
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.17, May 2012

7

A Learning Automata based Algorithm for Solving

Traveling Salesman Problem improved by

Frequency-based Pruning

Mir Mohammad Alipour

Department of Computer Engineering, University of Bonab,

Bonab 5551761167, iran

ABSTRACT

Many real world industrial applications involve finding a

Hamiltonian path with minimum cost. Some instances that

belong to this category are transportation routing problem,

scan chain optimization and drilling problem in integrated

circuit testing and production. Distributed learning automata,

that is a general searching tool and is a solving tool for variety

of NP-complete problems, together with 2-opt local search is

used to solve the Traveling Salesman Problem (TSP). Two

mechanisms named frequency-based pruning strategy (FBPS)

and fixed-radius near neighbour (FRNN) 2-opt are used to

reduce the high overhead incurred by 2-opt in the DLA

algorithm proposed previously. Using FBPS only a subset of

promising solutions are proposed to perform 2-opt. Invoking

geometric structure, FRNN 2-opt implements efficient 2-opt

in a permutation of TSP sequence. Proposed algorithms are

tested on a set of TSP benchmark problems and the results

show that they are able to reduce computational time, while

maintaining the average solution quality at 0.62% from

known optimal.

Keywords

Traveling Salesman Problem, Distributed Learning Automata,

Frequency-based pruning strategy, Fixed-radius near

neighbour.

1. INTRODUCTION
Traveling Salesman Problem (TSP) is about finding a

Hamiltonian path (tour) with minimum cost. TSP is one of the

discrete optimization problems which is classified as

NP-hard [1]. It is common in areas such as logistics,

transportation and semiconductor industries. For instance,

finding an optimized scan chains route in integrated chips

testing, parcels collection and sending in logistics companies,

are some of the potential applications of TSP. Efficient

solution to such problems will ensure the tasks are carried out

effectively and thus increase productivity. Due to its

importance in many industries, TSP is still being studied by

researchers from various disciplines and it remains as an

important test bed for many newly developed algorithms.

Various techniques have been used to solve TSP. In general,

these techniques are classified into two broad categories:

exact and approximation algorithms [2]. Exact algorithms are

methods which utilize mathematical models whereas

approximation algorithms make use of heuristics and iterative

improvements as the problem solving process. Some instances

in the exact methods category are Branch and Bound,

Lagrangian Relaxation and Integer Linear Programming.

Approximation algorithms can be further classified into two

groups: constructive heuristics and improvement heuristics.

Instances in constructive heuristics include Nearest

Neighbourhood, Greedy Heuristics, Insertion Heuristics [3],

Christofides Heuristics [4] etc. Instances in improvement

heuristic include k-opt [5], Lin-Kernighan Heuristics [6],

Simulated Annealing [7], Tabu Search [8], Evolutionary

Algorithms [9-11], Ant Colony Optimization [12,13] and Bee

System [14].

In this paper an optimized Distributed Learning Automata

(DLA) algorithm is mentioned that significantly improves the

computational speed of algorithm proposed previously by the

author [15]. Each solution generated by the previous DLA

algorithm was locally optimized by an exhaustive 2-opt and

proposed algorithm was tested on a set of TSP benchmark

instances. The 2-opt heuristic is implemented according to the

basic idea which eliminates two arcs in order to obtain two

different paths. These two paths are then reconnected in the

other possible way if the new path results in a shorter tour

length. Although the integration of 2-opt gave promising

results, the results presented showed that the execution time

could be improved further. To achieve this, two mechanisms,

namely FBPS and FRNN 2-opt, are presented in this paper.

FBPS is a strategy that allows only a subset of promising

solutions to perform 2-opt and FRNN 2-opt is an efficient

implementation of 2-opt.

This paper organized as follows: In the next section the

Learning Automata and Distributed Learning Automata and

2-opt Local Search Heuristic is introduced and then DLA with

2-opt local search algorithm is described. Section 3 describes

FBPS and its working mechanism. In section 4 the

FRNN 2-opt adapted from [16] is described. Computational

results and findings of this paper are presented and analyzed

in section 5 while in the last section conclusions are given.

2. LEARNING AUTOMATA
The automaton approach to learning involves determination of

an optimal action from a set of allowable actions. An

automaton can be regarded as an abstract object that has finite

number of actions. It selects an action from its finite set of

actions. This action is applied to a random environment. The

random environment evaluates the applied action and gives a

grade to the selected action of automata. The response from

environment is used by automata to select its next action. By

continuing this process, the automaton learns to select an

action with best response.

