
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.20, May 2012

 46

An Advanced Combined Symmetric Key Cryptographic
Method using Bit Manipulation, Bit Reversal, Modified

Caesar Cipher (SD-REE), DJSA method, TTJSA method:
SJA-I Algorithm

Somdip Dey

St. Xavier’s College
[Autonomous]
Kolkata, India.

Joyshree Nath
A.K.Chaudhuri School of IT,

Calcutta University

Kolkata, India.

Asoke Nath

St. Xavier’s College
[Autonomous]
Kolkata, India.

ABSTRACT

 In this paper, the authors propose a new combined symmetric

key cryptographic method, SJA-I, which basically has four

steps: Firstly, each byte is broken into its equivalent binary

format and then single bit manipulation is executed on that;

secondly Modified Caesar Cipher technique (SD-REE) and

TTJSA cipher algorithm are applied on the data (message)

randomly, which depends on the key provided during the time

for encryption; thirdly DJSA method applied and in the final

stage, Bit Reversal technique is applied to reach the final

encrypted form of the original data. The method applied here

is being tested on different plain text files and the results were

analyzed very carefully. It was found that there was no pattern

in the encrypted text and this combined cipher technique can

not be broken by usual cryptanalysis attack like, differential

attack, plain text attack, spectral analysis (frequency analysis),

etc. The authors proposes that SJA-I can be applied for

encryption of short message, password, secret key or any type

confidential message.

General Terms

Information Security; Modified Caesar Cipher in form of SD-

REE encryption method; TTJSA algorithm, which is a

combination of Modified Vernam Cipher with feedback +

MSA algorithm + NJJSA algorithm; DJSA algorithm, which

is a modified form of MSA.

Keywords

Caesar Cipher, TTJSA, MSA, NJJSA, UES, DJMNA,

SD-REE, SD-AREE, DJSA, Cryptography;

1. INTRODUCTION
In modern world, security is a big issue and securing

important data is very essential, so that the data can not be

intercepted or misused for illegal purposes. For example in

Internet Banking system, e-reservation system the security of

data is a very important issue. Under no circumstances the

intruder should be able to get into the server database or the

confidential data. In any type of service sectors the

confidentiality of data is a very important issue. The primary

goal of any system is that the data can not be modified by any

external user or intruder. So, different cryptographic methods

are used by different organizations and government

institutions to protect their data online. But, cryptography

hackers are always trying to break the cryptographic methods

or retrieve keys by different means. For this reason

cryptographers are always trying to invent different new

cryptographic method to keep the data safe as far as possible.

 Symmetric key algorithms are well accepted in the modern

communication network. The main advantage of symmetric

key cryptography is that the key management is very simple.

Only one key is used for both encryption as well as for

decryption purpose. There are many methods of implementing

symmetric key. In case of symmetric key method, the key

should never be revealed / disclosed to the outside world or to

other user and should be kept secure. The key should be

known to sender and the receiver only and no one else.

 Our present work, SJA-I is also symmetric key cryptographic

method, which is basically based on single bit manipulation

technique; generalized modified Caesar Cipher method (SD-

REE) [1] [14] [15]; TTJSA [2], which itself is based on

generalized modified Vernam Cipher [2], MSA [3] and

NJJSA [4]; DJSA method which is the extended version of

MSA and bit reversal technique. Depending on the key

entered by the user the functions of generalized modified

Caesar Cipher and TTJSA are called randomly and then

executed. The present method uses multiple times encryption

to encrypt the plain text data.

2. SJA-I CIPHER METHOD
In this method, the authors initially apply single bit

manipulation technique, where each byte is converted to its

binary format i.e. in 0s and 1s format. In this step first, the bits

are first shifted to its left and then reversed, which are

equivalent to the length of the password provided, and

secondly, the last 2 bits of the extreme ends are swapped with

each other. In second stage, a modified form of advanced

Caesar Cipher (SD-REE) [1] [14] [15] cryptographic

method is applied. In cryptography, a Caesar cipher, also

known as a Caesar's cipher or the shift cipher or Caesar's code

or Caesar shift, is one of the simplest and basic known

encryption techniques. It is a type of replacement cipher in

which each letter in the plaintext is replaced by a letter with a

fixed position separated by a numerical value used as a "key".

