
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.2, May 2012

45

Performance Analysis of Different Smoothing Methods
on n-grams for Statistical Machine Translation

A. S. M Mahmudul Hasan1, Saria Islam2 and M. Arifur Rahman3

1
 Department of CSE, IBAIS University, Dhaka

2
 Department of CSE, IBAIS University, Dhaka

3
 Department of Physics, Jahangirnagar University, Savar

ABSTRACT
Smoothing techniques adjust the maximum likelihood estimate

of probabilities to produce more accurate probabilities. This is

one of the most important tasks while building a language

model with a limited number of training data. Our main

contribution of this paper is to analyze the performance of

different smoothing techniques on n-grams. Here we

considered three most widely-used smoothing algorithms for

language modeling: Witten-Bell smoothing, Kneser-Ney

smoothing, and Modified Kneser-Ney smoothing. For the

evaluation we use BLEU (Bilingual Evaluation Understudy)

and NIST (National Institute of Standards and Technology)

scoring techniques. A detailed evaluation of these models is

performed by comparing the automatically produced word

alignment. We use Moses Statistical Machine Translation

System for our work (i.e.Moses decoder, GIZA++, mkcls,

SRILM, IRSTLM, Pharaoh, BLEU Scoring Tool). Here

machine translation approach has been tested on German to

English and English to German task. Our obtain results are

significantly better than those obtained with alternative

approaches to machine translation. This paper addresses several

aspects of Statistical Machine Translation (SMT). The

emphasis is put on the architecture and modeling of an SMT

system.

 Keywords
Machine Translation, SMT, smoothing, n-gram, parallel

corpora, BLEU, NIST.

1. INTRODUCTION
Machine translation, sometimes referred to by the abbreviation

MT, is a sub-field of computational linguistics that investigates

the use of computer software to translate text or speech from

one natural language to another. Current machine translation

software often allows for customization by domain or

profession (such as weather reports), improving output by

limiting the scope of allowable substitutions.

This technique is particularly effective in domains where

formal or formulaic language is used. It follows that machine

translation of government and legal documents more readily

produces usable output than conversation or less standardized

text.

Improved output quality can also be achieved by human

intervention: for example, some systems are able to translate

more accurately if the user has unambiguously identified which

words in the text are names. With the assistance of these

techniques, MT has proven useful as a tool to assist human

translators and, in a very limited number of cases, can even

produce output that can be used as is (e.g., weather reports)[1].

The machine translation process may be stated as: a) Decoding

the meaning of the source text and b) Re-encoding this

meaning in the target language.

Statistical Machine Translation (SMT) utilizes statistical

translation models whose parameters stem from the analysis of

monolingual and bilingual corpora [2]. Statistical machine

translation is based on a channel model. Given a sentence S

in one language (German) to be translated into another

language (English), it considers T as the target of a

communication channel, and its translation S as the source

of the channel. [3]

Statistical machine translation has emerged as the dominant

paradigm in machine translation research. In statistical machine

translation, it using probabilities which are estimated using

collections of translated texts, called parallel corpora.

If we assign a probability P(S | T) to each pair of sentences

(S, T), then the problem of translation is to find the

source S for a given target T, such that P(S | T) is the

maximum. According to Bayes rule, [13]

P S T =
P S P(T|S)

P(T)

 Since the denominator is independent of S, we have

Ŝ = args max P S P(T|S)

Statistical machine translation system must deal with the

following three phrases [3]. Modeling Most statistical machine

translation systems use N-gram for language modeling.

Translation models rely on the concept of alignment. Training

(or Parameter estimation) Training the free model parameters

of the chosen statistical translation model using parallel and

monolingual training data. Search (or decoding) The decoding

algorithm is another crucial part of the statistical machine

translation. Its performance directly affects translation quality

and efficiency.

