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ABSTRACT 
Smoothing techniques adjust the maximum likelihood estimate 

of probabilities to produce more accurate probabilities. This is 

one of the most important tasks while building a language 

model with a limited number of training data. Our main 

contribution of this paper is to analyze the performance of 

different smoothing techniques on n-grams. Here we 

considered three most widely-used smoothing algorithms for 

language modeling: Witten-Bell smoothing, Kneser-Ney 

smoothing, and Modified Kneser-Ney smoothing. For the 

evaluation we use BLEU (Bilingual Evaluation Understudy) 

and NIST (National Institute of Standards and Technology) 

scoring techniques. A detailed evaluation of these models is 

performed by comparing the automatically produced word 

alignment. We use Moses Statistical Machine Translation 

System for our work (i.e.Moses decoder, GIZA++, mkcls, 

SRILM, IRSTLM, Pharaoh, BLEU Scoring Tool). Here 

machine translation approach has been tested on German to 

English and English to German task. Our obtain results are 

significantly better than those obtained with alternative 

approaches to machine translation. This paper addresses several 

aspects of Statistical Machine Translation (SMT). The 

emphasis is put on the architecture and modeling of an SMT 

system. 

 Keywords 
Machine Translation, SMT, smoothing, n-gram, parallel 

corpora, BLEU, NIST. 

 

1. INTRODUCTION 
Machine translation, sometimes referred to by the abbreviation 

MT, is a sub-field of computational linguistics that investigates 

the use of computer software to translate text or speech from 

one natural language to another. Current machine translation 

software often allows for customization by domain or 

profession (such as weather reports), improving output by 

limiting the scope of allowable substitutions.  

This technique is particularly effective in domains where 

formal or formulaic language is used. It follows that machine 

translation of government and legal documents more readily 

produces usable output than conversation or less standardized 

text. 

Improved output quality can also be achieved by human 

intervention: for example, some systems are able to translate 

more accurately if the user has unambiguously identified which 

words in the text are names. With the assistance of these 

techniques, MT has proven useful as a tool to assist human 

translators and, in a very limited number of cases, can even 

produce output that can be used as is (e.g., weather reports)[1]. 

The machine translation process may be stated as: a) Decoding 

the meaning of the source text and b) Re-encoding this 

meaning in the target language. 

 

Statistical Machine Translation (SMT) utilizes statistical 

translation models whose parameters stem from the analysis of 

monolingual and bilingual corpora [2]. Statistical machine 

translation is based on a channel model.  Given  a  sentence  S  

in  one  language  (German)  to  be  translated  into  another  

language  (English),  it  considers T  as  the  target  of  a  

communication  channel,  and  its  translation  S  as  the  source 

of the  channel. [3] 

 

Statistical machine translation has emerged as the dominant 

paradigm in machine translation research. In statistical machine 

translation, it using probabilities which are estimated using 

collections of translated texts, called parallel corpora. 

 

If we assign  a  probability P(S | T)  to  each  pair  of sentences  

(S,  T),  then  the problem  of  translation  is  to  find  the  

source  S  for  a given  target  T,  such  that  P(S | T)  is  the 

maximum. According to Bayes rule, [13] 

P S T =
P S P(T|S)

P(T)
 

  Since the denominator is independent of S, we have 

Ŝ = args max P S P(T|S) 

 

Statistical machine translation system must deal with the 

following three phrases [3]. Modeling Most statistical machine 

translation systems use N-gram for language modeling. 

Translation models rely on the concept of alignment. Training 

(or Parameter estimation) Training the free model parameters 

of the chosen statistical translation model using parallel and 

monolingual training data. Search (or decoding) The decoding 

algorithm is another crucial part of the statistical machine 

translation. Its performance directly affects translation quality 

and efficiency. 

2. LANGUAGE MODELING AND N-

GRAM MODELS 
A language model is usually formulated as a probability 

distribution P(S) over string S that attempts to reflect, how 

frequently a string S occurs as a sentence. For example, for a 

language model describing spoken dialog, we might have 

P(HELLO) ≈ 0.01 since perhaps one out of every hundred 

sentences a person speaks is HELLO. On the other hand, we 

would have P(VOLVIC MONKEY MANGO PAPER) ≈ 0 and 

P(DOVE SYSTEM FUNKY) ≈ 0 seems it is extremely 

unlikely anyone would utter either string. Unlike the 

linguistics, grammatically it is irrelevant in language modeling; 

even though the string DOVE SYSTEM FUNKY is 

grammatical, we still assign a near-zero probability. 