But, in this method, SJA-I, any character (ASCII value 0-255)

are not separated by a fixed numerical value, in fact it is a

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.20, May 2012

 47

variable numerical value, which is dependent on a non-linear

polynomial function.

Along with the second stage, TTJSA algorithm [2] is also

applied, which is basically a combined cryptographic method

of modified Vernam Cipher with feedback, so that there can

be existence of no pattern for different texts (messages), MSA

[3] and NJJSA [4] algorithms. MSA and NJJSA algorithms

are basically randomization cipher techniques, which are

applied on blocks of data. Thus, MSA and NJJSA are block

cipher techniques.

In the third stage, DJSA technique, which is a modified

extended form of MSA, is applied on the encrypted file,

which is an output of the previous stages.

And in the fourth and final stage, bit reversal technique is

applied, where all the bytes are again converted to its binary

format and then the whole bit sequence is reversed.

This present method is achieved by executing following

three stages:

Stage 1: Single Bit Manipulation

Stage 2: In Random manner:

(i) Encrypt the data using generalized

modified Caesar Cipher (SD-REE)

method

(ii) Encrypt data using TTJSA method

Stage 3: DJSA method

Stage 4: Bit Reversal

In this present method, SJA-I, the user enters a secret key

called as password and from that key we generate unique

codes, which are successively used to encrypt the message.

For decryption purpose we use just reverse process to get back

the original plain text. During decryption the user has to enter

the same secret key otherwise the decryption will not be

successful. Now, we will describe in details the encryption

procedure.

2.1. Single Bit Manipulation
In this stage, we convert each byte / character of the message

to be encrypted, to its binary equivalent. Now, length of

password is considered for bit left shift. i.e., Number of bits to

be shifted to left will be decided by the length of password.

Let L be the length of the password and LR be the number of

bits to be rotated to left and reversed (i.e. LR is the effective

length of password). The relation between L and LR is

represented by equation (1).

LR =L mod 7 ------ eq. (1)

,where ‗7‘ is the number of iterations required to reverse

entire input byte.

After this, the last two extreme positions of the bits are

swapped with each other to generate the final output

character, i.e. if the bit format is like [B8B7B6B5B4B3B2B1] for

input byte then B8 will be swapped with B1 and B7 will be

swapped with B2. Thus, the binary equivalent of the output

byte will become: [B1B2B6B5B4B3B7B8] after swapping of

bits.

For example,

Let Chin be any random character / byte from the message.

Then its binary equivalent will be: [B8B7B6B5B4B3B2B1] .
If the password provided for encryption is ―sandi‖, then LR=5

and the bits will be shifted by 5 positions to their left. Thus

CHin will become [B3B2B1B8B7B6B5B4] after left shift

and then [B3B2B1B4B5B6B7B8] after reversing. Then,

according to the algorithm the bits of extreme two sides are

swapped with each other at a time. Thus, the resultant binary

format is [B8B7B1B4B5B6B2B3].

Cin [B8B7B6B5B4B3B2B1]

[B8B7B1B4B5B6B2B3] Cout

2.2. Modified Caesar Cipher (SD-REE)
Dey et al proposed a new technique of modified Caesar

Cipher [14][15], SD-REE, which is dependent on the key

provided for encryption. From the key, we generate two

unique numbers called ‗code‘ and ‗power_ex‘, and these

numbers are used for the encryption purpose. This modified

Caesar Cipher is based on a non-linear polynomial function

and so, for this reason, every time it generates unique values,

which will be added to each byte, i.e. each byte are shifted a

different place every time using this modified Caesar Cipher

(SD-REE).

2.2.1. Generation of Code and power_ex from the

Secret Key:
The key is provided by the user in a string format and let the

string be ‗pwd[]‘. From the given key we generate two

numbers: ‗code‘ and ‗power_ex‘, which will be used for

encrypting the message. First we generate the ‗code‘ from the

pass key.

Generation of code is as follows:

To generate the code, the ASCII value of each character

of the key is multiplied with the string-length of the key and

with 2i, where ‗i‘ is the position of the character in the key,

starting from position ‗0‘ as the starting position. Then we

sum up the resultant values of each character, which we got

from multiplying, and then each digit of the resultant sum are

added to form the ‗pseudo_code‘. Then we generate the code

from the pseudo_code by doing modular operation of

pseudo_code by 16, i.e.

code = Mod(pseudo_code, 16).

