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ABSTRACT 

Many real world industrial applications involve finding a 

Hamiltonian path with minimum cost. Some instances that 

belong to this category are transportation routing problem, 

scan chain optimization and drilling problem in integrated 

circuit testing and production. Distributed learning automata, 

that is a general searching tool and is a solving tool for variety 

of NP-complete problems, together with 2-opt local search is 

used to solve the Traveling Salesman Problem (TSP). Two 

mechanisms named frequency-based pruning strategy (FBPS) 

and fixed-radius near neighbour (FRNN) 2-opt are used to 

reduce the high overhead incurred by 2-opt in the DLA 

algorithm proposed previously. Using FBPS only a subset of 

promising solutions are proposed to perform 2-opt. Invoking 

geometric structure, FRNN 2-opt implements efficient 2-opt 

in a permutation of TSP sequence. Proposed algorithms are 

tested on a set of TSP benchmark problems and the results 

show that they are able to reduce computational time, while 

maintaining the average solution quality at 0.62% from 

known optimal.   

Keywords 
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1. INTRODUCTION 
Traveling Salesman Problem (TSP) is about finding a 

Hamiltonian path (tour) with minimum cost. TSP is one of the 

discrete optimization problems which is classified as  

NP-hard [1]. It is common in areas such as logistics, 

transportation and semiconductor industries. For instance, 

finding an optimized scan chains route in integrated chips 

testing, parcels collection and sending in logistics companies, 

are some of the potential applications of TSP. Efficient 

solution to such problems will ensure the tasks are carried out 

effectively and thus increase productivity. Due to its 

importance in many industries, TSP is still being studied by 

researchers from various disciplines and it remains as an 

important test bed for many newly developed algorithms. 

Various techniques have been used to solve TSP. In general, 

these techniques are classified into two broad categories: 

exact and approximation algorithms [2]. Exact algorithms are 

methods which utilize mathematical models whereas 

approximation algorithms make use of heuristics and iterative 

improvements as the problem solving process. Some instances 

in the exact methods category are Branch and Bound, 

Lagrangian Relaxation and Integer Linear Programming. 

Approximation algorithms can be further classified into two 

groups: constructive heuristics and improvement heuristics. 

Instances in constructive heuristics include Nearest 

Neighbourhood, Greedy Heuristics, Insertion Heuristics [3], 

Christofides Heuristics [4] etc. Instances in improvement 

heuristic include k-opt [5], Lin-Kernighan Heuristics [6], 

Simulated Annealing [7], Tabu Search [8], Evolutionary 

Algorithms [9-11], Ant Colony Optimization [12,13] and Bee 

System [14].  

In this paper an optimized Distributed Learning Automata 

(DLA) algorithm is mentioned that significantly improves the 

computational speed of algorithm proposed previously by the 

author [15]. Each solution generated by the previous DLA 

algorithm was locally optimized by an exhaustive 2-opt and 

proposed algorithm was tested on a set of TSP benchmark 

instances. The 2-opt heuristic is implemented according to the 

basic idea which eliminates two arcs in order to obtain two 

different paths. These two paths are then reconnected in the 

other possible way if the new path results in a shorter tour 

length. Although the integration of 2-opt gave promising 

results, the results presented showed that the execution time 

could be improved further. To achieve this, two mechanisms, 

namely FBPS and FRNN 2-opt, are presented in this paper. 

FBPS is a strategy that allows only a subset of promising 

solutions to perform 2-opt and FRNN 2-opt is an efficient 

implementation of 2-opt.  

This paper organized as follows: In the next section the 

Learning Automata and Distributed Learning Automata and 

2-opt Local Search Heuristic is introduced and then DLA with 

2-opt local search algorithm is described. Section 3 describes 

FBPS and its working mechanism. In section 4 the  

FRNN 2-opt adapted from [16] is described. Computational 

results and findings of this paper are presented and analyzed 

in section 5 while in the last section conclusions are given. 