2. LANGUAGE MODELING AND N-

GRAM MODELS
A language model is usually formulated as a probability

distribution P(S) over string S that attempts to reflect, how

frequently a string S occurs as a sentence. For example, for a

language model describing spoken dialog, we might have

P(HELLO) ≈ 0.01 since perhaps one out of every hundred

sentences a person speaks is HELLO. On the other hand, we

would have P(VOLVIC MONKEY MANGO PAPER) ≈ 0 and

P(DOVE SYSTEM FUNKY) ≈ 0 seems it is extremely

unlikely anyone would utter either string. Unlike the

linguistics, grammatically it is irrelevant in language modeling;

even though the string DOVE SYSTEM FUNKY is

grammatical, we still assign a near-zero probability.

The most widely language models, by far n-gram language

model. We introduce these models by considering the case

n=2; this models are called bigram models. First, we notice that

for the sentence S composed of the words w1, w2, … wl,

without loss of generality we can express P(S) as

http://en.wikipedia.org/wiki/Translation_process
http://en.wikipedia.org/wiki/Decoding
http://en.wikipedia.org/wiki/Meaning_%28linguistic%29
http://en.wikipedia.org/wiki/Source_text
http://en.wikipedia.org/wiki/Encoding
http://en.wikipedia.org/wiki/Meaning_%28linguistic%29
http://en.wikipedia.org/wiki/Target_language

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.2, May 2012

46

In bigram models, we making the approximation that the

probability of the word depends only on the identity of the

immediately preceding word, giving us-

For 3-gram will give us-

3. SMOOTHING SCHEME
The term smoothing describes techniques for adjusting the

maximum likelihood estimate of probabilities to produce more

accurate probabilities. The name smoothing comes from the

fact that these techniques tend to make distributions more

uniform, by adjusting low probabilities such as zero

probabilities upward, and high probabilities downward.

Smoothing method generally not only prevents zero

probabilities, but they also attempt to improve the accuracy of

the model as a whole. Here, we used the most widely-used

smoothing algorithms for language modeling: Witten-Bell

smoothing, Kneser-Ney smoothing and modified Kneser-Ney

smoothing.

3.1 Witten Bell Smoothing

Witten Bell smoothing was developed for the task of text

compression and can be considered to be an instance of

Jelinek-Mercer smoothing. The n-th order smoothed model are

defined recursively as a linear interpolation between the nth

order maximum likelyhood model and the (n-1)th order smooth

model as following equation-

𝑝𝑊𝐵 𝑤𝑖 𝑤𝑖−𝑛+1
𝑖−1 = 𝜆𝑤𝑖−𝑛+1

𝑖−1 𝑝𝑀𝐿 𝑤𝑖 𝑤𝑖−𝑛+1
𝑖−1

+ 1 − 𝜆𝑤𝑖−𝑛+1
𝑖−1 𝑝𝑊𝐵(𝑤𝑖|𝑤𝑖−𝑛+2

𝑖−1)

 To compute the parameter 𝜆𝑤𝑖−𝑛+1
𝑖−1 for Witten-Bell smoothing,

we will need to use the number of unique words follow the

history 𝑤𝑖−𝑛+1
𝑖 . We can write the value as formally defined as

𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ● = |{𝑤𝑖 : 𝑐(𝑤𝑖−𝑛+1

𝑖−1 𝑤𝑖) > 0}|
 The notation N1+ is meant to evoke the number of words that

have one or more counts, and the ● formally defined as

1 + 𝜆𝑤𝑖−𝑛+1
𝑖−1 =

𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ●

𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ● + 𝑐(𝑤𝑖−𝑛+1

𝑖)𝑤𝑖

 Substituting, we can rewrite equation as

𝑝𝑊𝐵 𝑤𝑖 𝑤𝑖−𝑛+1
𝑖−1

=
𝑐(𝑤𝑖−𝑛+1

𝑖 + 𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ● 𝑝𝑊𝐵 𝑤𝑖 𝑤𝑖−𝑛+2

𝑖−1

 𝑐(𝑤𝑖−𝑛+1
𝑖)𝑤𝑖

+ 𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ●

 To motivate Witten-Bell smoothing, with probability 𝝀𝒘𝒊−𝒏+𝟏
𝒊−𝟏

we should use the higher order model, and with probability

 𝟏 + 𝝀𝒘𝒊−𝒏+𝟏
𝒊−𝟏 we should use the lower order model. The Good-

Turing estimate provides another perspective on the estimation

of the probability of novel words following a history. The

Good-Turing estimate predicts that the probability of an event

not seen in the training data is n1/N, the fraction of counts

devoted to items that occur exactly once[4],[10]. Translating

this value into the previous notation, we get-

𝑁1(𝑤𝑖−𝑛+1
𝑖−1 ●)

