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ABSTRACT 

This paper describes development of a CAN transmitter with 

an I2C interface.  Such a device could be interfaced with any 

existing microcontroller that supports I2C bus.  I2C bus 

definition is simple enough to be implemented on any micro 

controller.  All the development is done using public domain 

software, viz., Icarus Verilog and related tool set. 

General Terms 

Digital control network and Communication Networks. 

Keywords 

CAN (Controller Area Network), I2C (Inter IC) bus, IVerilog 

(Icarus Verilog), sda (serial data line), scl (serial clock line). 

1. INTRODUCTION 
A device Control Network consists of sensors, actuators and 

controllers designed to consume the data generated by sensor, 

historic data and user information and .produce output that 

can drive actuators and give feedback to user about the status 

of the system under control [1]. The control networks in 

general, can be electrical, pneumatic, hydraulic, optical, 

fluidic or a combination of these.  Control intelligence can be 

deterministic, heuristic, stochastic, linear, nonlinear, fuzzy 

and neural or a mix of many.  Electronic control circuits can 

be based on analog, digital, mechatronic, optical devices, 

which determine the control algorithms that can be realized. 

In present time frame, digital networks are far more popular 

than any other type of control networks. The performance, 

reliability and maintenance of digital systems depend upon 

many parameters but are relatively simple compared to analog 

networks. Digital control networks differ from computer 

networks in specific aspects.  Control information has to be 

real time otherwise; the system may not work at all.  Session 

management and security are often not present in control 

networks as the systems run on themselves, without much 

user intervention.  Data transfer on control networks is 

generally limited to a few bytes to a few kilobytes, at the 

maximum. Most of the data on control networks is telemetry 

or remote control information, which is inherently limited in 

size.  Images, multimedia are not transferred on control 

networks.   

CAN bus was developed by BOSCH as a multi-master 

message broadcast system over a field bus with a maximum 

signaling rate of 1Mbps [2].  In this work, CAN bus is 

selected as communication bus as it has advantages over 

RS232 [3] bus.  It defines bus arbitration, collision detection 

and avoidance at data link layer which are not specified in 

RS485 [4]. 

 

 

Fig1: CAN Field Bus 

The figure 1 represents structure of CAN bus. Its ability to 

handle collision with minimal data loss is a tremendous 

achievement in device control networks.  Another advantage 

is its support for multi master.  The early CAN development 

was mainly supported by the automobile industry.  The 

protocol is also widely used today in industrial automation 

and other areas like networked embedded control with 

applications in products such as medical equipment and 

building automation.  

2. FEATURES OF CAN BUS AND I2C 

BUS 
The Controller Area Network (CAN) Protocol was developed 

by Robert Bosch for Automotive Networking in 1982.  Over 

the years, CAN have become a standard for Automotive 

Networking and industrial control.  It is a low-cost, easy-to-

implement, differential bus network with powerful error 

checking and a high transmission rate of up to 1 Mbps [2].  

Each CAN packet is quite short and may hold a maximum of 

eight bytes of data.  This makes CAN suitable for small 

embedded networks which have to reliably transfer small 

amounts of critical data between nodes.  CAN bus is 

terminated on either ends by a 120 Ohm resistor. CAN will 

define only physical and data link layers. The CAN physical 

layer connects the CAN controller to the physical bus wires.  

A CAN network is made up of group of nodes. Each node can 

communicate with any other node.  In CAN network, higher 

priority is given lower CAN-ID.  Every node that wants to 

acquire the bus will be continuously monitoring the bus.  

