CAA), Ratio of Cohesion 

Interactions (RCI), Cohesion Among Methods in a class 

(CAMC) and Normalized Hamming Distance (NHD) Metric. 

Here RCI, CAMC and NHD are calculated using steps as 

provided by [5], [2], [10].  The RCI considers the data to 

method relationship, the CAMC considers the method-method 

interactions The CCCM metric is a metric that is included in 

this study to measure the degree of similarity among methods 

while considering attribute usage.  

 CCCM = CCM + RCI + CAMC / 3                                (15) 

1) and CCCM is calculated as below. Calculate the number 

of methods in a class, M (={m1, m2, …}) 

2) Calculate the number of instance variables in each 

method, Vi ({=V1,V2, V3, …}, i  M)  

3) Calculate number of methods using each instance from 

V, NVi, as (M  Vi)-1. The value is 1 used to remove the 

attributes similarity dependency from the method it is 

declared. 

Step 4 : Calculate CCCM as 

xV)1M(

N
M

1i
Vi




  (16) 

To understand the CCM measure, consider the following 

code snippet showing four methods of a class. 

Class A Class B 

Class A1 Class A2 

Class A4 Class A3 Class A5 
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Class Sample 

{ AddRecord()   { int AccNo; char AccName [];   

float Balance;   

 …. } 

DeleteRecord()  { int AccNo;   

   …. } 

SearchAccount()  { int AccNo;  

    …. } 

UpdateAcc()   { int AccNo; float Balance;  

float WithDrawals; float Deposits;… }} 

From these codes, M=4 (={AddRecord, DeleteRecord, 

SearchAccount, UpdateAcc}) and V=5 (={AccNo, AccName, 

Balance, WithDrawals, Deposits}). 

NV1={AccNo,AccName,Balance, WithDrawals, Deposits}  

{AccNo, AccName, Balance}=3–1=2. Similar calculations for 

NV2, NV3, NV4 produces the values 0, 0 and 3 respectively. 

With these values the CCM measure can be calculated as 

CCCM = (2+0+0+3)/(4*(5-1))=5/16=0.3. 

3. Fault prediction using object oriented 

metrics 

The present study proposes the use of machine learning 

algorithm to analyze the performance of the proposed metrics 

in predicting design flaws in OO programs. The proposed 

method consists of four steps. (i) Selection of metrics  (ii) 

Dimensionality Reduction (iii) Normalize the metric values 

and (iv) Implement prediction model. Here the prediction 

model is proposed as a binary classification task, where a 

module is predicted as either faulty (complex) or not-faulty 

(normal).  

3.1   Selection of metrics 

3.2 The four proposed metrics are 

combined with twenty existing metrics 

(Table 1) during fault prediction. The 

selected existing metrics were chosen 

because of their wide usage in fault 

detection.  Dimensionality Reduction. 

The vital step in designing a classification model is the 

selection of a set of input metrics, which unless selected 

carefully will result in ‘Curse of dimensionality’ [3]. This 

phenomenon can be avoided by the use of dimensionality 

reduction procedure, which aims to reduce the number of 

input variables by removing irrelevant data and retaining only 

those data which are most discriminating. 

Please use a 9-point Times Roman font, or other Roman font 

with serifs, as close as possible in appearance to Times 

Roman in which these guidelines have been set. The goal is to 

have a 9-point text, as you see here. Please use sans-serif or 

non-proportional fonts only for special purposes, such as 

distinguishing source code text. If Times Roman is not 

available, try the font named Computer Modern Roman. On a 

Macintosh, use the font named Times.  Right margins should 

be justified, not ragged. 

3.3 Title and Authors 
The title (Helvetica 18-point bold), authors' names (Helvetica 

12-point) and affiliations (Helvetica 10-point) run across the 

full width of the page – one column wide. We also 

recommend e-mail address (Helvetica 12-point). See the top 

of this page for three addresses. If only one address is needed, 

center all address text. For two addresses, use two centered 

tabs, and so on. For three authors, you may have to improvise. 

3.4 Subsequent Pages 
For pages other than the first page, start at the top of the page, 

and continue in double-column format.  The two columns on 

the last page should be as close to equal length as possible. 