2. LEARNING AUTOMATA 
The automaton approach to learning involves determination of 

an optimal action from a set of allowable actions. An 

automaton can be regarded as an abstract object that has finite 

number of actions. It selects an action from its finite set of 

actions. This action is applied to a random environment. The 

random environment evaluates the applied action and gives a 

grade to the selected action of automata. The response from 

environment is used by automata to select its next action. By 

continuing this process, the automaton learns to select an 

action with best response.  

The learning algorithm used by automata to determine the 

selection of next action from the response of environment. An 

automaton acting in an unknown random environment and 

improves its performance in some specified manner, is refered 

to as learning automata (LA) [17-22].  
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The environment can be described by a triple },,{ cE  , 

where },...,,{ 21 r   represents the finite set of the 

inputs, },...,,{ 21 m  denotes the set of the values can 

be taken by the reinforcement signal, and },...,,{ 21 rcccc 

denotes the set of the penalty probabilities, where the element 

ic  is associated with the given action 
i . If the penalty 

probabilities are constant, the random environment is said to 

be a stationary random environment, and if they vary with 

time, the environment is called a non stationary environment. 

The environments depending on the nature of the 

reinforcement signal  can be classified into P-model,  

Q-model and S-model. The environments in which the 

reinforcement signal can only take two binary values 0 and 1 

are referred to as P-model environments. Another class of the 

environment allows a finite number of the values in the 

interval [0, 1] can be taken by the reinforcement signal. Such 

an environment is referred to as Q-model environment. In  

S-model environments, the reinforcement signal lies in the 

interval [a, b]. The relationship between the learning 

automaton and its random environment has been shown in 

Fig. 1. 

 

Fig. 1. The relationship between the learning automaton 

and its random environment. 

Learning Automata can be classified into two main families: 

fixed structure learning automata and variable structure 

learning automata. A variable structure learning automaton is 

represented by triple < 𝛼, 𝛽, 𝑇 >, where β is a set of inputs, α 

is a set of actions and T is learning algorithm. The learning 

algorithm is a recurrence relation and is used to modify the 

action probability vector. It is evident that the crucial factor 

affecting the performance of the variable structure learning 

automata, is learning algorithm for updating the action 

probabilities. 

Let α(k) and p(k) denote the action chosen at instant k and the 

action probability vector on which the chosen action is based, 

respectively. The recurrence equation shown by Eq. (1) and 

Eq. (2) is a linear learning algorithm by which the action 

probability vector p is updated. Let ∝𝑖 (𝑘) be the action 

chosen by the automaton at instant k. 

𝑝𝑗  𝑛 + 1 =  
𝑝𝑗  𝑛 + 𝑎 1 − 𝑝𝑗  𝑛               𝑗 = 𝑖

 1 − 𝑎 𝑝𝑗  𝑛                       ∀𝑗  𝑗 ≠ 𝑖
 (1) 

When the taken action is rewarded by the environment  

(i.e., 𝛽 𝑛 = 0) and 

𝑝𝑗  𝑛 + 1 =  

(1 − 𝑏)𝑝𝑗  𝑛                              𝑗 = 𝑖

𝑏

𝑟 − 1
+  1 − 𝑏 𝑝𝑗  𝑛        ∀𝑗  𝑗 ≠ 𝑖

 (2) 

When the taken action is penalized by the environment  

(i.e., 𝛽 𝑛 = 1). r is the number of actions can be chosen by 

the automaton, a(k) and b(k) denote the reward and penalty 

parameters and determine the amount of increases and 

decreases of the action probabilities, respectively.  

If a(k) = b(k), the recurrence equations (1) and (2) are called 

linear reward-penalty (
PRL 

) algorithm, if a(k) >> b(k) the 

given equations are called linear reward-ε penalty (
PRL 

), 

and finally if b(k) = 0 they are called linear reward-Inaction  

(
IRL 

). In the latter case, the action probability vectors 

remain unchanged when the taken action is penalized by the 

environment. 