The learning algorithm used by automata to determine the

selection of next action from the response of environment. An

automaton acting in an unknown random environment and

improves its performance in some specified manner, is refered

to as learning automata (LA) [17-22].

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.17, May 2012

8

The environment can be described by a triple },,{ cE  ,

where },...,,{ 21 r  represents the finite set of the

inputs, },...,,{ 21 m  denotes the set of the values can

be taken by the reinforcement signal, and },...,,{ 21 rcccc 

denotes the set of the penalty probabilities, where the element

ic is associated with the given action
i . If the penalty

probabilities are constant, the random environment is said to

be a stationary random environment, and if they vary with

time, the environment is called a non stationary environment.

The environments depending on the nature of the

reinforcement signal  can be classified into P-model,

Q-model and S-model. The environments in which the

reinforcement signal can only take two binary values 0 and 1

are referred to as P-model environments. Another class of the

environment allows a finite number of the values in the

interval [0, 1] can be taken by the reinforcement signal. Such

an environment is referred to as Q-model environment. In

S-model environments, the reinforcement signal lies in the

interval [a, b]. The relationship between the learning

automaton and its random environment has been shown in

Fig. 1.

Fig. 1. The relationship between the learning automaton

and its random environment.

Learning Automata can be classified into two main families:

fixed structure learning automata and variable structure

learning automata. A variable structure learning automaton is

represented by triple < 𝛼, 𝛽, 𝑇 >, where β is a set of inputs, α

is a set of actions and T is learning algorithm. The learning

algorithm is a recurrence relation and is used to modify the

action probability vector. It is evident that the crucial factor

affecting the performance of the variable structure learning

automata, is learning algorithm for updating the action

probabilities.

Let α(k) and p(k) denote the action chosen at instant k and the

action probability vector on which the chosen action is based,

respectively. The recurrence equation shown by Eq. (1) and

Eq. (2) is a linear learning algorithm by which the action

probability vector p is updated. Let ∝𝑖 (𝑘) be the action

chosen by the automaton at instant k.

𝑝𝑗 𝑛 + 1 =
𝑝𝑗 𝑛 + 𝑎 1 − 𝑝𝑗 𝑛 𝑗 = 𝑖

 1 − 𝑎 𝑝𝑗 𝑛 ∀𝑗 𝑗 ≠ 𝑖
 (1)

When the taken action is rewarded by the environment

(i.e., 𝛽 𝑛 = 0) and

𝑝𝑗 𝑛 + 1 =

(1 − 𝑏)𝑝𝑗 𝑛 𝑗 = 𝑖

𝑏

𝑟 − 1
+ 1 − 𝑏 𝑝𝑗 𝑛 ∀𝑗 𝑗 ≠ 𝑖

 (2)

When the taken action is penalized by the environment

(i.e., 𝛽 𝑛 = 1). r is the number of actions can be chosen by

the automaton, a(k) and b(k) denote the reward and penalty

parameters and determine the amount of increases and

decreases of the action probabilities, respectively.

If a(k) = b(k), the recurrence equations (1) and (2) are called

linear reward-penalty (
PRL 

) algorithm, if a(k) >> b(k) the

given equations are called linear reward-ε penalty (
PRL 

),

and finally if b(k) = 0 they are called linear reward-Inaction

(
IRL 

). In the latter case, the action probability vectors

remain unchanged when the taken action is penalized by the

environment.

Learning automata have been found to be useful in systems

where incomplete information about the environment,

wherein the system operates, exists. Learning automata are

also proved to perform well in dynamic environments. It has

been shown that the learning automata are capable of solving

the NP-hard problems [23].

2.1 Distributed Learning Automata (DLA)
A DLA is a network of the learning automata which

collectively cooperate to solve a particular problem [23]. In

DLA the number of actions for any automaton in the network

is equal to the number of outgoing edges from that automaton.

When an automaton selects one of its actions, another

automaton on the other end of edge corresponding to the

selected action will be activated. The environment evaluates

the applied actions and emits a reinforcement signal to the

DLA. The activated learning automata along the chosen path

update their action probability vectors on the basis of the

reinforcement signal by using the learning schemes. Formally,

a DLA can be defined by a quadruple < 𝐴,𝐸, 𝑇, 𝐴0 > where

𝐴 = {𝐴1 , … , 𝐴𝑛} is the set of learning automata, 𝐸 ⊂ 𝐴 × 𝐴 is

the set of the vertices in which vertex 𝑒(𝑖,𝑗) corresponds to the

action ∝𝑗 of the automaton 𝐴𝑖 , T is the set of learning

schemes with which the learning automata update their action

probability vectors and 𝐴0 is the root automaton of DLA from

which the automaton activation is started. For example in Fig.