 𝑐(𝑤𝑖−𝑛+1
𝑖)𝑤𝑖

Where,

𝑁1+ 𝑤𝑖−𝑛+1
𝑖−1 ● = |{𝑤𝑖 : 𝑐 𝑤𝑖−𝑛+1

𝑖−1 𝑤𝑖 = 1}|

 3.2 Kneser Ney Smoothing
Kneser and Ney (1995) have introduced this smoothing

method[11]. Here, a lower-order distribution is a significant

factor in the combined model only when few or no counts are

present in the higher-order distribution. Consequently, they

should be optimized to perform well in these situations. The

motivation given in the original text is that we should select the

lower-order distribution such that the marginals of the higher-

order smoothed distribution should match the marginals of the

training data. For example, for a bigram model we would like

to select a smoothed distribution PkN and the right-hand side is

the unigram frequency of wi found in the training data.[5]

For example, for a bigram model we would like to select a

smoothed distribution PkN that satisfies the following constraint

on unigram marginals for all wi:

 𝑝𝐾𝑁 𝑤𝑖−1𝑤𝑖 =
𝑐(𝑤𝑖)

 𝑐(𝑤𝑖)𝑤𝑖𝑤𝑖−1

Here, a different derivation of the resulting distribution than is

presented by Kneser and Ney (1995).

𝑝𝐾𝑁 𝑤𝑖 𝑤𝑖−𝑛+1
𝑖−1

=
𝑚𝑎𝑥{𝑐 𝑤𝑖−𝑛+1

𝑖 − 𝐷, 0)}

 𝑐(𝑤𝑖−𝑛+1
𝑖)𝑤 𝑖

+
𝐷

 𝑐 𝑤𝑖−𝑛+1
𝑖 𝑤𝑖

𝑁1+(𝑤𝑖−𝑛+1
𝑖−1 ●)𝑝𝐾𝑁 𝑤𝑖 𝑤𝑖−𝑛+1

𝑖−1

Now our aim to find the unigram distribution 𝑝𝐾𝑁(𝑤𝑖)
𝑐(𝑤𝑖)

 𝑐(𝑤𝑖)𝑤𝑖

= 𝑝𝐾𝑁 𝑤𝑖 𝑤𝑖−1 𝑝(𝑤𝑖−1)

𝑤 𝑖−1

For (𝑤𝑖−1), we simply take the distribution found in the

training data

𝑝 𝑤𝑖−1 =
𝑐(𝑤𝑖−1)

 𝑐(𝑤𝑖−1)𝑤𝑖−1

Substituting and simplifying, we have

𝑐 𝑤𝑖 = 𝑐 𝑤𝑖−1 𝑝𝐾𝑁(𝑤𝑖|𝑤𝑖−1)

𝑤𝑖−1

Substituting in main equation

𝑐 𝑤𝑖 = 𝑐 𝑤𝑖 − 𝑁1+ ●𝑤𝑖 𝐷 + 𝐷𝑝𝐾𝑁 𝑤𝑖 𝑁1+(●●)

Where

𝑁1+ ●𝑤𝑖 = |{𝑐 𝑤𝑖−1𝑤𝑖 > 0}|

 Is the number of different words 𝑤𝑖−1 that proceed 𝑤𝑖 in the

training data and where

𝑁1+ ●● = 𝑁1+(𝑤𝑖−1●)

𝑤 𝑖−1

= 𝑤𝑖−1,𝑤𝑖 : 𝑐 𝑤𝑖−1𝑤𝑖 > 0

= 𝑁1+(●wi)

𝑤 𝑖

Solving for 𝑝𝐾𝑁(𝑤𝑖), we get

𝑝𝐾𝑁 𝑤𝑖 =
𝑁1+(●wi)

𝑁1+(●●)

Generalizing to higher-order models, we have that [5]