Learning automata have been found to be useful in systems 

where incomplete information about the environment, 

wherein the system operates, exists. Learning automata are 

also proved to perform well in dynamic environments. It has 

been shown that the learning automata are capable of solving 

the NP-hard problems [23]. 

2.1 Distributed Learning Automata (DLA) 
A DLA is a network of the learning automata which 

collectively cooperate to solve a particular problem [23]. In 

DLA the number of actions for any automaton in the network 

is equal to the number of outgoing edges from that automaton. 

When an automaton selects one of its actions, another 

automaton on the other end of edge corresponding to the 

selected action will be activated. The environment evaluates 

the applied actions and emits a reinforcement signal to the 

DLA. The activated learning automata along the chosen path 

update their action probability vectors on the basis of the 

reinforcement signal by using the learning schemes. Formally, 

a DLA can be defined by a quadruple < 𝐴,𝐸, 𝑇, 𝐴0 > where 

𝐴 = {𝐴1 , … , 𝐴𝑛} is the set of learning automata, 𝐸 ⊂ 𝐴 × 𝐴 is 

the set of the vertices in which vertex 𝑒(𝑖,𝑗 ) corresponds to the 

action ∝𝑗  of the automaton 𝐴𝑖  , T is the set of learning 

schemes with which the learning automata update their action 

probability vectors and 𝐴0 is the root automaton of DLA from 

which the automaton activation is started. For example in Fig. 

2, every automaton has two actions, if automaton 𝐴1 selects 

action 𝛼1 then automaton 𝐴3 will be activated. The activated 

automaton 𝐴3 chooses one of its actions which in turn 

activates one of the automata connected to 𝐴3. At any time 

only one automaton in the network will be active. 

 

 

 

 

Fig. 2. Distributed learning automata. 

2.2 Local Search: 2-OPT Heuristic 
The method of 2-opt heuristic is applied frequently to solve 

TSP. Applying 2-opt heuristic in TSP has some advantages 

such as simplicity in its implementation and its ability to 

obtain near optimal results. The basic idea of 2-opt heuristic is 

to eliminate two arcs in R in order to obtain two different 

paths. These two paths are then reconnected in the other 

possible way. Let’s consider a feasible solution, R, with the 

permutation of “A, B, C, D, E, F, A” with total tour length of 

8 units as shown in Fig. 3(a). This closed tour is then further 

transformed by firstly eliminating two arcs (B, C) and (E, F) 

and thus producing two separate paths “F, A, B” and “C, D, 

E”. Next, these two paths are then reconnected to produce 

another closed tour, R’ = “A, B, E, D, C, F, A”, as shown in 

Fig. 3(b). Note that there is only one possible way to 

 
Random Environment
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reconnect these two paths in order to preserve the length of 

the other four arcs. By performing a two-arc transformation, 

the total length of the closed tour is reduced from 8 units to 6 

units. The 2-opt transformation mechanism can be generalized 

to cater for more arcs in its eliminate-and-reconnect  

process [5]. 

 

 

 

 

Fig. 3. (a) Original closed tour, R. (b) R’ after 2-opt 

transformation 

2.3 DLA Algorithm with 2-opt for TSP 
In this section, we describe the DLA-2opt algorithm proposed 

in [15]. At first a network of learning automata which is 

isomorphic to the graph of  TSP instance is created. In this 

network each node is a learning automaton and each outgoing 

edge of this node (connecting this city to other city) is one of 

the actions of this learning automaton.  

