
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.15, May 2012

1

A Novel Approach for Test Case Prioritization using
Business Criticality Test Value

Arup Abhinna Acharya

School of Computer
Engineering

KIIT University
Bhubaneswar

Sonali Khandai
School of Computer

Engineering
KIIT University
Bhubaneswar

Durga Prasad Mohapatra

Department of Computer
Science Engineering
National Institute of

Technology
Rourkela

ABSTRACT

Software maintenance is an important and costly activity of

the software development lifecycle. Regression testing is the

process of validating modifications introduced in a system

during software maintenance. It is very inefficient to re-

execute every test case in regression testing for small changes.

This issue of retesting of software systems can be handled

using a good test case prioritization technique. A prioritization

technique schedules the test cases for execution so that the test

cases with higher priority executed before lower priority. The

objective of test case prioritization is to detect fault as early as

possible. Early fault detection can provide a faster feedback

generating a scope for debuggers to carry out their task at an

early stage. Model Based Prioritization has an edge over Code

Based Prioritization techniques. The issue of dynamic changes

that occur during the maintenance phase of software

development can only be addressed by maintaining statistical

data for system models, change models and fault models. In

this paper we present a novel approach for test case

prioritization by evaluating the Business Criticality Value

(BCV) of the various functions (functional and non-

functional) present in the software using the statistical data.

Then according to the business criticality value of various

functions present in the change and fault model we prioritize

the test cases are prioritized.

Keywords

Software Maintenance, Regression Testing, Test case

Prioritization, Business Criticality Value

1. INTRODUCTION
Software developers often save the test suites they develop for

their software, so that they can reuse those suites later as the

software evolves. Such test suites are reused of regression

testing [1]. Regression testing is the re-execution of some

subset of test that has already been conducted. So regression

testing can be defined as follows: Let P be a program and P’

be a modified version of P with T be a test suite developed for

P, then regression testing is concerned with validating P’.

Integration testing occurs in regression testing, so number of

regression tests increases and it is impractical and inefficient

to reexecute every test for the software when some changes

occur. For this reason, researchers have considered various

techniques for reducing the cost of regression testing, like

regression test selection, and test suite minimization [2, 3] etc.

Regression test selection technique attempt to reduce the time

required to retest a modified program by selecting some

subset of the exiting test suite. Test suite minimization

technique reduces testing costs by permanently eliminating

redundant test cases from test suites in terms of codes or

functionalities exercised. However Regression test selection

and test suite minimization techniques have some drawbacks.

Although some empirical evidence indicates that, in certain

cases, there is little or no loss in the ability of a minimized test

suite to reveal faults in comparison to the unminimized one,

other empirical evidence shows that the fault detection

capabilities of test suites can be severely compromised by

minimization [4]. Similarly, although there is safe regression

test selection techniques that can ensure that the selected

subset of a test suite has the same fault detection capabilities

as the original test suite, the conditions under which safety

can be achieved do not always hold. So for these reasons

testers may want to order their test cases or reschedule the test

cases [5]. A prioritization technique schedules the test cases

for execution so that the test cases with higher priority

executed before lower priority, according to some criterion:

Rothermal et al. [6] defines the test case problem as follows,

where:

Problem: Find T’ belongs to PT such that (for all T”) (T”

belongs to PT)(T” ≠ T’) [f (T’) ≥ f(T”)].

T: a test suite,

PT: the set of permutations of T,

f: a function from PT to the real numbers.

Here, PT represents the set of all possible prioritization of T

and f is a function that, applied to any such ordering, yields an

award value for that ordering.

The objective of test case prioritization is fault detection rate,

which is a measure of how quickly faults are detected during

the testing process. Prioritization can again be categorized as

Code Based Test Case Prioritization and Model Based Test

Case Prioritization [7]. Most of the test case prioritization

methods are code based. Code Based Test Case Prioritization

methods are based on the source code of the system. Code

based test case prioritization techniques are dependent on

information relating the tests of test suite to various elements

of a system’s code of the original system i.e. it can utilize the

information about the number of statements executed or the

number of blocks of code executed. Model Based Test Case

Prioritization methods are based on the system models.

System modeling is widely used to model state-based system.

System models are used to capture some aspects of the system

behavior. Several modeling language have been developed

such as Extended Finite State Machine (EFSM) and

Specification Description.