When the bus becomes free, all the nodes that were 

monitoring for the bus will be considered.  A device (node) 

with lowest CAN ID will acquire the bus for the transmission 

without any loss of control or data.  Other nodes will pull 

back and try again when bus is free.  This means at least one 

of the messages will be transmitted without loss of data.  This 

behavior is significantly different than what is seen in popular 

networks like Ethernet CSMA/CD protocol.  Ability to 

address bus contention allows errors and exceptions to be 

easily handled on a CAN bus.  The Controller Area Network 

(CAN) efficiently supports distributed real-time control with a 

very high level of security.  Its domain of application ranges 

from high speed networks to low cost multiplex wiring.  In 

Node1 Node2 Node n Node3 
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automotive electronics, engine control units, sensors, anti-

skid-systems, etc. are connected using CAN with bitrates up 

to 1 Mbps.  At the same time it is cost effective to build into 

vehicle body electronics, e.g. lamp clusters electric windows 

etc to replace the wiring harness.  CAN was developed 

specifically to realize a number of features suited to 

embedded systems design including high bit rate allowing real 

time speeds, high immunity to electrical interference, 

advanced error detection and confinement capabilities, low 

cost per node and fewer electrical connections, simple to 

implement and configure, reducing design time, high 

reliability and guaranteed transmission times for prioritized 

messages. 

The message transfer process in CAN bus is controlled by 

four different types of frames; viz., Data Frame, Remote 

Frame, Error Frame and Overload Frame. 

Data frame carries data from transmitters to receivers.  A data 

frame is produced by a CAN bus node when the node wishes 

to transmit data or if this is requested by another node.  Up to 

8 byte data can be transported within a frame.  Data frame 

consists of seven bit fields.  The figure 2 indicates the 

structure of data frame. 

 

 

Fig 2: Data Frame 

SOF: Start of frame has only one dominant bit.  A station 

is allowed to start transmission when the bus is idle.  All 

stations will synchronize at positive edge of start of frame 

during the first transmission. 

Arbitration Field:  Arbitration field consists of 12 bits.  It is 

divided into two sections; as Identifier and RTR bit.  The 

identifier‟s length is 11 bits.  These bits are transmitted in the 

order from ID-10 to ID-0.  The least significant bit is ID-0.  

The 7 most significant bits (ID-10 to ID-4) may be of any 

combination but it must not be all recessive bits.  In data 

frame‟s the Remote Transmission Request bit has to be 

dominant.  Within a remote frame, the RTR bit has to be 

recessive [5]. 

Control Field:  The control field consists of six bits.  It 

includes the Data Length Code and two bits reserved for 

future expansion.  The reserved bits have to be sent dominant.  

Receivers accept dominant and recessive bits in all 

combinations.  The number of bytes in the data field is 

indicated by the data length code, which is of 4 bits wide and 

it should be transmitted within the control field. 

Data Field:  The data field consists of the data or message 

which is to be transferred within a data frame.  It can contain 

from 0 to 8 bytes, which each contain 8 bits which are 

transferred MSB first.  

CRC Field:  It contains the CRC sequence followed by a CRC 

delimiter.  CRC sequence is of fifteen bits wide; this CRC 

sequence is calculated by the polynomial and this sequence is 

followed by the CRC delimiter which consists of a single 

recessive bit. 

ACK Field:  The acknowledgement field is two bits long and 

contains the ACK slot and the ACK delimiter [5].  In the 

acknowledgement field, the transmitting station sends two 

recessive bits.  A receiver which has received a valid message 

correctly, reports this to the transmitter by sending a dominant 

bit during the ACK slot.  All stations having received the 

matching CRC sequence report this within the ACK slot by 

super scribing the recessive bit of the transmitter by a 

dominant bit. The ACK delimiter is the second bit of the ACK 

field and it should be a recessive bit. 

EOF:  Data frame ends with End of Frame which consists of 

seven recessive bits. 

I2C was developed by Philips Semiconductors.  It allows 

synchronous transfer of data over two wires, one for data 

(SDA) and the other for clock (SCL).  I2C protocol defines 

the concept of master and slave devices.  The bit transfer takes 

place as referred in the [6].  Figure 3 shows the status of SDA 

and SCL during START and STOP conditions during the data 

transfer.  START and STOP conditions are always generated 

by the master.  The bus is considered to be busy after the 

START condition and free after the STOP condition.  Every 

byte put on the SDA line is of 8-bits long.  We can send any 

number of data bytes.  Each byte has to be followed by an 

acknowledge bit.  Data is transferred with the most significant 

bit (MSB) first.  A receiver can‟t receive another complete 

byte of data until it has performed some other function, for 

example servicing an internal interrupt, it can hold the clock 

line SCL low to force the transmitter into a wait state.  Data 

transfer then continues when the receiver is ready for another 

byte of data and releases clock line SCL.  