At first, one automaton selected (activated) randomly as 

starting city, then at the each stage, active automaton chooses 

one of its actions based on its action probability vector and 

heuristic information (it prefer to choose short edges) 

according to the probability distribution given in Eq. (4). 
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where 
j

iP is the is the probability with which automaton j 

chooses to move from city j to city i, ),(1 ijW   is the inverse 

of the distance between city j to city i, i is the one of cities that 

can be visited by automaton on city j (to make the solution 

feasible), and 1  is a parameter which determines the 

relative importance of 
j

iP versus distance. In Eq. (1) we 

multiply the 
j

iP by the corresponding heuristic value 

),(1 ijW  . In this way we favor the choice of edges which 

are shorter and which have a greater 
j

iP . 

This action activates automaton on the other end of edge. The 

process of choosing an action and activating an automaton is 

repeated until a tour is created, this means, every node of the 

graph is visited and coming back at starting city (or making a 

feasible tour is impossible).  In order to exclude loops from 

the traversed paths, the algorithm meets every node along a 

path being traversed once (except starting city). To implement 

this, if an automaton chooses action ∝𝑘  from the list of its 

actions, then all inactivated automatons (unvisited nodes) will 

disable action ∝𝑗  in their list of actions. However, at the next 

iteration of the algorithm, all the disabled actions will be 

enabled. The action of a DLA is a sequence of actions that 

represents a particular tour in the graph. After this, the 

solution is improved by 2-opt heuristic. The outline of our 

DLA 2-opt algorithm is shown in Fig. 4. 

 

Procedure TSP 

Begin 

 Repeat                                                                                

      Produce a tour by DLA. 

      Perform 2-opt on this tour. 

      Compute the tour length. 

      if CurrentTourLength < BestTourLength then 

          Reward the selected actions of all LAs along the 

              tour according to the IRL  .  

          Modify the Probability vector. 

      End if                                                                              

      Enable all the disabled actions of each LAs. 

  Until (stop condition reached) 

End Procedure 

Fig. 4. DLA with 2-opt local search for TSP 

The environment uses the length of this tour to produce its 

response. This response, depending on whether it is favorable 

or unfavorable, causes the actions along the traversed path be 

rewarded  if it is favorable (the action probability vectors 

remain unchanged if it is unfavorable) according to linear 

Reward-Inaction learning algorithm )( IRL 
. 

3. FREQUENCY-BASED PRUNING 

STRATEGY 
FBPS is based on building blocks concept that has been found 

in many areas. One of them is the Genetic Algorithms (GA) in 

computer science. Gero et al [24,25] studied the building 

blocks in GA chromosomes. A population of chromosomes is 

divided into two groups, one above a threshold (better 

fitness), and the other one below the threshold (lower fitness). 

They proposed a mechanism to identify prevalent building 

blocks in the better fitness group and absent building blocks in 

the lower fitness group. The identified building blocks are 

then combined as a single gene and they are prevented from 

further modifications by crossover and mutation. The 

proposed approach was tested on space layout planning and 

results showed that if these blocks are frequently reused in the 

evolutionary process, a significant reduction of computational 

time can be achieved. The FBPS proposed in this paper is able 

to identify some common building blocks in the TSP solutions 

generated by DLAs. The identified building blocks will be 

used to decide which solutions need to be further improved by 

2-opt.  

If every solution generated by DLAs locally be optimized 

using 2-opt, computational time for obtaining good results is 

highly increased. Hence, a pruning strategy based on the 

accumulated frequency of building blocks is proposed to 

prohibit 2-opt operations from being performed on some 

solutions. Consider the following example that explains the 

working mechanism of the pruning strategy. Firstly, an n × n 

matrix is created with each entry of the matrix assigned to 

zero. n is the number of cities of a TSP instance. If a TSP 

instance with 5-city is being solved, a matrix 𝐹5∗5 is required: 

F = 

 A B C D E 

A 0 0 0 0 0 

B 0 0 0 0 0 

C 0 0 0 0 0 

D 0 0 0 0 0 

E 0 0 0 0 0 

F is used to record the accumulated frequency of the smallest 

building blocks of every solutions generated by DLAs. In this 

case, the smallest building block contains two elements. 

