
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.21, May 2012

17

Design and Implementation of Agent based Inter

Process Synchronization Manager

Deepshikha Bhargava

Amity University Rajasthan, Jaipur
AB-531, Nirman Nagar, Kings Road,

Ajmer Road, Jaipur-302019

Madhavi Sinha, PhD
BIT-Mesra (Ranchi), Jaipur Campus

27, Malviya Industrial Area
Malviya Nagar, Jaipur

ABSTRACT

Inter Process synchronization is the coordination of

simultaneous threads or processes to complete a task in

order to get correct runtime order and avoid unexpected

race conditions. Since processes frequently need to

communicate with other processes therefore, there is a

need for a well-structured communication among

processes, without using interrupts [1].

This paper is an attempt to present the design and

implementation of an agent based technique to provide

optimized solution of Inter Process Synchronization

problem, keeping the problem of critical section in to

consideration.

General Terms

Inter Process Synchronization (IPS), Agents, interface

agent, intelligent agent

Keywords

Inter Process Synchronization Manager (IPSM), Agent

Engine, CFAE (Control Function Agent Engine).

1. INTRODUCTION
Inter Process synchronization is the coordination of

simultaneous threads or processes to complete a task in

order to get correct runtime order and avoid unexpected

race conditions. Since processes frequently need to

communicate with other processes therefore, there is a

need for a well-structured communication among

processes, without using interrupts [1].

The existing techniques or algorithms to solve this

problem are non-agent based those have their own

limitations [2]. The limitations of non-agent based solution

motivated the design of an agent-based technique and the

characteristics of agents compile to use an agent based

technique to resolve the problem of inter process

synchronization. Agent based technique [3] can add a new

set of capabilities to existing applications.

Main goal of this paper is to enhance the spectrum of

design tools for solving inter process synchronization

problem. The Agent-based design framework described in

Section 2 are constructed by combining the agent and

multi-agent system concepts with particular insight from

the intelligent agent based approach as design aspects of

inter process synchronization problem.

Section 3 presents an implementation tool for the

realization of an actual agent-based inter process

synchronization manager. The conceptual framework is

mapped onto an implementation framework of software

components.

The application of the design framework to the design and

implementation of an agent-based solution is further

discussed in section 4. Further the performance evaluation

of agent based IPSM is also measured on different

operating system. Finally the paper is concluded and some

concrete solutions are being tested and proved.

2. INTER PROCESS

SYNCHRONIZATION MANAGER
IPSM stands for Inter Process Synchronization Manager

which is an agent used for solving the problem of inter

process synchronization. The agent based approach used in

this paper is suggesting an algorithm for agent IPSM

which is an attempt to propose a new approach as an

optimal solution to the IPS problem. The main features of

the designed system are:

 It is an agent based system. Agents are autonomous

programs, they run in background and there is no

need of user interface.

 Multiple agents are designed to manage IPS problem

called I2 architecture where in two agent functions

are used: Interface agent and Intelligent agent.

 Agents are intelligent to handle different cases

accordingly. They would also learn from the

environment.

 Agent based IPSM improves the performance of the

system. It would also be able to analyze itself in terms

of behaviour, error and success. The other

performance measures are also taken in to account.

 Will be controlled and managed by control function.

This section begins with IPSM architecture followed by

the multi agent architecture and experimental setup.

2.1 IPSM Architecture
The agent IPSM architecture is multi-agent architecture [4]

has the I2 (I-Square) Functionality. Here two different

agent functions are associated with Agent-Engine at

different levels: Interface and Intelligent Agent [5]. The

Interface agent [6] function is used to identify IPS

processes from the user processes. The Intelligent agent

function is responsible to manage the knowledge based of

the system. The agent IPSM functions with the help of

these two agent functions.

This agent IPSM is responsible to perform the following

major tasks:

 Identify priorities of each process for each resource

 Maintain queue of process-resource-request

http://en.wikipedia.org/wiki/Race_condition
http://en.wikipedia.org/wiki/Race_condition

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.21, May 2012

18

 Assigning TOKEN to that process that get chance to

allocate the resource

 Transfer the control of a resource to the requested

process

 change status of Resource

 change status of the process

 Allocation of resources

 Manage a TIMER to check the time stamp for each

process allocated the resource. (to avoid deadlock and

starvation)

 Lock and Release the resource (critical section

management)

 Interfacing with user through messages

 Communication between agents using agent

specification language (ASL).

