
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.21, May 2012

6

Design of CAN Transmitter with an I2C Interface

Anupama K Benachinamardi
Assistant Professor, Dept. of Electrical and
Electronics Engineering, SDM College of
Engineering & Technology, Dhavalagiri,

Dharwad,580002 INDIA.

U V Wali
Professor, Dept. of Electronics & Communication,

K.L.E. Society’s College of Engineering &
Technology, Udyambag, Belgaum, 590008 INDIA

ABSTRACT

This paper describes development of a CAN transmitter with

an I2C interface. Such a device could be interfaced with any

existing microcontroller that supports I2C bus. I2C bus

definition is simple enough to be implemented on any micro

controller. All the development is done using public domain

software, viz., Icarus Verilog and related tool set.

General Terms

Digital control network and Communication Networks.

Keywords

CAN (Controller Area Network), I2C (Inter IC) bus, IVerilog

(Icarus Verilog), sda (serial data line), scl (serial clock line).

1. INTRODUCTION
A device Control Network consists of sensors, actuators and

controllers designed to consume the data generated by sensor,

historic data and user information and .produce output that

can drive actuators and give feedback to user about the status

of the system under control [1]. The control networks in

general, can be electrical, pneumatic, hydraulic, optical,

fluidic or a combination of these. Control intelligence can be

deterministic, heuristic, stochastic, linear, nonlinear, fuzzy

and neural or a mix of many. Electronic control circuits can

be based on analog, digital, mechatronic, optical devices,

which determine the control algorithms that can be realized.

In present time frame, digital networks are far more popular

than any other type of control networks. The performance,

reliability and maintenance of digital systems depend upon

many parameters but are relatively simple compared to analog

networks. Digital control networks differ from computer

networks in specific aspects. Control information has to be

real time otherwise; the system may not work at all. Session

management and security are often not present in control

networks as the systems run on themselves, without much

user intervention. Data transfer on control networks is

generally limited to a few bytes to a few kilobytes, at the

maximum. Most of the data on control networks is telemetry

or remote control information, which is inherently limited in

size. Images, multimedia are not transferred on control

networks.

CAN bus was developed by BOSCH as a multi-master

message broadcast system over a field bus with a maximum

signaling rate of 1Mbps [2]. In this work, CAN bus is

selected as communication bus as it has advantages over

RS232 [3] bus. It defines bus arbitration, collision detection

and avoidance at data link layer which are not specified in

RS485 [4].

Fig1: CAN Field Bus

The figure 1 represents structure of CAN bus. Its ability to

handle collision with minimal data loss is a tremendous

achievement in device control networks. Another advantage

is its support for multi master. The early CAN development

was mainly supported by the automobile industry. The

protocol is also widely used today in industrial automation

and other areas like networked embedded control with

applications in products such as medical equipment and

building automation.

2. FEATURES OF CAN BUS AND I2C

BUS
The Controller Area Network (CAN) Protocol was developed

by Robert Bosch for Automotive Networking in 1982. Over

the years, CAN have become a standard for Automotive

Networking and industrial control. It is a low-cost, easy-to-

implement, differential bus network with powerful error

checking and a high transmission rate of up to 1 Mbps [2].

Each CAN packet is quite short and may hold a maximum of

eight bytes of data. This makes CAN suitable for small

embedded networks which have to reliably transfer small

amounts of critical data between nodes. CAN bus is

terminated on either ends by a 120 Ohm resistor. CAN will

define only physical and data link layers. The CAN physical

layer connects the CAN controller to the physical bus wires.

A CAN network is made up of group of nodes. Each node can

communicate with any other node. In CAN network, higher

priority is given lower CAN-ID. Every node that wants to

acquire the bus will be continuously monitoring the bus.

When the bus becomes free, all the nodes that were

monitoring for the bus will be considered. A device (node)

with lowest CAN ID will acquire the bus for the transmission

without any loss of control or data. Other nodes will pull

back and try again when bus is free. This means at least one

of the messages will be transmitted without loss of data. This

behavior is significantly different than what is seen in popular

networks like Ethernet CSMA/CD protocol. Ability to

address bus contention allows errors and exceptions to be

easily handled on a CAN bus. The Controller Area Network

(CAN) efficiently supports distributed real-time control with a

very high level of security. Its domain of application ranges

from high speed networks to low cost multiplex wiring. In

Node1 Node2 Node n Node3

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.21, May 2012

7

automotive electronics, engine control units, sensors, anti-

skid-systems, etc. are connected using CAN with bitrates up

to 1 Mbps. At the same time it is cost effective to build into

vehicle body electronics, e.g. lamp clusters electric windows

etc to replace the wiring harness. CAN was developed

specifically to realize a number of features suited to

embedded systems design including high bit rate allowing real

time speeds, high immunity to electrical interference,

advanced error detection and confinement capabilities, low

cost per node and fewer electrical connections, simple to

implement and configure, reducing design time, high

reliability and guaranteed transmission times for prioritized

messages.