𝑝𝐾𝑁 𝑤𝑖 𝑤𝑖−𝑛+2
𝑖−1 =

𝑁1+(●wi−n+2
i)

𝑁1+(●wi−n+2
i−1 ●)

Where

 𝑁1+ ●wi−n+2
i = |{𝑤𝑖−𝑛+1: 𝑐 𝑤𝑖−𝑛+1

𝑖 > 0}| and

 11123121 ...|....|.|. wwwPwwwPwwPwPSP ll

l

i

ii wwwPSP 11...|

l

i

ii

l

i

ii wwPwwwPSP 111 |...|

l

i

iii

l

i

ii wwwPwwwPSP 2111 .|...|

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.2, May 2012

47

𝑁1+ ●wi−n+2
i−1 ● = 𝑤𝑖−𝑛+1 ,𝑤𝑖 : 𝑐 𝑤𝑖−𝑛+1

𝑖 > 0

= 𝑁1+(●wi−n+2
i)

𝑤𝑖

 3.3 Modified Kneser Ney Smoothing

Chen and Goodman introduced modified Kneser-Ney that have

found excellent performance[12]. Instead of using, a single

discount D for all nonzero counts as in Kneser-Ney smoothing,

we have three different parameters D1, D2 and D3+ that are

applied to n-grams with one, two, and three or more counts

respectively.

𝑝𝐾𝑁 𝑤𝑖 𝑤𝑖−𝑛+1
𝑖−1 =

𝑐 𝑤𝑖−𝑛+1
𝑖 − 𝐷(𝑐(𝑤𝑖−𝑛+1

𝑖))

 𝑐(𝑤𝑖−𝑛+1
𝑖)𝑤𝑖

+ 𝛾 𝑤𝑖−𝑛+1
𝑖−1 𝑝𝐾𝑁(𝑤𝑖|𝑤𝑖−𝑛+2

𝑖−1)

Where

𝐷 𝑐 = 𝑓 𝑥 =

0, 𝑖𝑓 𝑐 = 0
𝐷1, 𝑖𝑓 𝑐 = 1
𝐷2, 𝑖𝑓 𝑐 = 2
𝐷3+, 𝑖𝑓 𝑐 ≥ 3

To make the distribution sum, we take

𝛾 𝑤𝑖−𝑛+1
𝑖−1

=
𝐷1𝑁1 𝑤𝑖−𝑛+1

𝑖−1 ● + 𝐷2𝑁2 𝑤𝑖−𝑛+1
𝑖−1 ● + 𝐷3+𝑁3+(𝑤𝑖−𝑛+1

𝑖−1 ●)

 𝑐(𝑤𝑖−𝑛+1
𝑖)𝑤𝑖

Where 𝑁2 𝑤𝑖−𝑛+1
𝑖−1 ● and 𝑁3+(𝑤𝑖−𝑛+1

𝑖−1 ●) defined analogously

to 𝑁1 𝑤𝑖−𝑛+1
𝑖−1 ● .

This modification is the ideal average discount for n-grams

with one or two counts is substantially different from the ideal

average discount for n-grams with higher counts. The

analogous relation for modified Kneser –Ney smoothing are,

[5]

𝛾 =
𝑛1

𝑛1+2𝑛2

𝐷1 = 1 − 2𝛾
𝑛2

𝑛1

𝐷2 = 2 − 3𝛾
𝑛3

𝑛2

𝐷3+ = 3 − 4𝛾
𝑛4

𝑛3

4. EVALUATION
Evaluation is needed to compare the performance of different

MT engines or to improve the performance of a specific MT

engine. Automatic evaluation metrics for machine translation

system, such as BLEU and NIST are now well established. We

used this two technique for analysis the performance of our

experiment.

BLEU (Bilingual Evaluation Understudy) is an algorithm for

evaluating the quality of text which has been machine-

translated from one natural language to another. BLEU heavily

rewards large N-gram matches between the source and target

translations. [5].

NIST evaluation metric is based on the BLEU metric, but with

some alterations. Whereas BLEU simply calculates n-gram

precision considering of equal importance each n-gram, NIST

calculates how informative a particular n-gram is, and the rarer

a correct n-gram is, the more weight it will be given. NIST also

differs from BLEU in its calculation of the brevity penalty, and

small variations in translation length do not impact the overall

score as much. Again, NIST score is always referred to a given

n-gram order (𝑁𝐼𝑆𝑇𝑛 , usually n being 4). [6].