If code=0, then we set code =pseudo_code

Generation of the ‗power_ex‘ is calculated as follows:

We generate power_ex from the pseudo_code generated from

the above method. We add all the digits of the pseudo_code

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.20, May 2012

 48

and assign it as temporary_power_ex. Then we do modular

operation on temporary_power_ex with code and save the

resultant as power_ex. i.e.

power_ex =Mod (temporary_power_ex, code)

If power_ex = 0 OR power_ex = 1, then we set power_ex =

code.

2.2.2. Encrypting the Message using ‘code’ and

‘power_ex’:
Now, we use the code and power_ex, generated from the key,

to encrypt the main text (message). We extract the ASCII

value of each character of the text (message to be encrypted)

and add the code with the ASCII value of each character.

Then with the resultant value of each character we add the

(power_ex)^i, where i is the position of each character in the

string, starting from ‗0‘ as the starting position and goes up to

n, where n=position of end character of the message to be

encrypted, and if position = 0, then (power_ex)^i = 0.

It can be given by the formula:

text[i] = text[i] + code + (power_ex)
i

If text[i] > 255 then, text[i] = Mod(text[i],256) : ‗i‘ is the

position of each character in the text and text[] is the message

to be encrypted, where text[i] denotes each character of the

text[] at position ‗i‘.

2.2.3. Algorithm for Decryption (Modified Caesar

Cipher):
For this step we basically reverse the process of encryption

technique used in the modified Caesar Cipher. And use the

following formula:

text[i] = text[i] - code - (power_ex)
i

Note: If, ASCII value of text[i] < 0, then, set

text[i] = Mod (text[i], 256); ‗i‘ is the position of each

character in the text and text[] is the message to be encrypted,

where text[i] denotes each character of the text[] at position

‗i‘.

2.3. Encrypt the data using TTJSA:
TTJSA method is a combination of 3 distinct cryptographic

methods, namely, (i) Generalized Modified Vernam Cipher

Method, (ii) MSA method and (iii) NJJSA method. To begin

the method a user has to enter a text-key, which may be at

most 16 characters in length. From the text-key the

randomization number and the encryption number is

calculated using a method proposed by Nath et al. A minor

change in the text-key will change the randomization number

and the encryption number quite a lot. The method have also

been tested on various types of known text files and have been

found that, even if there is repetition in the input file, the

encrypted file contains no repetition of patterns.

2.3.1. Algorithm of TTJSA (Encryption):
Step 1: Start

Step 2: Initialize the matrix mat[16][16] with numbers 0 to

255 in row major wise.

Step 3: call keygen() to calculate randomization number

(=times), encryption number (=secure)

Step 4: call randomization() function to randomize the

contents of mat[16][16].

Step 5: times2=times

Step 6: copy file f1 into file2

Step 7: k=1

Step 8: if k>secure go to Step 15

Step 9: p=k%6

Step 10: if p=0 then

 call vernamenc(file2,outf1)

 times=times2

 call njjsaa(outf1,outf2)

 call msa_encryption(outf2,file1)

 else if p=1 then

 call vernamenc(file2,outf1)

 times=times2

call msa_encryption(outf1,file1)

call file_rev(file1,outf1)

call njjsaa(outf1,file2)

call msa_encryption(file2,outf1)

call vernamenc(outf1,file1)  

 times=times2

 else if p=2 then

call msa_encryption(file2,outf1)

call vernamenc(outf1,outf2)  

set times=times2

call njjsaa(outf2,file1)

else if p=3 then

 call msa_encryption(file2,outf1)

 call njjsaa(outf1,outf2)

 call vernamenc(outf2,file1)

 times=times2

else if p=4 then

 call njjsaa(file2,outf1)

 call vernamenc(outf1,outf2)

 times=times2

 call msa_encryption(outf2,file1)

else if p=5 then

 call njjsaa(file2,outf1)

 call msa_encryption(outf1,outf2)

 call vernamenc(outf2,file1)

 times=times2

Step 11: call function file_rev(file1,outf1)

Step 12: copy file outf1 into file2

Step 13: k=k+1

Step 14: goto Step 8

Step 15: End

2.3.2. Algorithm of vernamenc(f1,f2):
Step 1: Start vernamenc() function

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.20, May 2012

 49

Step 2: The matrix mat[16][16] is initialized with numbers 0-

255 in row major wise order

Step 3: call function randomization() to

 randomize the contents of mat[16][16].