The message transfer process in CAN bus is controlled by

four different types of frames; viz., Data Frame, Remote

Frame, Error Frame and Overload Frame.

Data frame carries data from transmitters to receivers. A data

frame is produced by a CAN bus node when the node wishes

to transmit data or if this is requested by another node. Up to

8 byte data can be transported within a frame. Data frame

consists of seven bit fields. The figure 2 indicates the

structure of data frame.

Fig 2: Data Frame

SOF: Start of frame has only one dominant bit. A station

is allowed to start transmission when the bus is idle. All

stations will synchronize at positive edge of start of frame

during the first transmission.

Arbitration Field: Arbitration field consists of 12 bits. It is

divided into two sections; as Identifier and RTR bit. The

identifier‟s length is 11 bits. These bits are transmitted in the

order from ID-10 to ID-0. The least significant bit is ID-0.

The 7 most significant bits (ID-10 to ID-4) may be of any

combination but it must not be all recessive bits. In data

frame‟s the Remote Transmission Request bit has to be

dominant. Within a remote frame, the RTR bit has to be

recessive [5].

Control Field: The control field consists of six bits. It

includes the Data Length Code and two bits reserved for

future expansion. The reserved bits have to be sent dominant.

Receivers accept dominant and recessive bits in all

combinations. The number of bytes in the data field is

indicated by the data length code, which is of 4 bits wide and

it should be transmitted within the control field.

Data Field: The data field consists of the data or message

which is to be transferred within a data frame. It can contain

from 0 to 8 bytes, which each contain 8 bits which are

transferred MSB first.

CRC Field: It contains the CRC sequence followed by a CRC

delimiter. CRC sequence is of fifteen bits wide; this CRC

sequence is calculated by the polynomial and this sequence is

followed by the CRC delimiter which consists of a single

recessive bit.

ACK Field: The acknowledgement field is two bits long and

contains the ACK slot and the ACK delimiter [5]. In the

acknowledgement field, the transmitting station sends two

recessive bits. A receiver which has received a valid message

correctly, reports this to the transmitter by sending a dominant

bit during the ACK slot. All stations having received the

matching CRC sequence report this within the ACK slot by

super scribing the recessive bit of the transmitter by a

dominant bit. The ACK delimiter is the second bit of the ACK

field and it should be a recessive bit.

EOF: Data frame ends with End of Frame which consists of

seven recessive bits.

I2C was developed by Philips Semiconductors. It allows

synchronous transfer of data over two wires, one for data

(SDA) and the other for clock (SCL). I2C protocol defines

the concept of master and slave devices. The bit transfer takes

place as referred in the [6]. Figure 3 shows the status of SDA

and SCL during START and STOP conditions during the data

transfer. START and STOP conditions are always generated

by the master. The bus is considered to be busy after the

START condition and free after the STOP condition. Every

byte put on the SDA line is of 8-bits long. We can send any

number of data bytes. Each byte has to be followed by an

acknowledge bit. Data is transferred with the most significant

bit (MSB) first. A receiver can‟t receive another complete

byte of data until it has performed some other function, for

example servicing an internal interrupt, it can hold the clock

line SCL low to force the transmitter into a wait state. Data

transfer then continues when the receiver is ready for another

byte of data and releases clock line SCL.