 

Table 1. List of selected existing metrics 

A 

Simple metrics 

1) LOC (Total number of lines) 

2) BR (Number of methods) 

3) NOP (Total Number of Unique Operators) 

4) NOPE (Total Number of Unique Operands) 

5) RE (Readability with Comment percentage) 

6) VO (Volume) 

B 

Mood Metrics 

1) MHF (Method hiding factor) 

2) AHF (Attribute hiding factor)  

3) MIF (Method inheritance factor) 

4) AIF (Attribute inheritance factor) 

5) PF (Polymorphism factor) 

6) CF (Coupling factor) 

C 

Chidamber & Kemerer's Metrics 

1) WMC (Weighted Methods per Class) 

2) DIT (Depth of Inheritance Tree) 

3) NC (Number of children) 

4) COC (Coupling between object classes) 

5) RC (Response for a Class) 

6) LCM (Lack of Cohesion in Methods) 

D 

Program Complexity Measure 

1) CC (Cyclomatic Complexity) 

2) FI-FO(Fan-In Fan-Out) - Henry's & Kafura's) 

In the present study, Sensitivity Analysis of data is used for 

this purpose. Sensitivity analysis analyzes the importance of 

each input data in relation to a particular model and estimates 

the rate of change of output as a result of varying the input 

values. The resulting estimates can be used to determine the 

importance of each input variable [16]. This study adopts the 

Sensitivity Casual Index (SCI) proposed by [13]. SCI is 

calculated as follows. For a classifier having architecture as 

shown in Fig. 3, given a set of input Vectors, {Vi, n  i  0}, 

where Vi belongs to the set of metric values collected from the 

input dataset with ‘d’ dimensions with single output Y = f(xi), 

the SCI for each input dimension is calculated using Equation 

(17). 

 


n

1i
ijiij |)V(f)V(f|SCI                                     (17) 

where |.| denotes absolute value and ij is a small constant 

added to the jth component Vj of Vi. 

3.5 Normalization 

This step is used to normalize each input to the same range 

and makes sure that the initial default parameter values are 

appropriate and every input at the start has equal important. 
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Fig. 3 : Classifier architecture 

Further, normalization is performed to improve the training 

process of the classifier. Normalization is performed by 

estimating the upper and lower bounds for each metric value 

and then scale them using Equation (18). 

)Vmin()Vmax(

)Vmin(V
V

jj

jj'
j






                                             (18) 

where '
jV  is the normalized or scaled value, min(Vj) and 

max(Vj) are the maximum and minimum bounds of the metric 

‘j’ from ‘n’ observations respectively. The result of 

normalization thus, maps each input value to a closed interval 

[0, 1]. 

3.6  Prediction model 

The steps to build the prediction model are given below. 

Step 1 : Identify a classifier 

Step 2 : Identify the feature vector to be used as input 

Step 3 : Partitioning method (Training and Testing sets) 

Step 4 : Train and test the classifier using n-fold cross-

validation method 

The present study uses SVM for fault prediction. Input 

feature vector is created using metrics described in Section 2 

and salient data is identified using the procedures described in 

Sections 3(A) and 3(B). The partitioning method used to 

separate the normalized, dimensionality reduced input data 

into training and testing set is the hold-out method. In the 

present study, two-thirds of the data is used during training 

and the rest of the one-third is used as testing set. Given a set 

of input data set, the Support Vector Machine (SVM) 

classifier marks each given input as belonging to one of two 

categories (faulty or not-faulty).   

4. EXPERIMENTAL RESULTS 

The proposed fault-detection classifier systems using 

software metrics was developed using MATLAB and all the 

experiments were conducted on a Pentium IV machine with 

4GM RAM. To analyze the applicability of SVM and the 

affect of the new metrics on fault identification, experiments 

were conducted with a commercial real-time C++ project 

from a software company in Coimbatore, India.  Obliging to 

the privacy issues of the company, only the details of the 

software system from which metrics were calculated is 

mentioned here. The details were collected from various 

historical reports maintained by the company. The project 

contains around 45000 LOC with 1771 modules. After 

studying the error reports, around 1502 modules were found 

to have no errors (non-faulty modules) and the 269 were 

faulty modules.  

The feature vector created has 24 dimensions (20 existing 

and 4 proposed). The feature vector V was created using the 

24 software metric values (20 existing and 4 proposed). This 

vector was first normalized to an interval [0, 1] to ensure that 

all the 24 values have equal importance. Dimensionality 

reduction was next performed on this set to select 

discriminating metrics by calculating SCI of each input 

dimension over the entire normalized dataset with =0.1. 

After calculation of SSI, the metrics were arranged in 

descending order of SSI and the top 15 metrics were selected. 

The resultant feature vector, after dimensionality reduced 

consist of LOC, BR, NOP, NOPE, RE, VO, MHF, PF, WMC, 

NC, RC, CMFCM, FCCM, CCI and CCCM. It can be seen 

that the resultant reduced dataset consists of only those 

metrics which has impact on complexity measure. Further, the 

SCI of all the four proposed metrics were high and came after 

all the simple metrics and WMC metric, which shows that the 

proposed metrics have relevant information with respect to the 

task of identifying faulty modules while considering 

complexity. The reduced dataset with 15 metrics is then 

divided into training (943 modules) and testing (628) datasets.  