Test case prioritization is ordering the test cases in a test suite

to improve the efficiency of regression testing. Regression

testing is a process of retesting the modified system using the

old test suite to have confidence that the system does not have

faults. During retesting of the system developers face the issue

of ordering the tests for execution, which can be addressed

using a good prioritization technique. One of the objectives of

test case prioritization is ’early fault detection rate’, which is a

measure of how quickly faults are detected during testing

process. Here a metric is used which calculates the average

faults found per minute and also with the help of APFD

(Average Percentage of Faults Detected) metric the

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.15, May 2012

2

effectiveness of the prioritized and non prioritized case is

compared [8,9]. The APFD is calculated by taking the

weighted average of the number of faults detected during the

run of the test suite.

 APFD can be calculated using the following

notations: Let T = the test suite under evaluation, m = the

number of faults contained in the program under test P, n =

the total number of test cases And TFi = the position of the

first test in T that exposes fault i.

But calculating APFD is only possible when prior knowledge

of faults is available. Various experiment were conducted in

which the rate of fault detection for each test case is calculated

and order of test suite is evaluated in decreasing order of the

value of rate of fault detection. Then the APFD value is

determined for both the prioritized and non prioritized test

suite and it is found that the APFD value of prioritized test

suite is higher than the non prioritized test suite.

The rest of the paper is organized as follows: Section 2

summarizes the related works. Discussions and the analysis of

our proposed methodology is given in Section 3. Section 4

presents a case study: Shopping Mall Automation System.

Comparison with the related work is discussed in section 5.

Section 6 contains analysis and APFD measure. The paper

concludes in Section 6 and Future works are highlighted in

section 7.

2. RELATED WORK
Srivastava et al. [11] proposed a prioritization technique and

also used a metric called APFD (Average Percentage of Faults

Detected) for calculating the effectiveness of the test case

prioritization methods. The disadvantage of the method

proposed is that calculation of APFD is only possible when

prior knowledge of faults are available. APFD calculations

therefore are only used for evaluation of effectiveness of

various prioritization techniques.

Rothermel et al. [6, 8, 10] presented 21 different techniques

for code based test case prioritization, which are classified

into three different groups i.e. comparator group, statement

level group and function level group. To measure the

effectiveness of these techniques, an experiment was

conducted where 7 different programs were taken. Here

several dimensions like granularity were taken for test case

prioritization. The main disadvantages of code based test case

prioritization are it is very expensive as its execution is slow

because of the execution of the actual code and code based

test case prioritization may not be sensitive to the correct or

incorrect information provided by the testers or the developer.

Korel et al. [13, 14] present a model based test case

prioritization method which can be used for any modification

of the EFSM (Extended Finite State Machine) system model.

Here an experimental study is done which is used to compare

the early fault detection of the various test case prioritization

techniques presented in this paper. There are several model

based test prioritization methods are present in this paper.

Such as Selective test prioritization, Heuristic #1 test

prioritization, Heuristic #2 test prioritization, Heuristic #3 test

prioritization and Model dependence-based test prioritization.

In selective test prioritization techniques high priority is

assigned to those test cases that execute modified transitions

in the modified model. A low priority is assigned to those test

cases that do not execute any modified transition. And

Heuristics #1, #2 and #3 have been developed for

modifications with multiple marked transitions. The idea of

model dependence-based test prioritization is to use model

dependence analysis [15] to identify different ways in which

added and deleted transitions interact with the remaining parts

of the model and use this information to prioritize high

priority tests. Here the authors have done a experimental study

and from the experimental study it indicate that model based

test prioritization techniques may improve on average the

effectiveness of early fault detection as compared to random

prioritization techniques.

Korel et al. [7] presented a comparison between codebased

and model-based test case prioritization. The results from the

experimental study indicate that model-based test

prioritization detects early fault as compare to code-based test

prioritization. However due to the sensitiveness property the

early fault detection of model-based prioritization may be

deteriorate if incorrect response is given by the tester or the

developer. The model-based test case prioritization is less

expensive than the code-based test case prioritization because

execution of the model is faster than the execution of the

whole code.

Acharya et al. [16] presented a method for prioritize the test

cases for testing component dependency in a Component

Based Software Development (CBSD) environment using

Greedy Approach. Here the author first convert the system

model i.e. sequence diagram to An Object Interaction Graph

(OIG) using an algorithm. Then the OIG is traversed to

calculate the total number of inter component object

interactions and intra component object interactions.