2, every automaton has two actions, if automaton 𝐴1 selects

action 𝛼1 then automaton 𝐴3 will be activated. The activated

automaton 𝐴3 chooses one of its actions which in turn

activates one of the automata connected to 𝐴3. At any time

only one automaton in the network will be active.

Fig. 2. Distributed learning automata.

2.2 Local Search: 2-OPT Heuristic
The method of 2-opt heuristic is applied frequently to solve

TSP. Applying 2-opt heuristic in TSP has some advantages

such as simplicity in its implementation and its ability to

obtain near optimal results. The basic idea of 2-opt heuristic is

to eliminate two arcs in R in order to obtain two different

paths. These two paths are then reconnected in the other

possible way. Let’s consider a feasible solution, R, with the

permutation of “A, B, C, D, E, F, A” with total tour length of

8 units as shown in Fig. 3(a). This closed tour is then further

transformed by firstly eliminating two arcs (B, C) and (E, F)

and thus producing two separate paths “F, A, B” and “C, D,

E”. Next, these two paths are then reconnected to produce

another closed tour, R’ = “A, B, E, D, C, F, A”, as shown in

Fig. 3(b). Note that there is only one possible way to

Random Environment

Learning Automata

n

n

α2

α1

A1

A3

𝐴2

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.17, May 2012

9

reconnect these two paths in order to preserve the length of

the other four arcs. By performing a two-arc transformation,

the total length of the closed tour is reduced from 8 units to 6

units. The 2-opt transformation mechanism can be generalized

to cater for more arcs in its eliminate-and-reconnect

process [5].

Fig. 3. (a) Original closed tour, R. (b) R’ after 2-opt

transformation

2.3 DLA Algorithm with 2-opt for TSP
In this section, we describe the DLA-2opt algorithm proposed

in [15]. At first a network of learning automata which is

isomorphic to the graph of TSP instance is created. In this

network each node is a learning automaton and each outgoing

edge of this node (connecting this city to other city) is one of

the actions of this learning automaton.

At first, one automaton selected (activated) randomly as

starting city, then at the each stage, active automaton chooses

one of its actions based on its action probability vector and

heuristic information (it prefer to choose short edges)

according to the probability distribution given in Eq. (4).

)4(},...,2,1:

)],([

)],([
|{

1

1

1

ri

ijWp

ijWp
ppP

r

i

j

i

j

ij

i

j

i

j 

















where
j

iP is the is the probability with which automaton j

chooses to move from city j to city i,),(1 ijW  is the inverse

of the distance between city j to city i, i is the one of cities that

can be visited by automaton on city j (to make the solution

feasible), and 1 is a parameter which determines the

relative importance of
j

iP versus distance. In Eq. (1) we

multiply the
j

iP by the corresponding heuristic value

),(1 ijW  . In this way we favor the choice of edges which

are shorter and which have a greater
j

iP .

This action activates automaton on the other end of edge. The

process of choosing an action and activating an automaton is

repeated until a tour is created, this means, every node of the

graph is visited and coming back at starting city (or making a

feasible tour is impossible). In order to exclude loops from

the traversed paths, the algorithm meets every node along a

path being traversed once (except starting city). To implement

this, if an automaton chooses action ∝𝑘 from the list of its

actions, then all inactivated automatons (unvisited nodes) will

disable action ∝𝑗 in their list of actions. However, at the next

iteration of the algorithm, all the disabled actions will be

enabled. The action of a DLA is a sequence of actions that

represents a particular tour in the graph. After this, the

solution is improved by 2-opt heuristic. The outline of our

DLA 2-opt algorithm is shown in Fig. 4.

Procedure TSP

Begin

 Repeat

 Produce a tour by DLA.

 Perform 2-opt on this tour.

 Compute the tour length.

 if CurrentTourLength < BestTourLength then

 Reward the selected actions of all LAs along the

 tour according to the IRL  .

 Modify the Probability vector.

 End if

 Enable all the disabled actions of each LAs.