The most widely language models, by far n-gram language 

model. We introduce these models by considering the case  

n=2; this models are called bigram models. First, we notice that 

for the sentence S composed of the words w1, w2, … wl, 

without loss of generality we can express P(S) as 

http://en.wikipedia.org/wiki/Translation_process
http://en.wikipedia.org/wiki/Decoding
http://en.wikipedia.org/wiki/Meaning_%28linguistic%29
http://en.wikipedia.org/wiki/Source_text
http://en.wikipedia.org/wiki/Encoding
http://en.wikipedia.org/wiki/Meaning_%28linguistic%29
http://en.wikipedia.org/wiki/Target_language
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In bigram models, we making the approximation that the 

probability of the word depends only on the identity of the 

immediately preceding word, giving us-

 
For 3-gram will give us- 

 
 

3. SMOOTHING SCHEME 
The term smoothing describes techniques for adjusting the 

maximum likelihood estimate of probabilities to produce more 

accurate probabilities. The name smoothing comes from the 

fact that these techniques tend to make distributions more 

uniform, by adjusting low probabilities such as zero 

probabilities upward, and high probabilities downward. 

Smoothing method generally not only prevents zero 

probabilities, but they also attempt to improve the accuracy of 

the model as a whole. Here, we used the most widely-used 

smoothing algorithms for language modeling: Witten-Bell 

smoothing, Kneser-Ney smoothing and modified Kneser-Ney 

smoothing. 

 

3.1 Witten Bell Smoothing 

Witten Bell smoothing was developed for the task of text 

compression and can be considered to be an instance of 

Jelinek-Mercer smoothing. The n-th order smoothed model  are 

defined recursively as a linear interpolation between the nth 

order maximum likelyhood model and the (n-1)th order smooth 

model as following equation- 

𝑝𝑊𝐵 𝑤𝑖 𝑤𝑖−𝑛+1
𝑖−1  = 𝜆𝑤𝑖−𝑛+1

𝑖−1 𝑝𝑀𝐿 𝑤𝑖 𝑤𝑖−𝑛+1
𝑖−1  

+  1 − 𝜆𝑤𝑖−𝑛+1
𝑖−1  𝑝𝑊𝐵(𝑤𝑖|𝑤𝑖−𝑛+2

𝑖−1 ) 

  To compute the parameter 𝜆𝑤𝑖−𝑛+1
𝑖−1  for Witten-Bell smoothing, 

we will need to use the number of unique words follow the 

history 𝑤𝑖−𝑛+1
𝑖 . We can write the value as formally defined as 

𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ● = |{𝑤𝑖 : 𝑐(𝑤𝑖−𝑛+1

𝑖−1 𝑤𝑖) > 0}| 
  The notation N1+ is meant to evoke the number of words that 

have one or more counts, and the ● formally defined as 

1 + 𝜆𝑤𝑖−𝑛+1
𝑖−1 =

𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ● 

𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ● +  𝑐(𝑤𝑖−𝑛+1

𝑖 )𝑤𝑖

 

  Substituting, we can rewrite equation as 

𝑝𝑊𝐵 𝑤𝑖 𝑤𝑖−𝑛+1
𝑖−1  

=
𝑐(𝑤𝑖−𝑛+1

𝑖 + 𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ● 𝑝𝑊𝐵 𝑤𝑖 𝑤𝑖−𝑛+2

𝑖−1  

 𝑐(𝑤𝑖−𝑛+1
𝑖 )𝑤𝑖

+ 𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ● 

 

 

  To motivate Witten-Bell smoothing, with probability 𝝀𝒘𝒊−𝒏+𝟏
𝒊−𝟏  

we should use the higher order model, and with probability 

 𝟏 + 𝝀𝒘𝒊−𝒏+𝟏
𝒊−𝟏  we should use the lower order model. The Good-

Turing estimate provides another perspective on the estimation 

of the probability of novel words following a history. The 

Good-Turing estimate predicts that the probability of an event 

not seen in the training data is n1/N, the fraction of counts 

devoted to items that occur exactly once[4],[10]. Translating 

this value into the previous notation, we get- 

𝑁1(𝑤𝑖−𝑛+1
𝑖−1 ●)