Step 4: Copy the elements of random matrix

 mat[16][16] into key[256] (row major wise)

Step 5: pass=1, times3=1, ch1=0

Step 6: Read a block from the input file f1 where number of

characters in the block 256 characters

Step 7: If block size < 256 then goto Step 15

Step 8: copy all the characters of the block into an array

str[256]

Step 9: call function encryption where str[] is passed as

parameter along with the size of the current block

Step 10: if pass=1 then

 times=(times+times3*11)%64

 pass=pass+1

else if pass=2 then

 times=(times+times3*3)%64

 pass=pass+1

else if pass=3 then

 times=(times+times3*7)%64

 pass=pass+1

else if pass=4 then

 times=(times+times3*13)%64

 pass=pass+1

else if pass=5 then

 times=(times+times3*times3)%64

 pass=pass+1

else if pass=6 then

 times=(times+times3*times3*times3)%64

 pass=1

Step 11: call function randomization() with

 current value of times

Step 12: copy the elements of mat[16][16] into

 key[256]

Step 13: read the next block

Step 14: goto Step 7

Step 15: copy the last block (residual character if any) into

str[]

Step 16: call function encryption() using str[] and the no. of

residual characters

Step 17: Return

2.3.3. Algorithm of function encryption(str[],n):
Step 1: Start encryption() function

Step2: ch1=0

Step 3: calculate ch=(str[0]+key[0]+ch1)%256

Step 4: write ch into output file

Step 5: ch1=ch

Step 6: i=1

Step 7: if in then goto Step 13

Step 8: ch=(str[i]+key[i]+ch1)%256

Step 9: write ch into the output file

Step 10: ch1=ch

Step 11: i=i+1

Step 12: goto Step 7

Step 13: Return

2.3.4. Algorithm for Decryption:
Step 1: Start

Step 2: initialize mat[16][16] with 0-255 in row major wise

Step 3: call function keygen() to generate times

and secure

Step 4: call function randomization()

Step 5: set times2=times

Step 6: call file_rev(f1,outf1)

Step 7: set k=secure

Step 8: if k<1 go to Step 15

Step 9: call function file_rev(outf1,file2)

Step 10: set p=k%6

Step 11: if p=0 then

call msa_decryption(file2,outf1)

call njjsaa(outf1,outf2)  

call vernamdec(outf2,file2)  

times=times2

else if p=1 then

call function vernamdec(file2,outf1)

set times=times2

call function msa_decryption(outf1,outf2)

call fumction njjsaa(outf2,file2)

call function file_rev(file2,outf2)

call function msa_decryption(outf2,outf1)

call function vernamdec(outf1,file2)

times=times2

else if p=2 then

call njjsaa(file2,outf1)

call vernamdec(outf1,outf2)

times=times2

call msa_decryption(outf2,file2)

else if p=3 then

call vernamdec(file2,outf1)

times=times2

call njjsaa(outf1,outf2)

call msa_decryption(outf2,file2)

else if p=4 then

call msa_decryption(file2,outf1)

call vernamdec(outf1,outf2)

times=times2

call njjsaa(outf2,file2)

else if p=5 then

call vernamdec(file2,outf1)

times=times2

call msa_decryption(outf1,outf2)

call njjsaa(outf2,file2)

Step 12: copy the content of file2 to outf1

Step 13: set k=k-1

Step 14: Goto Step 8

Step 15: End

2.3.5. Algorithm of function vernamdec(f1,f2):
The algorithm of vernamdec() function is same as

vernamenc() function. Here the only difference is that

decryption() function is called instead of encryption()

function.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.20, May 2012

 50

2.3.6. Algorithm of decryption(str[],n):
Step 1: Start

Step 2: ch1=0

Step 3: ch=(256+str[0]-key[0]-ch1)%256

Step 4: write ch into the output file

Step 5: i=1

Step 6: if in then goto Step 12

Step 7: ch=(256+str[i]-key[i]-str[i-1]) %256

Step 8: write ch into the output file

Step 9: i=i+1

Step 10: goto Step 6

Step 11: ch1=str[n-1]