 Until (stop condition reached)

End Procedure

Fig. 4. DLA with 2-opt local search for TSP

The environment uses the length of this tour to produce its

response. This response, depending on whether it is favorable

or unfavorable, causes the actions along the traversed path be

rewarded if it is favorable (the action probability vectors

remain unchanged if it is unfavorable) according to linear

Reward-Inaction learning algorithm)(IRL 
.

3. FREQUENCY-BASED PRUNING

STRATEGY
FBPS is based on building blocks concept that has been found

in many areas. One of them is the Genetic Algorithms (GA) in

computer science. Gero et al [24,25] studied the building

blocks in GA chromosomes. A population of chromosomes is

divided into two groups, one above a threshold (better

fitness), and the other one below the threshold (lower fitness).

They proposed a mechanism to identify prevalent building

blocks in the better fitness group and absent building blocks in

the lower fitness group. The identified building blocks are

then combined as a single gene and they are prevented from

further modifications by crossover and mutation. The

proposed approach was tested on space layout planning and

results showed that if these blocks are frequently reused in the

evolutionary process, a significant reduction of computational

time can be achieved. The FBPS proposed in this paper is able

to identify some common building blocks in the TSP solutions

generated by DLAs. The identified building blocks will be

used to decide which solutions need to be further improved by

2-opt.

If every solution generated by DLAs locally be optimized

using 2-opt, computational time for obtaining good results is

highly increased. Hence, a pruning strategy based on the

accumulated frequency of building blocks is proposed to

prohibit 2-opt operations from being performed on some

solutions. Consider the following example that explains the

working mechanism of the pruning strategy. Firstly, an n × n

matrix is created with each entry of the matrix assigned to

zero. n is the number of cities of a TSP instance. If a TSP

instance with 5-city is being solved, a matrix 𝐹5∗5 is required:

F =

 A B C D E

A 0 0 0 0 0

B 0 0 0 0 0

C 0 0 0 0 0

D 0 0 0 0 0

E 0 0 0 0 0

F is used to record the accumulated frequency of the smallest

building blocks of every solutions generated by DLAs. In this

case, the smallest building block contains two elements.

Consider the solution “A, B, C, D, E, A” and how F will be

updated:

1

1 1

1 1

1

D

E B

A

C F

(b) (a)

1

1 1

1 1

1

D

E B

A

C F

2 2

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.17, May 2012

10

F =

 A B C D E

A 0 1 0 0 1

B 1 0 1 0 0

C 0 1 0 1 0

D 0 0 1 0 1

E 1 0 0 1 0

In this paper only the smallest edges (edge between two

nodes) is considered in a solution, but it can be extended to

consider building blocks in different sizes e.g. three-element

block and so on. For every building block found in the

permutation, two entries of F will be updated. For instance,

when the building block AB is encountered, the entries of AB

and BA of F are both incremented by 1. Consider another

solution “A, B, E, D, C, A” is generated, result is:

F=

 A B C D E

A 0 2 1 0 1

B 2 0 1 0 1

C 1 1 0 2 0

D 0 0 2 0 2

E 1 1 0 2 0

Assume the algorithm generates several solutions and then

final value of F is as below:

F =

 A B C D E

A 0 125 814 32 198

B 125 0 708 382 97

C 814 708 0 30 715

D 32 382 30 0 182

E 198 97 715 182 0

Looking at F, we can identify the building blocks with high

frequency. Consider the first row of F as an example, where it

records the frequency of the building blocks with A as the

first element {AB, AC, AD and AE}. It has a total frequency

of 1169 (summation of 125, 814, 32 and 198). The building

block of AA is disregarded as the system does not allow any

recursive visit. Of these four building blocks, AB contributes

10.69% of the total occurrences (
125

1169
× 100%). AC, AD and

AE contribute 69.63%, 2.73% and 16.93% respectively. Rest

of entries in F are calculated similarly and the resulting matrix

is as below:

F% =

 A B C D E

A 0.00 10.69 69.63 2.73 16.93

B 9.52 0.00 53.96 29.11 7.39

C 35.90 31.23 0.00 1.32 31.53

D 5.11 61.02 4.79 0.00 29.07

E 16.61 8.13 59.98 15.26 0.00

Based on F%, building blocks that are q% and above are

identified as hot spots. q is a user defined threshold value. For

instance, if q = 5%, AB, AC and AE are the hot spots with A

as its first element. The identified hot spots will then be

employed in the decision making process. The pruning

criterion is set as follow: if any solution contains k% or more

dissimilar building blocks, it will be prohibited from

performing the FRNN 2-opt. Otherwise, it will be further

optimized by the FRNN 2-opt. If a permutation of “A, D, C,

B, E, A” is considered (based on F% and

q = 5%), building blocks of AD and DC are not hot spots.