 𝑐(𝑤𝑖−𝑛+1
𝑖 )𝑤𝑖

 

Where,  

𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ● = |{𝑤𝑖 : 𝑐 𝑤𝑖−𝑛+1

𝑖−1 𝑤𝑖 = 1}| 
  

 3.2 Kneser Ney Smoothing 
Kneser and Ney (1995) have introduced this smoothing 

method[11]. Here, a lower-order distribution is a significant 

factor in the combined model only when few or no counts are 

present in the higher-order distribution. Consequently, they 

should be optimized to perform well in these situations. The 

motivation given in the original text is that we should select the 

lower-order distribution such that the marginals of the higher-

order smoothed distribution should match the marginals of the 

training data. For example, for a bigram model we would like 

to select a smoothed distribution PkN   and the right-hand side is 

the unigram frequency of wi found in the training data.[5] 

 

For example, for a bigram model we would like to select a 

smoothed distribution PkN that satisfies the following constraint 

on unigram marginals for all wi: 

 𝑝𝐾𝑁 𝑤𝑖−1𝑤𝑖 =
𝑐(𝑤𝑖)

 𝑐(𝑤𝑖)𝑤𝑖𝑤𝑖−1

 

Here, a different derivation of the resulting distribution than is 

presented by Kneser and Ney (1995). 

𝑝𝐾𝑁 𝑤𝑖 𝑤𝑖−𝑛+1
𝑖−1  

=
𝑚𝑎𝑥{𝑐 𝑤𝑖−𝑛+1

𝑖  − 𝐷, 0)}

 𝑐(𝑤𝑖−𝑛+1
𝑖 )𝑤 𝑖

 

+
𝐷

 𝑐 𝑤𝑖−𝑛+1
𝑖  𝑤𝑖

𝑁1+(𝑤𝑖−𝑛+1
𝑖−1 ●)𝑝𝐾𝑁 𝑤𝑖 𝑤𝑖−𝑛+1

𝑖−1   

Now our aim to find the unigram distribution 𝑝𝐾𝑁(𝑤𝑖) 
𝑐(𝑤𝑖)

 𝑐(𝑤𝑖)𝑤𝑖

=  𝑝𝐾𝑁 𝑤𝑖 𝑤𝑖−1 𝑝(𝑤𝑖−1)

𝑤 𝑖−1

 

 

For (𝑤𝑖−1), we simply take the distribution found in the 

training data 

𝑝 𝑤𝑖−1 =
𝑐(𝑤𝑖−1)

 𝑐(𝑤𝑖−1)𝑤𝑖−1

 

 

Substituting and simplifying, we have 

𝑐 𝑤𝑖 =  𝑐 𝑤𝑖−1 𝑝𝐾𝑁(𝑤𝑖|𝑤𝑖−1)

𝑤𝑖−1

 

 

Substituting in main equation  

𝑐 𝑤𝑖 = 𝑐 𝑤𝑖 − 𝑁1+ ●𝑤𝑖 𝐷 + 𝐷𝑝𝐾𝑁 𝑤𝑖 𝑁1+(●●) 

Where 

𝑁1+ ●𝑤𝑖 = |{𝑐 𝑤𝑖−1𝑤𝑖 > 0}| 
 

  Is the number of different words 𝑤𝑖−1 that proceed 𝑤𝑖 in the 

training data and where 

𝑁1+ ●● =  𝑁1+(𝑤𝑖−1●)

𝑤 𝑖−1

=    𝑤𝑖−1,𝑤𝑖 : 𝑐 𝑤𝑖−1𝑤𝑖 > 0  

=  𝑁1+(●wi)

𝑤 𝑖

 

Solving for 𝑝𝐾𝑁(𝑤𝑖), we get 

𝑝𝐾𝑁 𝑤𝑖 =
𝑁1+(●wi)

𝑁1+(●●)
 

Generalizing to higher-order models, we have that [5] 

𝑝𝐾𝑁 𝑤𝑖  𝑤𝑖−𝑛+2
𝑖−1  =

𝑁1+(●wi−n+2
i )

𝑁1+(●wi−n+2
i−1 ●)

 