Step 12: Return

2.3.7. Algorithm of function file_rev(f1,f2):
Step 1: Start

Step 2: open the file f1 in input mode

Step 3: open the file f2 in output mode

Step 4: calculate n=sizeof(file f1)

Step 5: move file pointer to n

Step 6: read one byte

Step 7: write the byte on f2

Step 8: n=n-1

Step 9: if n>=1 then goto step-6

Step 10: close file f1, f2

Step 11: Return

2.3.8. NJJSAA ALGORITHM:
Nath et al. [2] proposed a method which is basically a bit

manipulation method to encrypt or to decrypt any file.

The encryption number (=secure) and randomization number

(=times) is calculated according to the method mentioned in

MSA algorithm [1].

Step 1: Read 32 bytes at a time from the input file.

Step 2: Convert 32 bytes into 256 bits and store in some 1-

dimensional array.

Step 3: Choose the first bit from the bit stream and also the

corresponding number(n) from the key matrix. Interchange

the 1st bit and the n-th bit of the bit stream.

Step 4: Repeat step-3 for 2nd bit, 3rd bit...256-th bit of the bit

stream

Step 5: Perform right shift by one bit.

Step 6: Perform bit(1) XOR bit(2), bit(3) XOR

bit(4),...,bit(255) XOR bit(256)

Step 7: Repeat Step 5 with 2 bit right, 3 bit right,...,n bit right

shift followed by Step 6 after each completion of right bit

shift.

2.3.9. MSA (MEHEBOOB, SAIMA, ASOKE)

ENCRYPTION AND DECRYPTION

ALGORITHM:
Nath et al. [3] proposed a symmetric key method where they

have used a random key generator for generating the initial

key and that key is used for encrypting the given source file.

MSA method is basically a substitution method where we take

2 characters from any input file and then search the

corresponding characters from the random key matrix and

store the encrypted data in another file. MSA method provides

us multiple encryptions and multiple decryptions. The key

matrix (16x16) is formed from all characters (ASCII code 0 to

255) in a random order.

The randomization of key matrix is done using the

following function calls:

Step-1: call Function cycling()

Step-2: call Function upshift()

Step-3: call Function downshift()

Step-4: call Function leftshift()

Step-5: call Function rightshift()

Note: Cycling, upshift, downshift, leftshift, rightshift are

matrix operations performed (applied) on the matrix, formed

from the key.

2.4. DJSA Algorithm
DJSA algorithm [6] is the extended version of MSA[3]. In

DJSA the key matrix is defined as 256 x 256 and in each cell

we store all possible two lettered words. The key matrix is

randomized using extended MSA [6] randomization method.

The encryption method of DJSA method is very similar to

MSA except we read 4 characters from the plain text file and

then split into two words. Then we have to search the key

matrix whose size is 256x256. Here the encryption procedure

is same as described in MSA. DJSA is very effective to

encrypt small file. It works quite well provided the repetition

of characters are less in a file. DJSA algorithm already tested

on normal text file, image or audio or video file and we found

it works quite successfully. But again this method is not free

from cryptographic attack such as differential attack, known

plain text attack etc.

2.5. Bit Reversal Technique
In this method we take the encrypted message, which we got

from our previous stages and encrypt it for the last time. In

this final stage, each byte is taken from the encrypted message

and then converted to its binary format again. Then the whole

sequence of the bits in the binary format is reversed.

i.e. If [B8B7B6B5B4B3B2B1] be the binary format of each

byte, then the sequence of bits are reversed and the final

encrypted form of each byte is [B1B2B3B4B5B6B7B8].