The general functionality of agent IPSM is shown in

figure-1. For proper functioning of the system following

components of this system are used:
i) Agent Engine: The agent engine runs in background

and acts as an interface agent between user and agent

IPSM. All the processes are filtered here and the IPS

processes are further transferred to agent IPSM for

further solution.

ii) Control Function CFAE (Control Function Agent

Engine): The control part of agent engine is the

collection of Control Function which is responsible

for controlling and managing the different modules.

The control function P has two properties.

If, P=0 means negative clock pulse, then control

will not be transferred

 Otherwise, the control needs to be transferred

 Here four major control functions are defined.

P1: To set and check the status of the resource

P2: To grant and release resources

P3: To manage the timer

P4: To update and access the knowledge base

iii) Module PROCESS-RESOURCE-REQUEST: This

module will grant the permission to acquire and

release the resources. A process to use the resource

must first gain permission from the agent. Here we

must guarantee that no process may starve. Here the

agent will also maintain a queue of all the process

requesting for acquire a resource. Queue would be

maintained on the basis of FCFS strategy of

scheduling.

iv) Module STATUS management: The resources are

also replaced by the same agent who will treat like a

resource manager which records the status of all of

the resources. A process to get control of a resource

has to get control from the resource manager. Once it

is granted, the process can now use the resource.

v) Module TOKEN management: We also introduce

the concept of TOKEN in the system which will be

passed from one to another process those request to

acquire the same resource.

vi) Module TIME management: A process may

execute only if it is on the top of the queue, and if the

permission is granted, resource is available and token

is passed. Now the agent would also maintain the

time stamp for each process so that the chances for

deadlock or blocking of resources can be avoided.

2.2 Multi Agent Architecture
A Multi-Agent System (MAS) is a system [7] composed of

multiple interacting agents. Multi-agent systems can be

used to solve problems that are difficult or impossible for

an individual agent or a monolithic system to solve. The

agents in a multi-agent system as mentioned in figure 2

have several important characteristics:

 Autonomy: the agents are at least partially autonomous

 Local views: no agent has a full global view of the

system, or the system is too complex for an agent to

make practical use of such knowledge

 Decentralization: there is no designated controlling

agent (or the system is effectively reduced to a

monolithic system) [8].

3. AGENT INTER PROCESS

SYNCHRONIZATION MANAGER
It has been shown in previous section that the agent based

model is useful to design and implement recommended

systems. In this section we present the Agent Inter process

Synchronization Manager, is modeled using agent based

approach. This section begins with the description of the

algorithm suggested in section 3.1 which is then followed

by its implementation using an application in section 3.2.

3.1 Design of the Agent
This section discusses the design of agent IPSM as a better

solution for IPS problem. It also states that an Agent-

Based IPSM in these kinds of problems can provide a

valuable perspective over the more Non Agent-Based

architectures. An Agent-Based IPSM can mirror to a large

extent the way a distributed environment is organized in

practice and can therefore support optimization of

processes where this was not possible with Non Agent-

Based solution [9].

However to develop an Agent-Based IPSM all these issues

are addressed in relation to each other, which makes the

design complicated. The solution aims at delivering a

prototype system that can be used to assess both technical

and organizational feasibility [10]. The algorithm is given

to design the following modules:

 Module Agent_Engine

 Module AgentIPSM

 Module StatusManagement

 Module TokenManagement

 Module Process_Resource_RequestManagement

 Module KnowledgebaseManagement

3.2 Implementation
The agent based implementation is an attempt to

experiment the algorithmic design. The experimental setup

suggested here emphasizing on specific case which is the

IPS situation of Windows Operating System.

The Inter Process Synchronization Manager suggested

here is a plug-in for Windows' built-in Task Manager [11].

It expands the basic functionality and gives a powerful

control over running processes. Inter Process

Synchronization Manager can show process modules,

process memory map, used kernel handles, opened files,

file properties, and lots of other info. It shows more

processes, adds lots of useful items to process the context

menu, and adds a new "IPSM" submenu to the main

window menu, and so on.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.21, May 2012

19

It is also providing an opportunity to use IPS Debugger to

analyze and add processes facing IPS problem to its

debugger and then synchronize internally using agent

IPSM.