Where 

  𝑁1+ ●wi−n+2
i  = |{𝑤𝑖−𝑛+1: 𝑐 𝑤𝑖−𝑛+1

𝑖  > 0}| and 

         11123121 ...|....|.|. wwwPwwwPwwPwPSP ll 

    
l

i

ii wwwPSP 11...|

       
l

i

ii

l

i

ii wwPwwwPSP 111 |...|

       
l

i

iii

l

i

ii wwwPwwwPSP 2111 .|...|
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𝑁1+ ●wi−n+2
i−1 ● =    𝑤𝑖−𝑛+1 ,𝑤𝑖 : 𝑐 𝑤𝑖−𝑛+1

𝑖  > 0  

=  𝑁1+(●wi−n+2
i )

𝑤𝑖

 

 

 3.3 Modified Kneser Ney Smoothing
 

Chen and Goodman introduced modified Kneser-Ney that have 

found excellent performance[12]. Instead of using, a single 

discount D for all nonzero counts as in Kneser-Ney smoothing, 

we have three different parameters D1, D2 and D3+ that are 

applied to n-grams with one, two, and three or more counts 

respectively. 

𝑝𝐾𝑁 𝑤𝑖 𝑤𝑖−𝑛+1
𝑖−1  =

𝑐 𝑤𝑖−𝑛+1
𝑖  − 𝐷(𝑐(𝑤𝑖−𝑛+1

𝑖 ))

 𝑐(𝑤𝑖−𝑛+1
𝑖 )𝑤𝑖

+ 𝛾 𝑤𝑖−𝑛+1
𝑖−1  𝑝𝐾𝑁(𝑤𝑖|𝑤𝑖−𝑛+2

𝑖−1 ) 

Where 

𝐷 𝑐 = 𝑓 𝑥 =  

0, 𝑖𝑓 𝑐 = 0
𝐷1, 𝑖𝑓 𝑐 = 1
𝐷2, 𝑖𝑓 𝑐 = 2
𝐷3+, 𝑖𝑓 𝑐 ≥ 3

  

 

To make the distribution sum, we take 

𝛾 𝑤𝑖−𝑛+1
𝑖−1  

=
𝐷1𝑁1 𝑤𝑖−𝑛+1

𝑖−1 ● + 𝐷2𝑁2 𝑤𝑖−𝑛+1
𝑖−1 ● + 𝐷3+𝑁3+(𝑤𝑖−𝑛+1

𝑖−1 ●)

 𝑐(𝑤𝑖−𝑛+1
𝑖 )𝑤𝑖

 

Where 𝑁2 𝑤𝑖−𝑛+1
𝑖−1 ●  and 𝑁3+(𝑤𝑖−𝑛+1

𝑖−1 ●) defined analogously 

to 𝑁1 𝑤𝑖−𝑛+1
𝑖−1 ● . 

 

This modification is the ideal average discount for n-grams 

with one or two counts is substantially different from the ideal 

average discount for n-grams with higher counts. The 

analogous relation for modified Kneser –Ney smoothing are, 

[5] 

𝛾 =
𝑛1

𝑛1+2𝑛2
 

𝐷1 = 1 − 2𝛾
𝑛2

𝑛1
 

𝐷2 = 2 − 3𝛾
𝑛3

𝑛2
 

𝐷3+ = 3 − 4𝛾
𝑛4

𝑛3
 

 

4. EVALUATION 
Evaluation is needed to compare the performance of different 

MT engines or to improve the performance of a specific MT 

engine. Automatic evaluation metrics for machine translation 

system, such as BLEU and NIST are now well established. We 

used this two technique for analysis the performance of our 

experiment. 

 

BLEU (Bilingual Evaluation Understudy) is an algorithm for 

evaluating the quality of text which has been machine-

translated from one natural language to another. BLEU heavily 

rewards large N-gram matches between the source and target 

translations. [5]. 

 

NIST evaluation metric is based on the BLEU metric, but with 

some alterations. Whereas BLEU simply calculates n-gram 

precision considering of equal importance each n-gram, NIST 

calculates how informative a particular n-gram is, and the rarer 

a correct n-gram is, the more weight it will be given. NIST also 

differs from BLEU in its calculation of the brevity penalty, and 

small variations in translation length do not impact the overall 

score as much. Again, NIST score is always referred to a given 

n-gram order (𝑁𝐼𝑆𝑇𝑛 , usually n being 4). [6]. 