[B1B2B3B4B5B6B7B8] FINAL

ENCRYPTED FORM OF EACH BYTE

3. PROPOSED METHOD IN BLOCK

DIAGRAM
In this section, we briefly show the idea of the proposed

method in the form of block diagram:

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.20, May 2012

 51

Figure: Block Diagram to Represent the Proposed Method

SJA-I

4. RESULTS AND DISCUSSIONS
This method, SJA-I is used to encrypt different types of

data and few results are given below:

Message Encrypted Message

8 ASCII Value (1) ¿L_ü¬xäüÑ

8 ASCII Value (2) 0Ä„#nÐ�‘•

8 ASCII Value (4) IªF‗šöyG

8 ASCII Value (8) üo¹qâ0çg0

8 ASCII Value (255) ±z^Wü�¿´T

Lord Jesus Christ Son
Of God Have A Mercy

On Me A Sinner

�Ý]ØE+ÿÏ�Hšâ*G–

Ü›�c‚―‹Ê0—

öãéðåÁ�bÇNLE/Ê¾³ÉÏîW

5. SPECTRAL ANALYSIS AND

CRYPTANALYSIS
One of the classical cryptanalysis method used is by

detecting the frequency of characters in the encrypted text

(message). So to test the effectiveness of SJA-I method,

spectral analysis of the frequency of characters are closely

observed. Using this method, SJA-I, we ran many analysis

and tested different strings as input and used various methods

of cryptanalysis. To show the usefulness and integrity of this

cryptographic module, we used spectral analysis of the

frequency of characters.

First, as a test case we chose, a file which contained 128 bytes

of ASCII value (1) and used this method to encrypt the data.

Fig 1.1 shows the spectral analysis of frequency of characters

of 128 ASCII value (1) and Fig 1.2 shows the spectral

analysis of frequency of characters of the encrypted data.

Fig 1.1: Spectral Analysis of Frequency of Characters of

128 ASCII Value (1)

Fig 1.2: Spectral Analysis of Frequency of Characters of

Encrypted data of 128 ASCII value (1)

As 2nd Test case, we chose a random text file of size

1024 bytes. The spectral analysis of the frequency of

characters of the text file is shown in Fig 2.1 and Fig 2.2

shows the spectral analysis of frequency of characters of

encrypted text.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.20, May 2012

 52

Fig 2.1: Spectral Analysis of frequency of characters of an

ordinary text file

Fig 2.2: Spectral Analysis of frequency of characters of

the encrypted text file

As 3rd Test case, we chose a file containing 128 bytes of

ASCII value (255). The spectral analysis of the frequency of

characters of the file is shown in Fig 3.1 and Fig 3.2 shows

the spectral analysis of the frequency of characters of the

encrypted file.

Fig 3.1: Spectral Analysis of Frequency of Characters of 128

bytes of ASCII value (255)

Fig 3.2: Spectral Analysis of Frequency of Characters of 128

bytes of Encrypted ASCII value (255)

Thus, from the above spectral analysis it is evident that

the method, SJA-I, used here is very effective and there is no

trace of any pattern in the encryption technique.

Since this cryptographic technique uses multiple bit and

byte level encryption multiple times, for this reason, the

method used here is unique and almost unbreakable because

there is no trace of any pattern. And this method is also

effective against both Differential Cryptanalysis (Differential

Attack) and Brute-Force Attack.

6. CONCLUSION AND FUTURE

SCOPE
In the present work, SJA-I, we use four different

algorithms to make the encryption process unbreakable from

standard cryptographic attacks. That is evident from our

results also. We have applied our method on some known

text, where the same character repeats for a number of times

and we have found that after encryption there is no repetition

of pattern in the output file. We have tested this feature

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.20, May 2012

 53

closely and have found satisfactory results in almost all cases.

This has been possible as we have used modified Caesar

Cipher method (SD-REE) with non-linear polynomial

function, modified Vernam Cipher method with feedback

mechanism and also NJJSAA, MSA and DJSA methods. The

present method uses both byte-wise encryption, as well as bit-

wise encryption. We propose that this encryption method can

be applied for data encryption and decryption in banks,

defense, mobile networks, ATM networks, government

sectors, etc. for sending confidential data. The above method

i,.e SJA-I method, may be further strengthened using

additional bit manipulation method and we have already

started to work on it.

7. ACKNOWLEDGMENTS
Somdip Dey (SD) expresses his gratitude to all his fellow

students and faculty members of the Computer Science

Department of St. Xavier‘s College [Autonomous], Kolkata,

India, for their support and enthusiasm. AN is grateful to Dr.

Fr. Felix Raj, Principal St. Xavier‘s College, Kolkata for

giving opportunity to work in the field of data encryption,

data hiding and retrieval.