5. SIMULATION
One of the major advantages of Statistical Machine Translation

(SMT) is that it can be learned automatically. This is also the

main reason why the process of developing a SMT system

differs significantly from a classical rule-based system. Here

we will show a work flow of SMT after installation of all the

required tools. The steps for SMT are [7] –

1. Prepare Data

2. Build Language Model

3. Train Model

4. Tuning (i.e., Optimize System Component Weights,

a.k.a. Minimum Error Rate Training)

5. Run System on Development Test Set

6. Evaluation

 Two figures are given bellow to show the simulation process.

Figure 1 shows how to create a language model and figure 2

represents how to score a language model.

 For preparing data the parallel corpus has to be converted into

a format that is suitable to the GIZA++ toolkit. Two vocabulary

files are generated and the parallel corpus is converted into a

numberized format. The language model should be trained on a

corpus that is suitable to the domain. If the translation model is

trained on a parallel corpus, then the language model should be

trained on the output side of that corpus, although using

additional training data is often beneficial. There are many

tools available for building a language model. Our decoder

works with the following language models:

 The SRI language modeling toolkit

 The IRST language modeling toolkit

The training process takes place in nine steps, all of them

executed by the script train-factored-phrase-model.perl. [8]

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.2, May 2012

48

Figure 1: Creating a language model

The steps are:

1. Prepare data

2. Run GIZA++

3. Align words

4. Get lexical translation table

5. Extract phrases

6. Score phrases

7. Build lexicalized reordering model

8. Build generation models

9. Create configuration file

The training script produces a configuration file moses.ini

which has default weights of questionable quality. That's why

we need to obtain better weights by optimizing translation

performance on a development set. This is done with the tuning

script mert-moses-new.pl. This new version of the

minimum error rate tuning script is based on a new C++

software. The new mert implementation is a stand-alone open-

source software. The only interaction between Moses and the

new software is given by the script mert-moses-new.pl itself.

This new implementation of mert stores feature scores and

error statistics in separate files) possibly in a binary format) for

each nbest-list (at each iteration), and use (some of) these files

to optimize weights. At the moment weight optimization can be

based on either BLEU or PER.

Run system on development test requires four steps. They are:

 Tokenize test set (First tokenize the test set)

 Lowercase test set (Convert them to lowercase data)

 Filter the model to fit into memory

 Decode with Moses

Evaluation will be done both automatically as well as by

human judgment.

 Manual Scoring: We will collect subjective

judgments about translation quality from human

annotators. If you participate in the evaluation, we

ask you to commit about 8 hours of time to do the

manual evaluation. The evaluation will be done with

an online tool.

 In difference to the previous years, we expect the

translated submissions to be in recased, detokenized,

XML format, just as in most other translation

campaigns (NIST, TC-Star). The official BLEU

scoring tool will be the NIST scoring tool.

Parallel

training

corpus

Processing

Paragraph +

sentence alignment

Tokenization

GIZA++

Word

Alignment

IBM

model1

estimation

Tuple

extraction

Lexicon feature

computation

SRILM toolkit

Lexicon

feature

Computation

SRILM toolkit

Target language

model estimation

Target

language

model

Lexicon

model

Tuple

n-gram

model

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.2, May 2012

49

Figure 2: Scoring of language model
BLEU score measures the precision of unigrams, bigrams,

trigrams and four grams with respect to a whole set of

reference translations with a penalty for too short sentences.