Consider the solution “A, B, C, D, E, A” and how F will be 

updated: 

1 

1 1 

1 1 

1 

D 

E B 

A 

C F 

(b) (a) 

1 

1 1 

1 1 

1 

D 

E B 

A 

C F 

2 2 
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F = 

 A B C D E 

A 0 1 0 0 1 

B 1 0 1 0 0 

C 0 1 0 1 0 

D 0 0 1 0 1 

E 1 0 0 1 0 

In this paper only the smallest edges (edge between two 

nodes) is considered in a solution, but it can be extended to 

consider building blocks in different sizes e.g. three-element 

block and so on. For every building block found in the 

permutation, two entries of F will be updated. For instance, 

when the building block AB is encountered, the entries of AB 

and BA of F are both incremented by 1. Consider another 

solution “A, B, E, D, C, A” is generated, result is: 

F= 

 A B C D E 

A 0 2 1 0 1 

B 2 0 1 0 1 

C 1 1 0 2 0 

D 0 0 2 0 2 

E 1 1 0 2 0 

Assume the algorithm generates several solutions and then 

final value of F is as below: 

F = 

 A B C D E 

A 0 125 814 32 198 

B 125 0 708 382 97 

C 814 708 0 30 715 

D 32 382 30 0 182 

E 198 97 715 182 0 

Looking at F, we can identify the building blocks with high 

frequency. Consider the first row of F as an example, where it 

records the frequency of the building blocks with A as the 

first element {AB, AC, AD and AE}. It has a total frequency 

of 1169 (summation of 125, 814, 32 and 198). The building 

block of AA is disregarded as the system does not allow any 

recursive visit. Of these four building blocks, AB contributes 

10.69% of the total occurrences ( 
125

1169
× 100%). AC, AD and 

AE contribute 69.63%, 2.73% and 16.93% respectively. Rest 

of entries in F are calculated similarly and the resulting matrix 

is as below: 

F% = 

 A B C D E 

A 0.00 10.69 69.63 2.73 16.93 

B 9.52 0.00 53.96 29.11 7.39 

C 35.90 31.23 0.00 1.32 31.53 

D 5.11 61.02 4.79 0.00 29.07 

E 16.61 8.13 59.98 15.26 0.00 

Based on F%, building blocks that are q% and above are 

identified as hot spots. q is a user defined threshold value. For 

instance, if q = 5%, AB, AC and AE are the hot spots with A 

as its first element. The identified hot spots will then be 

employed in the decision making process. The pruning 

criterion is set as follow: if any solution contains k% or more 

dissimilar building blocks, it will be prohibited from 

performing the FRNN 2-opt. Otherwise, it will be further 

optimized by the FRNN 2-opt. If a permutation of “A, D, C, 

B, E, A” is considered (based on F% and  

q = 5%), building blocks of AD and DC are not hot spots. 

And CB , BE and EA are hot spots. If k is configured at 25%, 

this particular permutation will be pruned from performing 2-

opt. If another permutation of “A, D, E, B, C, A” is 

encountered, it will be accepted for 2-opt optimization as only 

one dissimilar building blocks is observed (20% < κ where k 

is set at 25%). k is a pruning threshold that defined by user 

and results of tuning it will be mentioned in Section 5. 

4. Fixed-Radius Near Neighbour 2-OPT 
In this paper, Fixed-radius Near Neighbour (FRNN) 2-opt is 

used for efficient implementing 2-opt [16]. The 2-opt swap 

could not decrease the tour length as both edges increase in 

length. Because of this observation, the exploration of the 

second edge can be restricted to a circle centered at a node of 

the first edge with a radius equal to the edge length. 

The tour with a permutation of “E, F, I, H, C, G, A, B, D, E”  

in Fig. 5 will be optimized by 2-opt. While the edge that links 

E and F, 𝐸𝐸𝐹 , serves as the first edge, a search of the second 

edge based on FRNN method centered at E is performed with 

a radius of 𝑑𝐸𝐹 . All the nodes within the vicinity will be 

considered to form the second edge together with its single 

appropriate neighbour. In Fig. 5, node B is found within the 

vicinity. 𝐸𝐵𝐴  and 𝐸𝐵𝐷  will then be picked as potential 

candidates for the second edge in 2-opt swap. 