8. REFERENCES
[1] http://www.purdue.edu/discoverypark/gk12 /

downloads/Cryptography.pdf

[2] Symmetric key cryptosystem using combined

cryptographic algorithms - Generalized modified

Vernam Cipher method, MSA method and NJJSAA

method: TTJSA algorithm ― Proceedings of Information

and Communication Technologies (WICT), 2011 ― held

at Mumbai, 11th – 14th Dec, 2011, Pages:1175-1180.

[3] Symmetric Key Cryptography using Random Key

generator: Asoke Nath, Saima Ghosh, Meheboob Alam

Mallik: ―Proceedings of International conference on

security and management(SAM‘10‖ held at Las Vegas,

USA Jull 12-15, 2010), P-Vol-2, 239-244(2010).

[4] New Symmetric key Cryptographic algorithm using

combined bit manipulation and MSA encryption

algorithm: NJJSAA symmetric key algorithm: Neeraj

Khanna,Joel James,Joyshree Nath, Sayantan

Chakraborty, Amlan Chakrabarti and Asoke Nath :

Proceedings of IEEE CSNT-2011 held at

SMVDU(Jammu) 03-06 June 2011, Page 125-

130(2011).

[5] Advanced Symmetric key Cryptography using extended

MSA method: DJSSA symmetric key algorithm: Dripto

Chatterjee, Joyshree Nath, Soumitra Mondal, Suvadeep

Dasgupta and Asoke Nath, Jounal of Computing, Vol3,

issue-2, Page 66-71,Feb(2011)

[6] A new Symmetric key Cryptography Algorithm using

extended MSA method :DJSA symmetric key

algorithm, Dripto Chatterjee, Joyshree Nath, Suvadeep

Dasgupta and Asoke Nath : Proceedings of IEEE CSNT-

2011 held at SMVDU(Jammu) 3-5 June,2011, Page-89-

94(2011).

[7] Symmetric key Cryptography using modified DJSSA

symmetric key algorithm, Dripto Chatterjee, Joyshree

Nath, Sankar Das, Shalabh Agarwal and

Asoke Nath, Proceedings of International conference

Worldcomp 2011 held at LasVegas 18-21 July 2011,

Page-306-311, Vol-1(2011).

[8] An Integrated symmetric key cryptography algorithm

using generalized vernam cipher method and DJSA

method: DJMNA symmetric key algorithm : Debanjan

Das, Joyshree Nath, Megholova Mukherjee, Neha

Chaudhury and Asoke Nath: Proceedings of IEEE

International conference : World Congress WICT-2011

to be held at Mumbai University 11-14 Dec, 2011, Page

No.1203-1208(2011). .

[9] Symmetric key Cryptography using two-way updated –

Generalized Vernam Cipher method: TTSJA algorithm,

Trisha Chatterjee, Tamodeep Das, Shayan dey, Joyshree

Nath, Asoke Nath , International Journal of Computer

Applications(IJCA, USA), Vol 42, No.1, March, Pg: 34

-39(2012).

[10] Ultra Encryption Standard(UES) Version-I: Symmetric

Key Cryptosystem using generalized modified

Vernam Cipher method, Permutation method and

Columnar Transposition method,

[11] Satyaki Roy, Navajit Maitra, Joyshree Nath,Shalabh

Agarwal and Asoke Nath, Proceedings of IEEE

sponsored National Conference on Recent Advances in

Communication, Control and Computing Technology-

RACCCT 2012, 29-30 March held at Surat, Page 81-

88(2012).

[12] Peter Montgomery, ―Modular Multiplication Without

Trial Division,‖ Math. Computation, Vol. 44, pp. 519–

521, 1985.

[13] W. Hasenplaugh, G. Gaubatz, and V. Gopal, ―Fast

Integer Reduction,‖ 18th IEEE Symposium on

Computer Arithmetic (ARITH ‘07), pp. 225– 229, 2007.

[14] Somdip Dey, ―SD-REE: A Cryptographic Method To

Exclude Repetition From a Message‖, Proceedings of

The International Conference on Informatics &

Applications (ICIA 2012), Malaysia, p. 182 – 189.

[15] Somdip Dey, ―SD-AREE: A New Modified Caesar

Cipher Cryptographic Method Along with Bit-

Manipulation to Exclude Repetition from a Message to

be Encrypted‖, Journal: Computing Research

Repository - CoRR, vol. abs/1205.4279, 2012.