And CB , BE and EA are hot spots. If k is configured at 25%,

this particular permutation will be pruned from performing 2-

opt. If another permutation of “A, D, E, B, C, A” is

encountered, it will be accepted for 2-opt optimization as only

one dissimilar building blocks is observed (20% < κ where k

is set at 25%). k is a pruning threshold that defined by user

and results of tuning it will be mentioned in Section 5.

4. Fixed-Radius Near Neighbour 2-OPT
In this paper, Fixed-radius Near Neighbour (FRNN) 2-opt is

used for efficient implementing 2-opt [16]. The 2-opt swap

could not decrease the tour length as both edges increase in

length. Because of this observation, the exploration of the

second edge can be restricted to a circle centered at a node of

the first edge with a radius equal to the edge length.

The tour with a permutation of “E, F, I, H, C, G, A, B, D, E”

in Fig. 5 will be optimized by 2-opt. While the edge that links

E and F, 𝐸𝐸𝐹 , serves as the first edge, a search of the second

edge based on FRNN method centered at E is performed with

a radius of 𝑑𝐸𝐹 . All the nodes within the vicinity will be

considered to form the second edge together with its single

appropriate neighbour. In Fig. 5, node B is found within the

vicinity. 𝐸𝐵𝐴 and 𝐸𝐵𝐷 will then be picked as potential

candidates for the second edge in 2-opt swap.

Fig. 5. Finding the second edge where 𝑬𝑬𝑭 is the first edge

based on FRNN method.

Using FRNN 2-opt, only two comparisons are needed.

However, if the exhaustive 2-opt local search is applied on the

same permutation of “E, F, I, H, C, G, A, B, D, E” and 𝐸𝐸𝐹 is

chosen as the first edge, the potential candidates for second

edge are 𝐸𝐼𝐻 , 𝐸𝐻𝐶 , 𝐸𝐶𝐺 , 𝐸𝐺𝐴 , 𝐸𝐴𝐵 and 𝐸𝐵𝐷 . In the worst case

scenario, the exhaustive 2-opt has to perform six comparisons

before a successful swap. Considering FRNN 2-opt and

exhaustive 2-opt local search, FRNN 2-opt can 67% reduction

in terms of the number of comparisons.

5. EXPERIMENTAL RESULTS
In this section proposed algorithm is tested on a set of

benchmark problems taken from TSPLIB1 and some

experimental results in this study are presented. The

dimension of the problems ranges from 48 to 318 cities. The

numerical figure denotes the dimension of the problem. For

example, ATT48 is a 48-city problem from the ATT series.

The results for each benchmark instance are computed as an

average tour length of five replications. Firstly, results for the

experiments of tuning k are presented. Six experiments were

carried out with the settings as follows: 𝑎 =
2∗(𝑛−2)

𝑛∗(𝑛−1)
 (n is the

number of cities) and β = 10. FBPS and FRNN 2-opt is

integrated and each experiment consists of five replications.

LIN318 (42029 as its known optimal) is used as the test

dataset for this set of experiments. The results of the

experiments are summarized in Table 1. Whenever a

replication achieves the optimum tour length, the execution

will be halted and the results will be collected. Otherwise, it

will be executed till termination for 5000 iterations (cycles).

1
 www.informatik.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/

F
D

I

H

C

G

A

B

E

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.17, May 2012

11

For each replication, the table shows the best tour length,

execution time and at which cycle the best tour length is

achieved. #2-opt denotes the total number of 2-opt operations

if the FRNN 2-opt is performed on every solution.

For cases where the optimum tour length is obtained before

5000 iterations, #2-opt is equal to Cycle_best. For instance,

#2-opt for replication 1 in experiment I equals to 1241. For

cases where the execution is run for 5000 iterations till

termination, #2-opt is equal to 5000. %pruned denotes the

total number of pruned solutions and its percentage. In the last

column we give the error percentage (%Error), a measure of

the quality of the best result found by proposed algorithm

(%(Avg - Optimal_Result)/Optimal_Result).