 

 

 

 

 

 

Fig. 5. Finding the second edge where 𝑬𝑬𝑭 is the first edge 

based on FRNN method. 

Using FRNN 2-opt, only two comparisons are needed. 

However, if the exhaustive 2-opt local search is applied on the 

same permutation of “E, F, I, H, C, G, A, B, D, E” and 𝐸𝐸𝐹  is 

chosen as the first edge, the potential candidates for second 

edge are 𝐸𝐼𝐻 , 𝐸𝐻𝐶  , 𝐸𝐶𝐺  , 𝐸𝐺𝐴  , 𝐸𝐴𝐵  and 𝐸𝐵𝐷 . In the worst case 

scenario, the exhaustive 2-opt has to perform six comparisons 

before a successful swap. Considering FRNN 2-opt and 

exhaustive 2-opt local search, FRNN 2-opt can 67% reduction 

in terms of the number of comparisons. 

5. EXPERIMENTAL RESULTS 
In this section proposed algorithm is tested on a set of 

benchmark problems taken from TSPLIB1 and some 

experimental results in this study are presented. The 

dimension of the problems ranges from 48 to 318 cities. The 

numerical figure denotes the dimension of the problem. For 

example, ATT48 is a 48-city problem from the ATT series.  

The results for each benchmark instance are computed as an 

average tour length of five replications. Firstly, results for the 

experiments of tuning k are presented. Six experiments were 

carried out with the settings as follows: 𝑎 =
2∗(𝑛−2)

𝑛∗(𝑛−1)
 (n is the 

number of cities) and β = 10. FBPS and FRNN 2-opt is 

integrated and each experiment consists of five replications. 

LIN318 (42029 as its known optimal) is used as the test 

dataset for this set of experiments. The results of the 

experiments are summarized in Table 1. Whenever a 

replication achieves the optimum tour length, the execution 

will be halted and the results will be collected. Otherwise, it 

will be executed till termination for 5000 iterations (cycles). 

                                                           
1
 www.informatik.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/ 

F 
D 

I 

H 

C 

G 
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E 
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For each replication, the table shows the best tour length, 

execution time and at which cycle the best tour length is 

achieved. #2-opt denotes the total number of 2-opt operations 

if the FRNN 2-opt is performed on every solution. 

For cases where the optimum tour length is obtained before 

5000 iterations, #2-opt is equal to  Cycle_best. For instance, 

#2-opt for replication 1 in experiment I equals to 1241. For 

cases where the execution is run for 5000 iterations till 

termination, #2-opt is equal to  5000. %pruned denotes the 

total number of pruned solutions and its percentage. In the last 

column we give the error percentage (%Error), a measure of 

the quality of the best result found by proposed algorithm 

(%(Avg - Optimal_Result)/Optimal_Result). 

Considering the results shown in Table 1, experiment 2 

produces the most satisfactory results. It shows the lowest 

values for the average tour length and the average 

computational time, that are 42053.2 and 24031s  

respectively. In terms of the total number of pruned solutions, 

Table 1 shows that experiments 3, 4, 5 and 6 fail to prune any 

solution. This makes their computational times much longer 

than experiment 2 (nearly 1.5 times of experiment 2), 

although their average tour lengths are not very much 

different from experiment 2. In experiment 1, by setting k to a 

low value, it is expected that the execution time will be 

reduced. However, the results show otherwise. The FBPS 

prunes all solutions towards the end of the algorithm 

execution and this does not contribute to finding the optimal 

solutions. Hence, more time is needed to search in the space. 