 

5. SIMULATION 
One of the major advantages of Statistical Machine Translation 

(SMT) is that it can be learned automatically. This is also the 

main reason why the process of developing a SMT system 

differs significantly from a classical rule-based system. Here 

we will show a work flow of SMT after installation of all the 

required tools. The steps for SMT are [7] – 

1. Prepare Data 

2. Build Language Model 

3. Train Model 

4. Tuning (i.e., Optimize System Component Weights, 

a.k.a. Minimum Error Rate Training) 

5. Run System on Development Test Set 

6. Evaluation 

  Two figures are given bellow to show the simulation process. 

Figure 1 shows how to create a language model and figure 2 

represents how to score a language model. 

 

  For preparing data the parallel corpus has to be converted into 

a format that is suitable to the GIZA++ toolkit. Two vocabulary 

files are generated and the parallel corpus is converted into a 

numberized format. The language model should be trained on a 

corpus that is suitable to the domain. If the translation model is 

trained on a parallel corpus, then the language model should be 

trained on the output side of that corpus, although using 

additional training data is often beneficial. There are many 

tools available for building a language model. Our decoder 

works with the following language models: 

 The SRI language modeling toolkit 

 The IRST language modeling toolkit 

The training process takes place in nine steps, all of them 

executed by the script train-factored-phrase-model.perl. [8] 
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Figure 1: Creating a language model 

The steps are: 

1. Prepare data 

2. Run GIZA++ 

3. Align words 

4. Get lexical translation table 

5. Extract phrases 

6. Score phrases 

7. Build lexicalized reordering model 

8. Build generation models 

9. Create configuration file 

 

The training script produces a configuration file moses.ini 

which has default weights of questionable quality. That's why 

we need to obtain better weights by optimizing translation 

performance on a development set. This is done with the tuning 

script mert-moses-new.pl. This new version of the 

minimum error rate tuning script is based on a new C++ 

software. The new mert implementation is a stand-alone open-

source software. The only interaction between Moses and the 

new software is given by the script mert-moses-new.pl itself. 

This new implementation of mert stores feature scores and 

error statistics in separate files) possibly in a binary format) for 

each nbest-list (at each iteration), and use (some of) these files 

to optimize weights. At the moment weight optimization can be 

based on either BLEU or PER. 

 

Run system on development test requires four steps. They are: 

 Tokenize test set (First tokenize the test set) 

 Lowercase test set (Convert them to lowercase data) 

 Filter the model to fit into memory 

 Decode with Moses 

 

Evaluation will be done both automatically as well as by 

human judgment.  

 Manual Scoring: We will collect subjective 

judgments about translation quality from human 

annotators. If you participate in the evaluation, we 

ask you to commit about 8 hours of time to do the 

manual evaluation. The evaluation will be done with 

an online tool. 

 In difference to the previous years, we expect the 

translated submissions to be in recased, detokenized, 

XML format, just as in most other translation 

campaigns (NIST, TC-Star). The official BLEU 

scoring tool will be the NIST scoring tool. 

 

Parallel 
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sentence alignment 

Tokenization 

GIZA++ 

Word 

Alignment 

 

IBM 

model1 

estimation 

Tuple 

extraction 

Lexicon feature 

computation 

SRILM toolkit 

Lexicon 

feature 

Computation 

SRILM toolkit 

Target language 

model estimation 

Target 

language 

model 

Lexicon 

model 

Tuple 

n-gram 

model 



International Journal of Computer Applications (0975 – 8887) 

Volume 46– No.2, May 2012 

 

49 

 
 

Figure 2: Scoring of language model 
BLEU score measures the precision of unigrams, bigrams, 

trigrams and four grams with respect to a whole set of 

reference translations with a penalty for too short sentences. 

Unlike all other evaluation criteria used here, BLEU measures 

accuracy, i.e. the opposite of error rate. Hence, large BLEU 

scores are better. [9] 

 

6. RESULTS AND ANALYSIS 
We have observed their performances on the same dataset of 

these three language models by re-using the given interpolation 

weights, estimating weights from scratch through the MERT 

and a comparative study of their BLEU and NIST scores and 

give some decision on the obtained results. The system 

specification of the machine that we use for our experiment is- 

 Intel Core 2 Duo CPU 

 Processor 2.66 GHz 

 RAM 1GB 

6.1 Tuning and Decoding Time 

The time complexity of the statistical machine translation is 

very high. Though tuning time and decoding time depends on 

the processor clock speed and the capacity of memory, Here 

we show the time for tuning the weights and decoding for 

some sample cases- 
Table 1: Tuning and Decoding time 

 