Considering the results shown in Table 1, experiment 2

produces the most satisfactory results. It shows the lowest

values for the average tour length and the average

computational time, that are 42053.2 and 24031s

respectively. In terms of the total number of pruned solutions,

Table 1 shows that experiments 3, 4, 5 and 6 fail to prune any

solution. This makes their computational times much longer

than experiment 2 (nearly 1.5 times of experiment 2),

although their average tour lengths are not very much

different from experiment 2. In experiment 1, by setting k to a

low value, it is expected that the execution time will be

reduced. However, the results show otherwise. The FBPS

prunes all solutions towards the end of the algorithm

execution and this does not contribute to finding the optimal

solutions. Hence, more time is needed to search in the space.

This makes the performance of experiment 1 not comparable

to the rest. All these observations show that k should not be

configured either too high or too low. To achieve a reasonable

trade off between solution quality and computational cost, k

should be set within a bound of [10%, 30%].

The experimental results that show the performance of the

DLA algorithm integrated with FBPS and FRNN 2-opt in

terms of solution quality and computational timing on a set of

20 selected problem instances from TSPLIB are presented in

Table 2. The table illustrates results of three different sets of

experiment. Parameter settings for these three experiments are

the same as what were used in previous section, except it will

be executed for 10000 iterations. Experiment A uses the 2-opt

which requires an exhaustive comparison and swap in its

operation. Experiment B uses the FRNN 2-opt, but not the

FBPS. Experiment C uses both FRNN 2-opt and FBPS and

the k is set at 10%. The results for experiment A in Table 2

has been previously reported in [15] and they were

comparable with other seven existing approaches for solving

TSP. As the solution quality is maintained after the FRNN 2-

opt and FBPS integration, such comparison study as in [15] is

not included in this paper. The focus of this paper is to

investigate the effect on computational timing when such the

integration is made.

As shown in Table 2, the three approaches are able to obtain

the optimal or near to optimal tour length for all the problems.

Considering all 20 problems together, Table 2 shows that the

solution quality is sustained while a major reduction in

computational time is observed.

6. CONCLUSION
A new DLA algorithm optimized by frequency-based pruning

strategy and efficient implementation of 2-opt has been

proposed in this paper. Based on the experimental results, the

addition of both FBPS and FRNN 2-opt in the DLA algorithm

is able to significantly improve its execution performance

compared to the DLA algorithm proposed in [15]. The

proposed algorithm will ensure that only a set of promising

solutions are locally optimized by FRNN 2-opt, and hence

avoid performing an exhaustive 2-opt on every solution

generated by DLA.

Table 1: Adjusting k and its Results in experiments.

Error % Avg. Rep.5 Rep.4 Rep.3 Rep.2 Rep.1 Attr. k% Exp

0.22

42123.4

1392.4
32592.8

-

-

42079

962
38624

5000

81.69

42196

2283
36264

5000

63.37

42029

1354
12385

1354

80.91

42145

538
37289

5000

61.25

42168

1825
38402

5000

72.34

Length

Cycle_best
Time(s)

#2-opt

%pruned

5 1

0.05

42053.2

1807.2

24031
-

-

42029

2018

18566
2018

19.31

42086

3567

37854
5000

22.74

42029

1308

12006
1308

19.1

42093

726

38491
5000

20.71

42029

1417

13238
1417

21.54

Length

Cycle_best

Time(s)
#2-opt

%pruned

10 2

0.12

42080.4

2347.8
34719.2

-

-

42243

2467
37525

5000

0.00

42036

3258
38469

5000

0.00

42123

925
38406

5000

0.00

42029

2351
19652

2351

0.00

42101

4038
39524

5000

0.00

Length

Cycle_best
Time(s)

#2-opt

%pruned

30 3

0.21

42249.6

2561.2

35702.8
-

-

42154

4194

36228
5000

0.00

42107

867

39264
5000

0.00

42029

3012

25672
3012

0.00

42182

3201

38781
5000

0.00

42126

1532

38569
5000

0.00

Length

Cycle_best

Time(s)
#2-opt

%pruned

50 4

0.20

42243.4

2677.8
35250

-
-

42163

2415
36251

5000
0.00

42122

3427
38642

5000
0.00

42178

1878
39567

5000
0.00

42029

2895
24138

2895
0.00

42075

2774
37652

5000
0.00

Length

Cycle_best
Time(s)

#2-opt
%pruned

75 5

0.22

42121.6

28598

35874.6
-

-

42078

2981

36202
5000

0.00

42029

3127

26351
3127

0.00

42161

2873

38245
5000

0.00

42194

2014

38623
5000

0.00

42146

3569

39502
5000

0.00

Length

Cycle_best

Time(s)
#2-opt

%pruned

90 6

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.17, May 2012

12

Table 2: Performance of the DLA Algorithm terms of Solution Quality.