 

 

Fig 3: Data Transfer on I2C Bus 
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The transmitter can be sure that the data was read by the 

receiver without any error only when the receiver 

acknowledges the reception.  If the data packet and 

acknowledgement packet are sent separately, there is always a 

doubt whether the error was in receiving data or the 

acknowledgement packet, forcing the transmitter to resend the 

data.  So, acknowledgement is often a part of the data packet 

itself, only that it is not originated by the transmitter but by 

the receiver.  In I2C, the acknowledge-phase handshaking is 

described.  The transmitter releases the SDA line (making it 

high), clock pulse is generated by the master, the receiver 

must pulls down the SDA line if there is no error, if there was 

error in reception, receiver leaves SDA line high, receiver 

maintains SDA line status till the clock goes low.  When a 

slave-receiver doesn‟t acknowledge the slave address, the data 

line must be left high by the slave.  The master can then 

generate a STOP condition to abort the transfer.  If a slave-

receiver does acknowledge the slave address but, sometime 

later in the transfer cannot receive any more data bytes, the 

master must again abort the transfer.  This is indicated by the 

slave generating the not acknowledge on the first byte to 

follow.  The slave leaves the data line high and the master 

generates the STOP condition.  If a master-receiver is 

involved in a transfer, it must signal the end of data to the 

slave-transmitter by not generating an acknowledgement on 

the last byte that was clocked out of the slave.  The slave-

transmitter must release the data line to allow the master to 

generate a STOP or repeated START condition. 

3. DESIGN AND IMPLEMENTATION 
It has been designed in a bottom up approach.  Before 

designing it in Verilog, the various standalone CAN 

controllers are studied; such as SJA1000 [7] developed by 

Philips and MCP2515 standalone CAN controllers developed 

by Microchip.  One of the primary reasons for designing in 

bottom up approach was that a purely behavioral design 

would take away an opportunity to learn many aspects of 

digital circuit design.  It does not have any ready modules to 

plug-in into a behavioral design and not uses any existing 

designs but built.  Second reason to take up a bottom up 

approach was that it would give an opportunity to start 

building a module library of any designer.  All the 

fundamental concepts of digital blocks [8] are studied and the 

basic knowledge or concepts related to Verilog [9] [10] is 

studied. 

3.1 I2C slave transmitter 
The figure 4 shows the block diagram of I2C transmitter in 

slave mode.  Here data is the 8 bit value or message which is 

to be transmitted.  The data is transmitted through sda line.  

The active low acknowledgement which is indicated by „nack‟ 

is the input for transmitter and output from the receiver.  The 

I2C slave transmitter is designed based on finite state 

machine.  The figure 5 shows the Finite State Machine of I2C 

slave transmitter.  

 

 

 

 

Fig 4: Block Diagram of I2C Slave Transmitter 

 

Fig 5: Finite State Machine of I2C Slave Transmitter 

Before actual transmission takes place, the data which is to be 

transmitted is loaded into the register „trBuff‟.  This loading 

of data takes place in fsm 0. In the 1st finite state machine, 

„start bit‟ is enabled and the start bit is enabled when sda=0 

and scl=1.  This is explained briefly in the literature survey of 

I2C.  Then after the data loading; the „dataLoaded‟ becomes 

high.  In 2nd finite state machine, „busy‟ variable get set; it 

indicates that the transmission has started.  In 3rd finite state 

machine; MSB of trBuff get transmitted on the sda line and 

the remaining bits.  At the same time the counter starts 

counting.  When it reaches counting up to 8, finite state 

machine changes to 4th state.  On the 9th clock, 

acknowledgement bit get set. The „nack‟ represents the active 

low acknowledgement bit; if nack=0 then it indicates that data 

is transmitted successfully; else it will raise the trErr flag that 

data is not transmitted correctly.  In the 5th finite state machine 

sda line goes high, which indicates the stop bit.  The 

simulation result of I2C slave transmitter on GTKWave is 

shown in figure 6. 