This makes the performance of experiment 1 not comparable 

to the rest. All these observations show that k should not be 

configured either too high or too low. To achieve a reasonable 

trade off between solution quality and computational cost, k 

should be set within a bound of [10%, 30%]. 

The experimental results that show the performance of the 

DLA algorithm integrated with FBPS and FRNN 2-opt in 

terms of solution quality and computational timing on a set of 

20 selected problem instances from TSPLIB are presented in 

Table 2. The table illustrates results of three different sets of 

experiment. Parameter settings for these three experiments are 

the same as what were used in previous section, except it will 

be executed for 10000 iterations. Experiment A uses the 2-opt 

which requires an exhaustive comparison and swap in its 

operation. Experiment B uses the FRNN 2-opt, but not the 

FBPS. Experiment C uses both FRNN 2-opt and FBPS and 

the k is set at 10%. The results for experiment A in Table 2 

has been previously reported in [15] and they were 

comparable with other seven existing approaches for solving 

TSP. As the solution quality is maintained after the FRNN 2-

opt and FBPS integration, such comparison study as in [15] is 

not included in this paper. The focus of this paper is to 

investigate the effect on computational timing when such the 

integration is made. 

As shown in Table 2, the three approaches are able to obtain 

the optimal or near to optimal tour length for all the problems. 

Considering all 20 problems together, Table 2 shows that the 

solution quality is sustained while a major reduction in 

computational time is observed. 

6. CONCLUSION 
A new DLA algorithm optimized by frequency-based pruning 

strategy and efficient implementation of 2-opt has been 

proposed in this paper. Based on the experimental results, the 

addition of both FBPS and FRNN 2-opt in the DLA algorithm 

is able to significantly improve its execution performance 

compared to the DLA algorithm proposed in [15]. The 

proposed algorithm will ensure that only a set of promising 

solutions are locally optimized by FRNN 2-opt, and hence 

avoid performing an exhaustive 2-opt on every solution 

generated by DLA. 

 

Table 1: Adjusting k and its Results in experiments.  

Error % Avg. Rep.5 Rep.4 Rep.3 Rep.2 Rep.1 Attr. k% Exp 

0.22 

42123.4 

1392.4 
32592.8 

- 

- 

42079 

962 
38624 

5000 

81.69 

42196 

2283 
36264 

5000 

63.37 

42029  

1354 
12385 

1354 

80.91 

42145 

538 
37289 

5000 

61.25 

42168 

1825 
38402 

5000 

72.34 

Length 

Cycle_best 
Time(s) 

#2-opt 

%pruned 

5 1 

0.05 

42053.2 

1807.2 

24031 
- 

- 

42029  

2018 

18566 
2018 

19.31 

42086  

3567 

37854 
5000 

22.74 

42029  

1308 

12006 
1308 

19.1 

42093  

726 

38491 
5000 

20.71 

42029  

1417 

13238 
1417 

21.54 

Length 

Cycle_best 

Time(s) 
#2-opt 

%pruned 

10 2 

0.12 

42080.4 

2347.8 
34719.2 

- 

- 

42243 

2467 
37525 

5000 

0.00 

42036 

3258 
38469 

5000 

0.00 

42123 

925 
38406 

5000 

0.00 

42029 

2351  
19652 

2351 

0.00 

42101 

4038 
39524 

5000 

0.00 

Length 

Cycle_best 
Time(s) 

#2-opt 

%pruned 

30 3 

0.21 

42249.6 

2561.2 

35702.8 
- 

- 

42154 

4194 

36228 
5000 

0.00 

42107 

867 

39264 
5000 

0.00 

42029 

3012 

25672 
3012 

0.00 

42182 

3201 

38781 
5000 

0.00 

42126 

1532 

38569 
5000 

0.00 

Length 

Cycle_best 

Time(s) 
#2-opt 

%pruned 

50 4 

0.20 

42243.4 

2677.8 
35250 

- 
- 

42163 

2415 
36251 

5000 
0.00 

42122 

3427 
38642 

5000 
0.00 

42178 

1878 
39567 

5000 
0.00 

42029 

2895 
24138 

2895 
0.00 

42075 

2774 
37652 

5000 
0.00 

Length 

Cycle_best 
Time(s) 