Four performance metrics were used during evaluation. 

They are accuracy, precision, recall and F-measure, which are 

derived from the confusion matrix. A 10-fold cross validation 

method was used with all experiments. The performance of 

the SVM algorithm is compared with that of Back 

Propagation Neural Network (BPNN) and K-Nearest 

Neighbour (KNN) algorithms. For SVM classifier, the 

regularization parameter was set to 1, the kernel function used 

was Gaussian and bandwidth of the kernet was set to 0.5. For 

K-NN classifier, k was set to 3. For BPNN classifier, 2 hidden 

nodes with learning rate of 0.2 were used.  ‘t’ test proposed by 

[15] was performed at 95 % confidence level (0.05 level) to 

analyze the significant difference between SVM and BPNN, 

SVM and KNN. This method was adopted because it is more 

suited for classifiers adapting 10-fold cross-validation method 

[11]. The traditional student ‘t’ test, method  produces more 

false significant differences due to the dependencies that 

exists in the estimates.  

Table 2 shows the performance based on Accuracy, 

Precision, Recall and F Measure and SD denotes the standard 

deviation. Sig denotes the significance status and a value 

‘Yes’ denotes that there is a significance performance 

difference between SVM and the corresponding model, while 

a ‘No’ represents insignificant performance. A ‘+’ sign 

denotes that SVM has outperformed the corresponding 

classifier, while ‘– ’ sign denotes the opposite. 

 

Table 2. Prediction performance 

 
SVM BPNN KNN 

Accuracy 

Mean 91.6 77.38 85.29 

SD 1.16 6.562 4.216 

Sig 
 

Yes(+) Yes(+) 

Precision 

Mean 91.3 89.04 93.72 

SD 0.04 0.016 0.029 

Sig 
 

Yes(+) No (–) 

Recall 

Mean 99.9 80.12 91.09 

SD 0 0.081 0.046 

Sig 
 

Yes(+) Yes(+) 

F Measure 

Mean 0.95 0.874 0.901 

SD 0.01 0.049 0.026 

Sig 
 

Yes(+) Yes(+) 

V1 

V2 

Vd 

: 
: 
: 
: 

Y 
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 From the results, it is clear that the performance of SVM 

showed higher accuracy than both BPNN and KNN algorithm 

in terms of classification accuracy, as indicated by Yes (+) in 

significance column. While considering the precision of 

classifiers, SVM showed significant improvement with BPNN 

but was insignificant with KNN. However, the recall 

performance showed significant positive improvement when 

compared with both BPNN and KNN. The last parameter, F 

measure is the harmonic mean of precision and recall by 

taking both into consideration, The results show that both 

BPNN and KNN shows degraded performance when 

compared with SVM. 

All these results show that SVM can be considered as the 

right candidate for identifying faulty modules. Fig. 4a to 4d 

shows the Mean accuracy, precision, recall and F measure 

while testing the classification algorithm with only existing 20 

metrics (E20), existing and proposed metric (EP24 metrics). 

From the figures, it can be seen that the inclusion of the four 

new metrics has increased the performance of the classifiers. 

While comparing E20 and EP24 metrics, the EP24 metrics 

showed 7.58% accuracy improvement when compared with 

E20 metric set. Similarly, 8.12% and 9.69% efficiency gain 

with respect to precision and recall was seen with E24 metric 

set. All these results prove that the proposed metrics are 

efficient in identifying classes that have high complexity and 

flaws and therefore can be used by software industries to 

improve the design of OO software products. 
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Fig. 4. Performance of proposed metrics 

5. CONCLUSION 

This paper identified OO modules with faults in two stages. 

The first stage identified four new software metrics to 

measure class design complexity and second stage used SVM 

classifier to predict faulty modules. The four new metrics 

proposed are Class Method Flow Complexity Measure 

(CMFCM), Friend Class Complexity Metric (FCCM), Class 

Complexity from Inheritance (CCI) and Class Complexity 

from Cohesion Measure (CCCM). These metrics were 

combined with 20 existing traditional metrics during 

prediction. Sensitivity index was used to select relevant 

metrics for classification after normalization. The 

experimental results showed positive improvement in the 

performance of prediction with the inclusion of the proposed 

metric and SVM classifier. In future, evaluation of the 

proposed metrics using criteria as suggested by [18] is 

planned. Moreover, the use of ensemble classification is also 

planned to increase the reliability and maintainability of the 

software product by increasing the accuracy of flaw module 

prediction. 
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