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ABSTRACT 

In this paper we are in search of fuzzy solution of one 

dimensional Heat Equation. Here we have observed the 

findings if we use fuzzy intervals at different grid  points as 

per finite difference method of numerical solution of partial 

differential equation. Bender-Schmidt Recurrence Scheme is 

used in solving the  one dimensional Heat Equation 

numerically.  
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1. INTRODUCTION 
The concept of Fuzzy differential equation was first 

introduced by Chang and Zadeh [1]. Dubois and Prade [2] has 

given the extension principle. In this paper, we first applied 

finite difference method to solve one dimensional heat 

equation numerically ,then fuzzified. 

2. BASIC CONCEPT AND 

DEFINITIONS 
A triangular Fuzzy number μ is defined by three real numbers 

with base as the interval [a,c] and b as the vertex of the 

triangle.The membership functions are defined as follows: 
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3. PRELIMINARIES OF HEAT 

QUATION 

The one dimensional Heat Equation, which is parabolic in 

nature is 
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whose solution is u(x,t) with x and t as space and time 

coordinates respectively within the domain 0 ≤ x ≤ l;0 ≤ t ≤ ∞. 

Solution of (1) is not defined in a closed form but propagates 

in an open ended region from initial values satisfying the 

prescribed boundary conditions as shown in Fig.1. 

 

 

 

3.1 Bender-Schmidt Method 

To solve Heat Equation (1) subject to  the boundary 

conditions   

u(0,t)(=)T0 , u(l,t)(=)Tl  and initial condition u(x,0)(=)f(x), 

hence using finite difference method and  substituting 
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If h and  k  are so choosen that coefficient of ui,j  vanishes, i.e. 

λ = ½.  Hence (2) becomes 
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which is called Bender-Schmidt recurrence equation. 

 

4. FUZZIFICATION OF HEAT 

EQUATION 
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Now fuzzy membership function for jiu ,1 is 
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whose interval of confidence is  
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Next, fuzzy membership function for jiu ,1 is 
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whose interval of confidence is  
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Hence   α-cut       for        1, jiu      is 
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Now to retain two roots α ϵ [0,1] 

Let 
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Hence, fuzzy membership function for 1, jiu   is 
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With the help of this we can find out f.m.f. of different  u’s of  

j+1th level in terms of its preceding level as per Bender-

Schmidt recurrence equation. 

 

5. A NUMERICAL EXAMPLE 
 
Let us consider the  one dimensional Heat Equation as 
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with the conditions   u(x,0)=4x-x2 

                              u(0,t)=0=u(4,t) 

Here u0,0=u(0,0)=0,    u1,0=u(1,0)=3,  u2,0=u(2,0)=4 

U3,0=u(3,0)=3, u4,0=u(4,0)=0. 

   

Also, u(0,1)=0=u(4,1),   u(0,2)=0=u(4,2),  u(0,3)=0=u(4,3),  

u(0,4)=0=u(4,4) ,u(0,5)=0=u(4,5). 

  
Let us consider fuzzy intervals for u(0,0) and u(2,0)  as 

 001.0,0,001.0)(0,0 u and   

 001.4,4,999.3)(0,2 u  

Therefore as per Bender-Schmidt scheme 
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Hence   α-cut       for        0,0u      is 
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Next fuzzy membership function for 0,2u is 
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Hence   α-cut       for        0,2u      is 
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Hence   α-cut       for        1,1u      is 
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Next for the grid point 1,2u
, 

let us consider fuzzy intervals for u(1,0) and u(3,0)  as 

 001.3,3,999.2)(0,1 u and   001.3,3,999.2)(0,3 u  

Therefore as per Bender-Schmidt scheme 
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Hence   α-cut       for        0,1u      is 
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Next fuzzy membership function  and α-cut for 0,3u are 

same as that of 0,1u  

Hence   α-cut       for        1,1u      is 
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Next for the grid point 1,3u
, 

let us consider fuzzy intervals for u(2,0) and u(4,0)  as 

 001.4,4,999.3)(0,2 u
   

and
  

 001.0,0,001.0)(0,4 u  

Therefore as per Bender-Schmidt scheme 
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Now fuzzy membership function for 0,4u is 
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Hence   α-cut       for        0,2u      is 
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Similarly we can find out fuzzy membership function at 

different grid points which are  2,32,22,1 ;; uuu    

3,33,23,1 ;; uuu   4,34,24,1 ;; uuu 5,35,25,1 ;; uuu etc. 

6. CONCLUSION 
Here we can go forward in the  open end of time variable as t 

goes to infinity and find solution of heat equation in numerical 

fuzzified form. 
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