#2-opt 
%pruned 

75 5 

0.22 

42121.6 

28598 

35874.6 
- 

- 

42078 

2981 

36202 
5000 

0.00 

42029 

3127 

26351 
3127 

0.00 

42161 

2873 

38245 
5000 

0.00 

42194 

2014 

38623 
5000 

0.00 

42146 

3569 

39502 
5000 

0.00 

Length 

Cycle_best 

Time(s) 
#2-opt 

%pruned 

90 6 
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Table 2: Performance of the DLA Algorithm terms of Solution Quality. 

Problem 

(cities) 
Optimal 

Exp. A 

DLA + 2-opt 

Exp. B 

DLA + FRNN 2-opt 

Exp. C 

DLA + FRNN 2-opt + FBPS 

Tour Length Avg. 

Time(s) 
%Err 

Tour Length Avg. 

Time(s) 
%Err 

Tour Length Avg. 

Time(s) 
%Err 

Best Avg Best Avg Best Avg 

ATT(48) 10628 10628 10687.2 1.15 0.55 10628 10652.5 1.02 0.22 10628 10638.4 1.08 0.09 

EIL(51) 426 426 430 4.8 0.93 426 428.6 1.32 0.61 426 428.2 3.21 0.51 

BERLIN 

(52) 
7542 7542 7543 0.09 0.01 7542 7542 0.08 0.00 7542 7542 0.08 0.00 

ST(70) 675 675 691.1 8.36 2.38 675 686.7 6.01 1.88 675 683 10.05 1.85 

EIL(76) 538 540 545 11.5 1.30 538 543 8.94 0.92 538 540.6 6.32 0.59 

PR(76) 108159 108159 108243.3 72.98 0.07 108159 108187 48.6 0.02 108159 108166.2 68.1 0.00 

KROA 

(100) 
21282 21320 21754 15.23 2.21 21308 21527 4.78 1.51 21295 21402.2 2.84 0.56 

KROB 
(100) 

22141 22163 22398.5 35.4 1.16 22157 22241.4 12.3 0.45 22148 22192.8 10.07 0.23 

KROC 

(100) 
20749 20749 20834 25.33 0.40 20749 20802.6 4.17 0.25 20749 20781.2 4.62 0.15 

KROD 
(100) 

21294 21375 21964.8 101.67 3.15 21332 21766.2 59.7 2.21 21302 21542.3 65.5 1.16 

KROE 

(100) 
22068 22083 22192.1 62.27 0.56 22072 22161.5 86.43 0.42 22069 22243.2 51.33 0.20 

EIL(101) 629 629 638 185.6 1.43 629 634.4 132.6 0.85 629 634 61 0.79 

LIN 

(105) 
14379 14483 15281.9 7.81 6.27 14396 14759.7 2.53 2.64 14379 14501.5 2.89 0.85 

KROA 

(150) 
26524 26524 27862 632.3 5.04 26524 27200 754.87 2.54 26524 26908.8 142.6 1.45 

KROA 

(200) 
29368 29375 29864.2 2047.81 1.68 29368 29725.3 1191 1.21 29368 29389.4 118.2 0.07 

TSP 

(225) 
3916 3974 4018 3928.64 2.60 3952 3984.6 4514.61 1.75 3976 3971.5 814.18 1.41 

A(280) 2579 2579 2864.6 3416.5 24.07 2579 2721.5 2011.45 5.52 2579 2612 396.5 1.27 

LIN 

(318) 
42029 42029 43926.4 31108.4 4.51 42029 42097 29682.64 0.16 42029 42053.2 20874 0.05 

Average:   2314.76 3.24   2140.69 1.28   1257.36 0.62 
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