Smoothing Method Tuning 

Time(Hr) 

Decoding 

Time(Hr) 

Original Kneser-Ney 

discounting(KN) 
20.3 3.1 

3gram original Kneser-Ney 

discounting(3KN) 
16.5 2.45 

6gram original Kneser-Ney 

discounting(6KN) 
27.75 3.1 

modified Kneser-Ney 18.25 1.5 

discounting(MKN) 

3gram modified Kneser-Ney 

discounting(3MKN) 
19.15 2.5 

6gram modified Kneser-Ney 

discounting(6MKN) 
17.5 2.1 

Witten-Bell 

discounting(WB) 
28.2 3.15 

3gram Witten-Bell 

discounting(3WB) 
19.8 2.55 

6gram Witten-Bell 

discounting(6WB) 
21.1 2.33 
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Figure 3: Tuning and decoding time for different smoothing 

method 

 

6.2 BLEU Score Analysis 

The BLEU scores of the smoothing methods without recasing 

and detokenization are given bellow: 

Table 2: BLEU Score Analysis 
 

 

Smoothing Methods BLEU 

Scores 

Original Kneser-Ney discounting 16.35 

3gram original Kneser-Ney discounting 16.21 

6gram original Kneser-Ney discounting 16.26 

Modified Kneser-Ney discounting 16.43 

3gram modified Kneser-Ney discounting 16.32 

6gram modified Kneser-Ney discounting 16.26 

Witten-Bell discounting 16.29 

3gram Witten-Bell discounting 16.20 

6gram Witten-Bell discounting 16.26 

Table 3: BLEU score for different gram 

 

Smoothing Methods BLEU Scores 

Order 0 Order 3 Order 6 

KN 16.35 16.21 16.26 

MKN 16.43 16.32 16.26 

WB 16.29 16.20 16.26 

 Form the BLEU scores of the Table 3 and form the Figures 

above, we can draw some decision. They are- 

 Here we can see that modified Kneser-Ney 

discounting method for order 0 has the maximum 

BLEU score. So we can say that modified Kneser-

Ney discounting method perform best for the order 

0. 

 In case of modified Kneser-Ney discounting 

method, the BLEU score decreases with the 

increment of the order of n. But for Original 

Kneser-Ney and Witten Bell smoothing technique, 

this characteristic is absent. 

 For order 6, we found that the BLEU scores for all 

the discounting methods are same. So, we can say 

that with the increment of order the all the methods 

show quite similar performance.  

 Weight obtained from one smoothing method may 

significantly reduce the performance if it is used in 

different method. 

 

 
Figure 4: BLEU scores 

6.3 NIST Score Analysis 

The NIST and BLEU (with recaseing and detokenization) for 

the three discounting methods are given bellow with 

Evaluation of any-to-en translation using src set "devtest2006" 

(1 docs, 2000 segs), ref set "devtest2006" (1 refs) and tst set 

"devtest2006" (1 systems). 

 

Table 4: The NIST and BLEU (with recaseing and 

detokenization) 

 

 

Smoothing Methods NIST Scores BLEU 

Score 

KN 3.8079   0.0884 

3KN 3.7558   0.0884 

6KN 4.8485   0.1513 

MKN 3.8624   0.0908 

3MKN 3.8023   0.0893 

6MKN 4.8485   0.1513 

WB 3.7559   0.0892 

3WB 3.7723   0.0879 

6WB 4.8485 0.1513 

Figure 5 and 6 shows the graphical representation of NIST 

and BLEU score recaseing and detokenization. 

 
Figure 5: The NIST score (with recaseing and 

detokenization) 
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Figure 6: The BLEU (with recaseing and detokenization) 

 

7. CONCLUSION 
This paper has considered the smoothing techniques for 

adjusting the maximum likelihood estimate of probabilities to 

produce more accurate probabilities. It considered n-grams 

(up to 6-grams) based approach  for the SMT. Using 

NIST/BLEU scoring tools and figure out different 

performance of smoothing method. The 6-grams on Original 

Kneser-Ney, Modified Kneser-Ney and Witten-Bell 

discounting methods gives best score. Similar performance 

was observed both for BLEU and NIST score. Only for 

Witten-Bell smoothing method NIST scores increases with 

the increment of grams, but this is not true for the other two 

smoothing methods. 
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