Fig 3: Data Transfer on I2C Bus

S

O

F

Arbitration

Field

Control

Field

Data

Field

CRC

Field

ACK

Field

E

O

F

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.21, May 2012

8

The transmitter can be sure that the data was read by the

receiver without any error only when the receiver

acknowledges the reception. If the data packet and

acknowledgement packet are sent separately, there is always a

doubt whether the error was in receiving data or the

acknowledgement packet, forcing the transmitter to resend the

data. So, acknowledgement is often a part of the data packet

itself, only that it is not originated by the transmitter but by

the receiver. In I2C, the acknowledge-phase handshaking is

described. The transmitter releases the SDA line (making it

high), clock pulse is generated by the master, the receiver

must pulls down the SDA line if there is no error, if there was

error in reception, receiver leaves SDA line high, receiver

maintains SDA line status till the clock goes low. When a

slave-receiver doesn‟t acknowledge the slave address, the data

line must be left high by the slave. The master can then

generate a STOP condition to abort the transfer. If a slave-

receiver does acknowledge the slave address but, sometime

later in the transfer cannot receive any more data bytes, the

master must again abort the transfer. This is indicated by the

slave generating the not acknowledge on the first byte to

follow. The slave leaves the data line high and the master

generates the STOP condition. If a master-receiver is

involved in a transfer, it must signal the end of data to the

slave-transmitter by not generating an acknowledgement on

the last byte that was clocked out of the slave. The slave-

transmitter must release the data line to allow the master to

generate a STOP or repeated START condition.

3. DESIGN AND IMPLEMENTATION
It has been designed in a bottom up approach. Before

designing it in Verilog, the various standalone CAN

controllers are studied; such as SJA1000 [7] developed by

Philips and MCP2515 standalone CAN controllers developed

by Microchip. One of the primary reasons for designing in

bottom up approach was that a purely behavioral design

would take away an opportunity to learn many aspects of

digital circuit design. It does not have any ready modules to

plug-in into a behavioral design and not uses any existing

designs but built. Second reason to take up a bottom up

approach was that it would give an opportunity to start

building a module library of any designer. All the

fundamental concepts of digital blocks [8] are studied and the

basic knowledge or concepts related to Verilog [9] [10] is

studied.

3.1 I2C slave transmitter
The figure 4 shows the block diagram of I2C transmitter in

slave mode. Here data is the 8 bit value or message which is

to be transmitted. The data is transmitted through sda line.

The active low acknowledgement which is indicated by „nack‟

is the input for transmitter and output from the receiver. The

I2C slave transmitter is designed based on finite state

machine. The figure 5 shows the Finite State Machine of I2C

slave transmitter.

Fig 4: Block Diagram of I2C Slave Transmitter

Fig 5: Finite State Machine of I2C Slave Transmitter

Before actual transmission takes place, the data which is to be

transmitted is loaded into the register „trBuff‟. This loading

of data takes place in fsm 0. In the 1st finite state machine,

„start bit‟ is enabled and the start bit is enabled when sda=0

and scl=1. This is explained briefly in the literature survey of

I2C. Then after the data loading; the „dataLoaded‟ becomes

high. In 2nd finite state machine, „busy‟ variable get set; it

indicates that the transmission has started. In 3rd finite state

machine; MSB of trBuff get transmitted on the sda line and

the remaining bits. At the same time the counter starts

counting. When it reaches counting up to 8, finite state

machine changes to 4th state. On the 9th clock,

acknowledgement bit get set. The „nack‟ represents the active

low acknowledgement bit; if nack=0 then it indicates that data

is transmitted successfully; else it will raise the trErr flag that

data is not transmitted correctly. In the 5th finite state machine

sda line goes high, which indicates the stop bit. The

simulation result of I2C slave transmitter on GTKWave is

shown in figure 6.

Fig 6: Simulation result of I2C Slave Transmitter.

3.2 I2C slave receiver
The figure 7 shows the block diagram of I2C receiver in slave

mode. Here data is the 8 bit value or message which is to be

received. The data is received through sda line. The active

low acknowledgement which is indicated by „nack‟ is the

output of the receiver and input for transmitter. The I2C slave

receiver is designed based on finite state machine. The figure

8 shows the Finite State Machine of I2C slave receiver. In the

finite state machine of zero, both scl and sda line are high i.e.

in idle condition. In the first finite state machine sda line goes

low, which indicates the start bit. The counter starts counting

when scl line goes low. In the finite state machine of 2; buffer

nack

Transmitter data

 scl

sda

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.21, May 2012

9

is cleared and data on sda line is taken into buffer. In finite

state machine 3; counter reaches ninth clock and gives

acknowledgement „nack‟, which indicates that transmitted

message is received successfully.

Fig 7: Block Diagram of Receiver

Fig 8: Finite State Machine of Receiver

In 4th finite state machine, sda line goes high, which indicates

the stop bit.