 

 

Fig 6: Simulation result of I2C Slave Transmitter. 

3.2 I2C slave receiver 
The figure 7 shows the block diagram of I2C receiver in slave 

mode.  Here data is the 8 bit value or message which is to be 

received.  The data is received through sda line. The active 

low acknowledgement which is indicated by „nack‟ is the 

output of the receiver and input for transmitter.  The I2C slave 

receiver is designed based on finite state machine.  The figure 

8 shows the Finite State Machine of I2C slave receiver. In the 

finite state machine of zero, both scl and sda line are high i.e. 

in idle condition.  In the first finite state machine sda line goes 

low, which indicates the start bit.  The counter starts counting 

when scl line goes low.  In the finite state machine of 2; buffer 

nack 

Transmitter         data 
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is cleared and data on sda line is taken into buffer.  In finite 

state machine 3; counter reaches ninth clock and gives 

acknowledgement „nack‟, which indicates that transmitted 

message is received successfully. 

 

 

 

Fig 7:  Block Diagram of Receiver 

 

 

Fig 8: Finite State Machine of Receiver 

In 4th finite state machine, sda line goes high, which indicates 

the stop bit. 

 

 

Fig 9: Simulation result of I2C Slave Receiver 

3.3 CAN transmitter 
The unit originating a message is called transmitter of that 

message.  The unit stays transmitter until the bus is idle or the 

unit loses arbitration.  Transmitter has been designed in 

Verilog in mixed type of abstraction levels.  Transmitter 

module is the integration of blocks such as counter, d flip-

flop, jk flip-flop, frequency division counter, stuff logic 

module and crc module.  

The figure 10 represents the block diagram of CAN 

transmitter.  The dotted line separates the test bench and 

transmitter module.  The data which is to be transmitted is 

copied into the „diCopy‟.  This data is of according to CAN 

data frame, which is described in section II.  Frequency 

division counter is used to generate the baud rate clock.  

Before transmitting any message, stuff bit should be added for 

the security purpose.  The bit-stuff area in a CAN bus frame 

includes the SOF, Arbitration field, Control field, Data field 

and CRC field.  While receiving the message, the stuff bit 

should be removed and the original message should be 

received.  In the above block diagram of CAN transmitter, s1, 

s2 and s3 are the three finite state machines.   

 

 

Fig 10: Block Diagram of CAN Transmitter 
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In the s1 finite state machine, all the variables are initialized 

and the data of five bits are given to the stuff logic.  In second 

finite state machine, data is copied into the variable „diCopy‟ 

and main counter continue the counting.   

 

Fig 11: Simulation result of stuff bit 

 

Fig 12: Simulation result of CAN Transmitter 

All this process takes place when the transmit buffer is empty.  

During the third state, generated CRC value is taken.  The 

CRC module works on baud rate clock.  Among the above 

processes whichever is true, that will be given to the stuff 

logic, the stuff logic module has been described already.  The 

output of stuff logic is given to the D flip-flop, which stores 

the data from stuff logic and from this, data will be 

transmitted which is indicated by „TrOut‟.  The figures 11 and 

12 clearly represent the simulation result of CAN transmitter 

with stuff bit. 

4. CONCLUSION 
The CAN bus transmitter soft-core (IP) is successfully 

designed in Verilog.  This can be interfaced with any 

microcontroller which supports I2C.  The CAN protocol is 

very robust, simple and it can support for multi master. This 

protocol can be used in industrial automation and other areas 

like networked embedded control with applications in 

products such as production machinery, medical equipment 

and building automation. The CAN transmitter is designed 

using Verilog which allows modeling of hardware 

components, which cannot be supported effectively by any 

other languages. The CAN receiver can be designed in future 

by integrating some basic modules such as counters, 

comparators, and stuff logic block along with acceptance 

filter. To improve the performance, some modifications can 

be made.  A Digital Phase Locked Loop can be used for 

frequency sampling, which will provide better frequency 

synchronization and Multiple sampling of CAN bus input can 

be done.  Currently, implementation of a single sample per 

clock has been done.  Reliability can be increased by making 

several samples within a clock. 
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