Problem

(cities)
Optimal

Exp. A

DLA + 2-opt

Exp. B

DLA + FRNN 2-opt

Exp. C

DLA + FRNN 2-opt + FBPS

Tour Length Avg.

Time(s)
%Err

Tour Length Avg.

Time(s)
%Err

Tour Length Avg.

Time(s)
%Err

Best Avg Best Avg Best Avg

ATT(48) 10628 10628 10687.2 1.15 0.55 10628 10652.5 1.02 0.22 10628 10638.4 1.08 0.09

EIL(51) 426 426 430 4.8 0.93 426 428.6 1.32 0.61 426 428.2 3.21 0.51

BERLIN

(52)
7542 7542 7543 0.09 0.01 7542 7542 0.08 0.00 7542 7542 0.08 0.00

ST(70) 675 675 691.1 8.36 2.38 675 686.7 6.01 1.88 675 683 10.05 1.85

EIL(76) 538 540 545 11.5 1.30 538 543 8.94 0.92 538 540.6 6.32 0.59

PR(76) 108159 108159 108243.3 72.98 0.07 108159 108187 48.6 0.02 108159 108166.2 68.1 0.00

KROA

(100)
21282 21320 21754 15.23 2.21 21308 21527 4.78 1.51 21295 21402.2 2.84 0.56

KROB
(100)

22141 22163 22398.5 35.4 1.16 22157 22241.4 12.3 0.45 22148 22192.8 10.07 0.23

KROC

(100)
20749 20749 20834 25.33 0.40 20749 20802.6 4.17 0.25 20749 20781.2 4.62 0.15

KROD
(100)

21294 21375 21964.8 101.67 3.15 21332 21766.2 59.7 2.21 21302 21542.3 65.5 1.16

KROE

(100)
22068 22083 22192.1 62.27 0.56 22072 22161.5 86.43 0.42 22069 22243.2 51.33 0.20

EIL(101) 629 629 638 185.6 1.43 629 634.4 132.6 0.85 629 634 61 0.79

LIN

(105)
14379 14483 15281.9 7.81 6.27 14396 14759.7 2.53 2.64 14379 14501.5 2.89 0.85

KROA

(150)
26524 26524 27862 632.3 5.04 26524 27200 754.87 2.54 26524 26908.8 142.6 1.45

KROA

(200)
29368 29375 29864.2 2047.81 1.68 29368 29725.3 1191 1.21 29368 29389.4 118.2 0.07

TSP

(225)
3916 3974 4018 3928.64 2.60 3952 3984.6 4514.61 1.75 3976 3971.5 814.18 1.41

A(280) 2579 2579 2864.6 3416.5 24.07 2579 2721.5 2011.45 5.52 2579 2612 396.5 1.27

LIN

(318)
42029 42029 43926.4 31108.4 4.51 42029 42097 29682.64 0.16 42029 42053.2 20874 0.05

Average: 2314.76 3.24 2140.69 1.28 1257.36 0.62

7. REFERENCES
[1] G. Laporte, "The traveling salesman problem: An

overview of exact and approximate algorithms,"

European Journal of Operational Research, vol. 59, no. 2,

pp. 231-247, 1992.

[2] G. Laporte, "The traveling salesman problem: An

overview of exact and approximate algorithms,"

European Journal of Operational Research, vol. 59, no. 2,

pp. 231-247, 1992.

[3] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, "An

analysis of several heuristics for the traveling salesman

problem," SIAM Journal on Computing, vol. 6 , no. 3,

pp. 563-581, 1977.

[4] A. M. Frieze, "An extension of Christofides heuristic to

the k-person travelling salesman problem," Discrete

Applied Mathematics, vol. 6, no. 1, pp. 79-83, 1983.

[5] B. Chandra, H. Karloff, and C. Tovey, "New results on the

old k-opt algorithm for the traveling salesman problem,"

SIAM Journal on Computing, vol. 28, no. 6, pp. 1998-

2029, 1999.