Fig 9: Simulation result of I2C Slave Receiver

3.3 CAN transmitter
The unit originating a message is called transmitter of that

message. The unit stays transmitter until the bus is idle or the

unit loses arbitration. Transmitter has been designed in

Verilog in mixed type of abstraction levels. Transmitter

module is the integration of blocks such as counter, d flip-

flop, jk flip-flop, frequency division counter, stuff logic

module and crc module.

The figure 10 represents the block diagram of CAN

transmitter. The dotted line separates the test bench and

transmitter module. The data which is to be transmitted is

copied into the „diCopy‟. This data is of according to CAN

data frame, which is described in section II. Frequency

division counter is used to generate the baud rate clock.

Before transmitting any message, stuff bit should be added for

the security purpose. The bit-stuff area in a CAN bus frame

includes the SOF, Arbitration field, Control field, Data field

and CRC field. While receiving the message, the stuff bit

should be removed and the original message should be

received. In the above block diagram of CAN transmitter, s1,

s2 and s3 are the three finite state machines.

Fig 10: Block Diagram of CAN Transmitter

 scl

 sda

 clr

 Receiver

dataReady

buff

nack

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.21, May 2012

10

In the s1 finite state machine, all the variables are initialized

and the data of five bits are given to the stuff logic. In second

finite state machine, data is copied into the variable „diCopy‟

and main counter continue the counting.

Fig 11: Simulation result of stuff bit

Fig 12: Simulation result of CAN Transmitter

All this process takes place when the transmit buffer is empty.

During the third state, generated CRC value is taken. The

CRC module works on baud rate clock. Among the above

processes whichever is true, that will be given to the stuff

logic, the stuff logic module has been described already. The

output of stuff logic is given to the D flip-flop, which stores

the data from stuff logic and from this, data will be

transmitted which is indicated by „TrOut‟. The figures 11 and

12 clearly represent the simulation result of CAN transmitter

with stuff bit.

4. CONCLUSION
The CAN bus transmitter soft-core (IP) is successfully

designed in Verilog. This can be interfaced with any

microcontroller which supports I2C. The CAN protocol is

very robust, simple and it can support for multi master. This

protocol can be used in industrial automation and other areas

like networked embedded control with applications in

products such as production machinery, medical equipment

and building automation. The CAN transmitter is designed

using Verilog which allows modeling of hardware

components, which cannot be supported effectively by any

other languages. The CAN receiver can be designed in future

by integrating some basic modules such as counters,

comparators, and stuff logic block along with acceptance

filter. To improve the performance, some modifications can

be made. A Digital Phase Locked Loop can be used for

frequency sampling, which will provide better frequency

synchronization and Multiple sampling of CAN bus input can

be done. Currently, implementation of a single sample per

clock has been done. Reliability can be increased by making

several samples within a clock.

5. ACKNOWLEDGMENTS

We are grateful to C-QUAD Computers, a software

developing company situated at Rani Channamma nagar,

Belgaum, for providing related documents and good

atmosphere for research work.

6. REFERENCES
[1] V. M. Aparanji and U. V. Wali, “Evolution of device

control networks and their standards”, presented in

„National Conference on Emerging Trends in control,

communication, signal processing and VLSI Techniques

CCSV-09‟ Oxford College of Engineering, Bangalore.

[2] U. V. Wali, “Plug and Play CAN”, Tutorial presented at

international Embedded Systems Conference, ESC India

2009, July 2009, Bangalore.

[3] RS 232 specification available:

http://www.lammertbies.nl/comm/info/RS-

232_specs.htm

[4] RS 485 specification available:

http://www.lammertbies.nl/comm/info/RS-485.html

[5] “CAN specification” Robert Bosch available:

http://www.semiconductors.bosch.de/pdf/can2spec.pdf

[6] “I2C specification” available: http://www.i2c-

bus.org/fileadmin/ftp/i2c_bus_specification_1995.pdf

[7] “APPLICATION NOTE: AN25.SJA1000 Stand-alone

CAN controller” Philips semiconductors.

[8] Charles H. Roth, Jr, “Fundamentals of Logic Design”, 5th

Ed., Thomson Brooks/Cole, 2004.

[9] Z. Navabi, “Verilog Digital System Design”, 2nd Ed.,

Tata McGraw Hill, New Delhi, 2008.

[10] Sameer Palnitkar, “Verilog HDL, A Guide to Digital

Design and Synthesis”, Sunsoft Press, 1996.

http://www.lammertbies.nl/comm/info/RS-
http://www.lammertbies.nl/comm/info/RS-485.html
http://www.semiconductors.bosch.de/pdf/can2spec.pdf