Figure 1: Agent IPSM Functionality Figure 2: Multi-Agent Architecture of Agent IPSM

4. PERFORMANCE EVALUATION

OF AGENT IPSM
The performance evaluation of the Agent IPSM is

basically divided into two modules-

(1) Validation of the results

(2) Performance Evaluation.

To achieve the above said goals following are the sequence

of jobs to be performed:

STEP # 1. Installation of the system which is described

in Appendix B

STEP # 2. The system has many menu options; from

these „Test‟ option is to be selected.

STEP # 3. The test is performed on normal scenario

which can be performed by selecting the

option „Normal‟ from „Test‟ Menu.

STEP # 4. IPSM based testing performance is recorded

by selecting the option “IPSM” from „Test‟

menu.

The performance of the system which in this paper

addressing as „Normal mode‟ is the scenario where process

manager of different Windows based operating system is

used to record. This mode is the Task Manager of the

operating system. This mode can also be viewed by

selecting „Normal‟ option of „Test‟ Menu.

Another mode is „IPSM mode‟ which is the IPSM process

manager of the Windows based operating system.

This mode can be viewed by selecting „IPSM‟ option of

„Test‟ Menu. The test has successfully been performed

Windows XP based operating system.

4.1 Performance Evaluation Criteria
The test was conducted on following different parameters

of a process out of which only five parameters i, ii, iii, iv

and v were showing the significant change in output

during testing at different time intervals. Rest of the

parameters had the same output in all phases of testing

after observation of different phases. Hence the test was

more focused on first five parameters only.

i) CPU usage (in percentage): This parameter belongs

to how much CPU is busy during execution of any

process. Abbreviated as CU.

ii) CPU WAITING TIME (in seconds): How much

time a process waits for CPU execution.

Abbreviated as CW.

iii) MEM USAGE (in KB): How much memory space

is used by a process. Abbreviated as MU.

iv) PAGE FAULT: Number of page faults occurred for

a process. Abbreviated as PF.

v) TURN-AROUND TIME (in seconds): The time a

process takes in execution. Abbreviated as TAT.

vi) VM SIZE (in KB): How much Virtual memory is

consumed by a process. Abbreviated as VMS

vii) HANDLES: How many number of handles a

process uses. Abbreviated as HD.

viii) THREADS: How many number of threads are used

by a process. This case is specific to single user

single threading system so that the no. of threads

are one in all the phases. Abbreviated as TH.

ix) I/O READ: How many I/O reads performed during

execution of a process. Abbreviated as IOR.

x) ST TIME (in hours:minutes:seconds): The start

time of the process execution begins. Abbreviated

as ST.

xi) END TIME (in hours:minutes:seconds): The time

at which the process executes Abbreviated as ET.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.21, May 2012

20

4.2 Results
After evaluation of testing performed on normal mode and

IPSM mode, following five statements state that agent

IPSM is better solution as compared to normal case:

When a process is in running state, IPSM consumes more

CPU over normal mode of execution

…………….………………………………….Statement [i]

IPSM allows only one process at a time to remain in

critical section……...........Statement [ii]

IPSM states that more memory is used for the process in

critical section ……....Statement [iii]

IPSM states that when a process is in critical section, more

page fault occur …………………………...Statement [iv]

IPSM consumes lesser turn-around time as compared to

normal mode ………...Statement [v]

Above statements are further shown in figure 3 through the

following comparative analysis:

Figure 3: Comparative Analysis of Normal and IPSM mode

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.21, May 2012

21

Statement [i]: When a process is in running state, it

consumes more CPU over normal mode of execution

Proof of statement [i]: Observations from graph shown in

figure 3(a) prove that statement [i] is correct.

i) Process P1 and P2 in normal execution mode have

approximately same percentage of CPU usage over

a period of time.

ii) Process P1 and P2 are in using same amount of

CPU.

iii) Process P1 running in IPSM used maximum

percentage of CPU usage that shows that process

P1 is in critical section and is in execution.

iv) Process P2 running in IPSM used minimum

percentage of CPU usage that shows that P2 is

ready for execution.

v) Process P1 is in running state.

Hence, proved that “When a process is in running state, it

consumes more CPU over normal mode of execution”

Statement [ii]: IPSM allows only one process at a time to

remain in critical section.