Unlike all other evaluation criteria used here, BLEU measures

accuracy, i.e. the opposite of error rate. Hence, large BLEU

scores are better. [9]

6. RESULTS AND ANALYSIS
We have observed their performances on the same dataset of

these three language models by re-using the given interpolation

weights, estimating weights from scratch through the MERT

and a comparative study of their BLEU and NIST scores and

give some decision on the obtained results. The system

specification of the machine that we use for our experiment is-

 Intel Core 2 Duo CPU

 Processor 2.66 GHz

 RAM 1GB

6.1 Tuning and Decoding Time

The time complexity of the statistical machine translation is

very high. Though tuning time and decoding time depends on

the processor clock speed and the capacity of memory, Here

we show the time for tuning the weights and decoding for

some sample cases-
Table 1: Tuning and Decoding time

Smoothing Method Tuning

Time(Hr)

Decoding

Time(Hr)

Original Kneser-Ney

discounting(KN)
20.3 3.1

3gram original Kneser-Ney

discounting(3KN)
16.5 2.45

6gram original Kneser-Ney

discounting(6KN)
27.75 3.1

modified Kneser-Ney 18.25 1.5

discounting(MKN)

3gram modified Kneser-Ney

discounting(3MKN)
19.15 2.5

6gram modified Kneser-Ney

discounting(6MKN)
17.5 2.1

Witten-Bell

discounting(WB)
28.2 3.15

3gram Witten-Bell

discounting(3WB)
19.8 2.55

6gram Witten-Bell

discounting(6WB)
21.1 2.33

Model

Model Weights

MARIE decoder
Develop

corpus

source

Nbest list

External loop

Internal loop

Model weights

Resource Evaluation
Simplex

converge?

Ending

criteria?

Y

N

Y

N

Develop corpus

references

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.2, May 2012

50

Figure 3: Tuning and decoding time for different smoothing

method

6.2 BLEU Score Analysis

The BLEU scores of the smoothing methods without recasing

and detokenization are given bellow:

Table 2: BLEU Score Analysis

Smoothing Methods BLEU

Scores

Original Kneser-Ney discounting 16.35

3gram original Kneser-Ney discounting 16.21

6gram original Kneser-Ney discounting 16.26

Modified Kneser-Ney discounting 16.43

3gram modified Kneser-Ney discounting 16.32

6gram modified Kneser-Ney discounting 16.26

Witten-Bell discounting 16.29

3gram Witten-Bell discounting 16.20

6gram Witten-Bell discounting 16.26

Table 3: BLEU score for different gram

Smoothing Methods BLEU Scores

Order 0 Order 3 Order 6

KN 16.35 16.21 16.26

MKN 16.43 16.32 16.26

WB 16.29 16.20 16.26

 Form the BLEU scores of the Table 3 and form the Figures

above, we can draw some decision. They are-

 Here we can see that modified Kneser-Ney

discounting method for order 0 has the maximum

BLEU score. So we can say that modified Kneser-

Ney discounting method perform best for the order

0.

 In case of modified Kneser-Ney discounting

method, the BLEU score decreases with the

increment of the order of n. But for Original

Kneser-Ney and Witten Bell smoothing technique,

this characteristic is absent.

 For order 6, we found that the BLEU scores for all

the discounting methods are same. So, we can say

that with the increment of order the all the methods

show quite similar performance.

 Weight obtained from one smoothing method may

significantly reduce the performance if it is used in

different method.

Figure 4: BLEU scores

6.3 NIST Score Analysis

The NIST and BLEU (with recaseing and detokenization) for

the three discounting methods are given bellow with

Evaluation of any-to-en translation using src set "devtest2006"

(1 docs, 2000 segs), ref set "devtest2006" (1 refs) and tst set

"devtest2006" (1 systems).

Table 4: The NIST and BLEU (with recaseing and

detokenization)

Smoothing Methods NIST Scores BLEU

Score

KN 3.8079 0.0884

3KN 3.7558 0.0884

6KN 4.8485 0.1513

MKN 3.8624 0.0908

3MKN 3.8023 0.0893

6MKN 4.8485 0.1513

WB 3.7559 0.0892

3WB 3.7723 0.0879

6WB 4.8485 0.1513

Figure 5 and 6 shows the graphical representation of NIST

and BLEU score recaseing and detokenization.