[6] S. Lin and B. W. Kerninghan, "An effective heuristic

algorithm for the traveling salesman problem,"

Operations Research, vol. 21, no. 2, pp. 498-516, 1973.

[7] E. H. L. Aarts, J. H. M. Korst, and P. J. M. Vanlaarhoven,

"A quantitative analysis of the simulated annealing

algorithm - A case study for the traveling salesman

problem," Journal of Statistical Physics, vol. 50, no. 1-2,

pp. 187-206, 1988.

[8] J. Knox, "Tabu search performance on the symmetric

traveling salesman problem," Computers & Operations

Research, vol. 21, no. 8, pp. 867-876, 1994.

[9] B. Freisleben and P. Merz, "A genetic local search

algorithm for solving symmetric and asymmetric

traveling salesman problems," in Proceedings of

International Conference on Evolutionary Computation,

1996. pp. 616-621.

[10] P. Merz and B. Freisleben, "Genetic local search for the

TSP: New results," in Proceedings of the 1997 IEEE

International Conference on Evolutionary Computation,

1997. pp. 159-164.

[11] C. M. White and G. G. Yen, "A hybrid evolutionary

algorithm for traveling salesman problem," in

Proceedings of Congress on Evolutionary Computation,

2004, CEC2004., 2004. pp. 1473 -1478.

[12] L. M. Gambardella and M. Dorigo, "Solving symmetric

and asymmetric TSPs by ant colonies," in Proceedings of

IEEE International Conference on Evolutionary

Computation, 1996. 1996. pp. 622-627.

[13] T. Stützle and H. Hoos, "MAX-MIN ant system and local

search for the traveling salesman problem," in

Proceedings of ICEC'97 - 1997 IEEE 4th International

Conference on Evolutionary Computation, 1997. pp.

308-313.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.17, May 2012

13

[14] P. Lucic and D. Teodorovic, "Computing with Bees:

Attacking Complex Transportation Engineering

Problems," International Journal on Artificial

Intelligence Tools, vol. 12, no. 3, pp. 375-394, 2003.

[15] M. Alipour, "Solving Traveling Salesman Problem Using

Distributed Learning Automata improved by 2-opt local

search heuristic," Proceedings of First CSUT Conference

on Computer, Communication and Information

Technology, Computer Science Department, Tabriz

University, Tabriz, Iran, pp. 256-264 Nov. 2011.

[16] J. L. Bentley, “Fast algorithms for geometric traveling

salesman problems,” ORSA Journal on Computing, vol.

4, no. 4, pp. 387–441, 1992.

[17] K. S. Narendra and K. S. Thathachar, "Learning

Automata: An Introduction," (Prentice-Hall, New York,

1989).

[18] M. A. L. Thathachar and P. S. Sastry, "A hierarchical

system of learning automata that can learn the globally

optimal path," Information Science 42 (1997) 743–766.

[19] M. A. L. Thathachar and B. R. Harita, "Learning

automata with changing number of actions," IEEE Trans.

Systems, Man, and Cybernetics SMG17 (1987) 1095–

2400.

[20] M. A. L. Thathachar and V. V. Phansalkar,

"Convergence of teams and hierarchies of learning

automata in connectionist systems," IEEE Trans.

Systems, Man and Cyber-netics 24 (1995) 1459–1469.

[21] S. Lakshmivarahan andM. A. L. Thathachar, "Bounds on

the convergence probabilities of learning automata,"

IEEE Trans. Systems, Man, and Cybernetics, SMC-6

(1976) 756–763.

[22] K. S. Narendra and M. A. L. Thathachar, "On the

behavior of a learning automaton in a changing

environment with application to telephone traffic

routing," IEEE Trans. Systems, Man, and Cybernetics

SMC-l0(5) (1980) 262–269.

[23] M. Alipour, "A learning automata based algorithm for

solving capacitated vehicle routing problem,"

International Journal of Computer Science Issues Vol. 9,

Issue 2, No 1, pp. 138–145 March 2012.

[24] J. S. Gero and V. A. Kazakov, “Evolving design genes in

space layout planning problems,” Artificial Intelligence

in Engineering, vol. 12, no. 3, pp. 163–176, 1998.

[25] J. S. Gero, V. A. Kazakov, and T. Schnier, “Genetic

engineering and design problems,” in Evolutionary

Algorithms in Engineering Applications, D. Dasgupta

and Z. Michalewicz, Eds. Berlin: Springer, 1997, pp. 47–

68.