Proof of statement [ii]: Observations from graph shown

in figure 3(b) prove that statement [ii] is correct.

i) Process P1 and P2 are in deadlock condition hence,

they are circularly waiting for CPU.

ii) Process P2 have more waiting time as it is in ready

state.

iii) Process P1 have no waiting time as it is in

execution.

iv) Process P1 is only in critical section.

Hence, proved that “IPSM allows only one process at a

time to remain in critical section.”

Statement [iii]: IPSM states that more memory is used for

the process in critical section.

Proof of statement [iii]: Observations from graph shown

in figure 3(c) prove that statement [iii] is correct.

i) Process P1 and P2 in normal mode are not in

critical section hence using more memory.

ii) Process P2 in IPSM is not in critical section hence

doesn‟t need more memory.

iii) Process P1 in IPSM, is in critical section hence

using more memory as compared to process P2 in

IPSM.

Hence, proved that “IPSM states that more memory is used

for the process in critical section.”

Statement [iv]: IPSM states that when a process is in

critical section, more page fault occur.

Proof of statement [iv]:Observations from graph shown

in figure 3(d) prove that statement [iv] is correct.

i) Number of page faults occurred in process P1 and

P2 in normal mode are more, as both are in

deadlock situation.

ii) Process P2 in IPSM is not in critical section hence,

lesser number of page faults occurred.

iii) Process P1 in IPSM is in critical section hence,

takes more number of page faults in execution

state.

iv) Process P1 and P2 in IPSM are comparatively

consuming lesser number of page faults than

processes in deadlock.

Hence, proved that “IPSM states that when a process is in

critical section, more page fault occur.”

Statement [v]: IPSM consumes lesser turn-around time

as compared to normal mode

Proof of statement [v]: Observations from graph shown

in figure 3(e) prove that statement [v] is correct.

i) Process P1 and P2 in normal mode consume

maximum turn-around time as these processes are

in deadlock.

ii) Process P2 in IPSM consumes more time from

Process P1 in IPSM as it is in ready state.

iii) Process P1 in IPSM consume lesser time overall as

compared to all the processes whether in ready

state or in deadlock.

Hence, proved that “IPSM consumes lesser turn-around

time as compared to normal mode”

After observing and proving all the statements, it implies

that CPU is showing comparatively better performanace

in IPSM mode than normal mode when evaluated for

Windows based operating system.

In other words, we can say that for the problem of Inter-

process synchronization IPSM suggests a better solution

for Windows based operating system in IPSM mode as

compared to normal mode of execution.

5. CONCLUSION & FUTURE SCOPE
The agent-based design method presented in this thesis

helps the designer to solve IPS problems, by offering

concepts to structure the problem and to organize the

solution. The design method encourages to develop local

solutions and to reason about their dependencies.

The presented agent-based design framework IPSM is

aimed at developing solutions that run on single

processors. The future scope includes the design

framework on multi processor system to solve the same

problem domain.

Here the theoretical foundations of an agent-based design

method for IPS problems were presented. During the

research .NET framework was used. One of the

disadvantages of using Visual Studio.NET and the .NET

framework to develop applications has been the lack of

cross-platform support. Hence the future scope would be

testing the system on Linux/Unix based operating system.

6. REFERENCES
[1] Wallis, P. Ronnquist, R. Jarvis, D. Lucas, “The

automated wingman - Using JACK intelligent agents

for unmanned autonomous vehicles”, Aerospace

Conference Proceedings, 2002. IEEE , Agent

Oriented Software, Carlton, Vic., Australia, Volume:

5, pp 5-2615- 5-2622 vol.5, 2002

[2] U. Ramachandran, M. Solomon, M. Vernon,

“Hardware support for interprocess communication”,

Proceedings of the 14th annual International

Symposium on Computer architecture. Pittsburgh,

http://portal.acm.org/citation.cfm?id=30371&coll=portal&dl=ACM

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.21, May 2012

22

Pennsylvania, United States. Pages: 178 - 188., ISBN

0-8186-0776-9 , 1987

[3] Hyacinth S. Nwana, “Software Agents: An

Overview”, Intelligent Systems Research Advanced

Applications & Technology Department ,BT

Laboratories, Springer Berlin / Heidelberg, pp 59-78,

1997

[4] Acebo, E. and de la Rosa, J. L., A Fuzzy System

Based Approach to Social Modeling in multiagent

Systems. Proceedings of the First International Joint

Conference on Autonomous Agents and Multiagent

Systems (AAMAS'02), Palazzo Re Enzo, Italy, 2002.