Figure 5: The NIST score (with recaseing and

detokenization)

16
16.1
16.2
16.3
16.4
16.5

Order 0 Order 3 Order 6

BLEU Scores

KN

MKN

WB

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.2, May 2012

51

Figure 6: The BLEU (with recaseing and detokenization)

7. CONCLUSION
This paper has considered the smoothing techniques for

adjusting the maximum likelihood estimate of probabilities to

produce more accurate probabilities. It considered n-grams

(up to 6-grams) based approach for the SMT. Using

NIST/BLEU scoring tools and figure out different

performance of smoothing method. The 6-grams on Original

Kneser-Ney, Modified Kneser-Ney and Witten-Bell

discounting methods gives best score. Similar performance

was observed both for BLEU and NIST score. Only for

Witten-Bell smoothing method NIST scores increases with

the increment of grams, but this is not true for the other two

smoothing methods.

8. REFERENCES
[1]. Machine Translation, Wikipedia,

en.wikipedia.org/wiki/Machine_translation, [last access:

06-04-2012].

[2] F.J. Och, and H. Ney (2004), “The alignment template

approach to statistical machine translation”,

Computational Linguistics, Vol. 30, no 4,.

[3] Ye-Yi Wang and Alex Waibel, (1997) “Decoding

Algorithm in Statistical Machine Translation”.

[4] Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing

Zhu, (2001) “IBM Research Report Bleu: a Method for

Automatic Evaluation of Machine Translation”,

RC22176 (W0109-022).

[5] Enrique Alfonseca and Diana Perez, (2004) “Automatic

Assessment of Open Ended Questions with a BLEU-

inspired Algorithm and shallow NLP”.

[6] Josep M. Crego Clemente, (2008) “Architecture and

Modeling for N-gram-based Statistical Machine

Translation”.

[7] Pharaoh, www.isi.edu/licensed-sw/pharaoh/, [last access:

06-04-2012].

[8] Philipp Koehn, (2009) “Statistical Machine Translation

System User Manual and Code Guide”, University of

Edinburgh.

[9] K. A. Papineni, S. Roukos, T. Ward, W. J. Zhu, (2001)

“BLEU: a method for automatic evaluation of machine

translation”. Technical Report RC22176 (W0109-022),

IBM Research Division, Thomas J. Watson Research

Center, Yorktown Heights, NY.

[10] Timothy C. Bell, John G. Cleary, Ian H. Witten, (1990)

"Text Compression" Prentice Hall.

[11] Kneser R. and Hermann Ney. (1995) "Improved backing-

off for m-gram language modeling". In Proceedings of

ICASSP-95, vol. 1, 181–184.

[12] Stanly F. Chan and Josua Goodman (1998), "An

Emperical Study of Smoothing technique for Language

Modeling", Computer Science group, Harvard

University, Cambridge, Massachusetts.

[13] Bayes, Thomas, and Price, Richard (1763). "An Essay

towards solving a Problem in the Doctrine of Chance. By

the late Rev. Mr. Bayes, communicated by Mr. Price, in

a letter to John Canton, M. A. and F. R.

S.". Philosophical Transactions of the Royal Society of

London 53 (0): 370–418.

9. AUTHORS PROFILE
A.S.M Mahmudul Hasan is the lecturer of IBAIS

(International Business Administration and Information

Technology) University in Dhaka, Bangladesh. He received a

B.Sc degree from Jahangirnagar University in 2010 and

continuing his M.Sc from the same university in Computer

Science and Engineering. His research interest includes

natural language processing, system administration and

networking and telecommunication.

Saria Islam obtained her B.Sc (Hons) and continuing M.Sc in

Computer Science and Engineering from Jahangirnagar

University She is now serving the IBAIS University as a

lecturer in computer science and engineering department. Her

current interest research areas include machine learning, web

programming simulation and modeling in computer science.

M. Arifur Rahman has completed his Masters degree in

Human Language Technology and Interfaces (HLTI) under

the Department of Information Engineering and Computer

Science at University of Trento, Italy. He received his B.Sc.

(Honors) degree from the Department of Computer Science

and Engineering, Jahangirnagar University, Bangladesh at

2001. His major areas of interest include Machine Learning,

Natural Language Processing, and Digital Signal Processing.

He has authored a book titled “Fundamentals of

Communication” and more than 10 international journal and

conference papers. At present he is serving as an Assistant

Professor in the Department of Physics, Jahangirnagar

University, Savar, Dhaka, Bangladesh.