[5] Amgoud L. and Kaci S., On the generation of bipolar

goals in argumentationbased negotiation. In (I.

Rahwan et al, eds.) Proceedings of the 1st Int.

Workshop on Argumentation in Multi-Agent Systems

(ArgMAS), volume 3366 of LNCS, 192-207.

Springer, Germany, 2004.

[6] R. Belecheanu, S. Munroe, M. Luck, T. Payne, T.

Miller, M. Pechoucek, and P. McBurney. Commercial

applications of agents: Lessons, experiences and

challenges. In Proceedings of the Fifth International

Joint Conference on Autonomous Agents and Multi-

Agent Systems, Hakodate, Japan, pages 1549--1555,

2006. ACM Press.

[7] Giuseppe De Giacomo, Yves Lesperance, and Adrian

R. Pearce. Situation Calculus-Based Programs for

Representing and Reasoning about Game Structures.

In Fangzhen Lin Sattler and Ulrike, editors,

Proceedings of the Twelfth International Conference

on the Principles of Knowledge Representation and

Reasoning (KR 2010), Toronto, Canada, pages 445--

455, 2010.

[8] Blom, L., Michelle and Adrian R. Pearce. An

Argumentation-Based Interpreter for Golog

Programs. In International Joint Conference on

Artificial Intelligence (IJCAI 2009), Los Angeles,

pages 690--695, 2009.

[9] Li Xining, Comparison of communication models for

mobile agents, Systemics, Cybernetics And

Informatics, Volume 1 - Number 2

[10] Miller, T. and McBurney, P.. On illegal composition

of first-class agent interaction protocols. In

Proceedings of the Thirty-First Australasian

Computer Science Conference, volume 74 of CRPIT,

pages 127--136, 2008. ACS.

[11] Mobach D.G.A., Overeinder B.J., and Brazier F.M.T.,

A WS-agreement based resource negotiation

Framework for mobile agents, Scalable Computing:

Practice and Experience, 7 (1):23 – 36, 2006.

[12] Shehory Onn, Sycara Katia, Sukthankar Gita,

Mukherjee Vick, Agent aided aircraft maintenance,

School of Computer Science, Carnegie-Mellon

University

[13] Albert J.N. van Breemen, Agent-Based Multi-

Controller System, PhD Thesis, University of Twente,

Twente University Press, 2001

[14] Wooldridge M and Jennings N. R., Intelligent Agents:

theory and practice. The Knowledge Engineering

Review, 10(2), 115-152, 1995.

http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0818607769
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0818607769
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0818607769
http://www.agentlab.unimelb.edu.au/publications/Author/MILLER-T.html
http://www.agentlab.unimelb.edu.au/publications/Author/MILLER-T.html
http://www.agentlab.unimelb.edu.au/publications/Author/MILLER-T.html
http://www.csc.liv.ac.uk/~peter/downloads/pubs/2006/pm-2006-09.pdf
http://www.csc.liv.ac.uk/~peter/downloads/pubs/2006/pm-2006-09.pdf
http://www.csc.liv.ac.uk/~peter/downloads/pubs/2006/pm-2006-09.pdf
http://www.agentlab.unimelb.edu.au/publications/Author/PEARCE-A.html
http://www.agentlab.unimelb.edu.au/publications/Author/PEARCE-A.html
http://www.agentlab.unimelb.edu.au/publications/Author/PEARCE-A.html
http://www.agentlab.unimelb.edu.au/papers/degiacomo2010.pdf
http://www.agentlab.unimelb.edu.au/papers/degiacomo2010.pdf
http://www.agentlab.unimelb.edu.au/papers/degiacomo2010.pdf
http://ijcai.org/papers09/Papers/IJCAI09-120.pdf
http://ijcai.org/papers09/Papers/IJCAI09-120.pdf
http://ijcai.org/papers09/Papers/IJCAI09-120.pdf
http://ijcai.org/papers09/Papers/IJCAI09-120.pdf