Depending upon the number of interactions between the

object an objective function is calculated and then the test

cases are ordered accordingly.

Swain et al. [17] proposed an approach to generate test cases

and prioritize those test cases based on a test case

prioritization metric. Here the author has used UML sequence

and activity diagrams for their purpose. The sequence and

activity diagrams are converted into testing flow graph (TFG)

from which test cases are generated. Then the TFG is

converted to a model dependency graph (MDG). Next, he

calculated various weights for nodes (message-

method/activity) as well as edge (condition) of the MDG

based on a rational criterion. Weight of the node is calculated

by using the number of nodes in Forward Slice (NFS) of node

of MDG and weight of the edge is calculated by

multiplication of the number of incoming control

dependencies (edges) of node Ni and the number of outgoing

control dependencies (edges) of node Nj. After calculating the

weights of the node and edge the he calculated the weight of

the basic path by adding the weight of the node and edge.

Then he prioritized the test case in descending order of the

weight.

Kumar et al. [18] have proposed a new approach which

considers the severity of faults based on requirement

prioritization. They considered four different factors to assign

the weights to the requirements: Business Value Measure

(BVM), Project Change Volatility (PCV), Development

Complexity (DC), and Fault Proneness of Requirements. To

calculate the Total percentage of fault detected (TSFD), the

author used severity measure(SM) of each fault. Once the

fault has been detected then they assign some severity

measure to each fault according to requirement weights, to

which it is mapped. Total Severity of Faults Detected (TSFD)

is the summation of severity measures of all faults identified

for a product.

Mall et al. [19] presented a method for model based approach

to prioritize regression test cases for object-oriented programs.

Here the author represents all relevant object-oriented features

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.15, May 2012

3

such as inheritance, polymorphism, association, aggregation

and exception. Here the authors also included dynamic

aspects such as message path sequences from UML sequence

diagrams. The author also considered the dependencies among

test cases for test case prioritization. Here the author named

their proposed model as Extended Object-oriented System

Dependence Graph (EOSDG). This model extends LH-SDG

and includes exceptions and message path sequencing

information. The author named their prioritized techniques as

Model-based Regression Test Case Prioritization technique.

This approach involves two activity diagrams one activity

diagram represent the activities that are performed before the

testing process and the second activity diagram represent the

activities that are performed each time a software is modified.

The author constructed a backward slicing of the EOSDG n

then constructed a backward slicing of the EOSDG and the

collect the model elements in both the slicing and then he

prioritized the test cases in descending order of the coverage

of the model elements.

3. PROPOSED METHODOLOGY
In this section we discuss our proposed approach to generate a

prioritize test cases. Our approach consists of the following

three steps.

1) Maintaining a repository for the old/existing

projects.

2) Matching the project type of the new projects with

the existing projects contained in the repository and

identifying the affected functions. Assigning

business criticality values to the affected functions

from statistical data.

3) Prioritizing the test cases according to the business

criticality value of the test cases in descending

order.

Figure 1: A Model for Model Based Test Case

Prioritization

A model of the proposed methodology is shown in Fig. 1. The

input to our proposed approach is an activity diagram of the

new project.

As shown in Fig. 1 we first map our new project with the

repository containing various projects and then we found out

the affected functions due to the change in the new project are

found out. After that we found out the BCV (Business

Criticality Value) of each function. Then we traverse the

activity graph of the new project. Using the BCV, we

calculate the BCTV (Business Criticality Test Value) of each

test case are found out. Finally, we prioritize the generated

test cases according to BCTV of each test case.

3.1 Maintaining Repository
A repository is maintained for various numbers of projects of

different category. Before maintaining the repository, a

historical search is performed for finding various existing

projects of unrelated categories such as application projects,

networking projects, database projects, etc. for satisfying

different needs of the end user. After finding out various

projects belonging to different category, a table is update for

each project which keeps track of the following information.

This is called as repository table.

The Schema for the repository is as follows:

< Project ID, Type of Changes, Affected Function >

 First the numbers of changes that have occurred

during the development of the project to satisfy the

end user’s requirements are stored.

 Secondly different functions i.e. both functional and

non-functional that are being affected due to the

changes occurred in the projects have also been

maintained, which will help us in finding out the

prioritized test case. The affected functions can be

calculated for each change of the project with the

help of foreward slicing method. We apply foreward

slicing method to that particular node which are

being added or modified according the end user’s

requirements. And the affected non-functional

requirements are calculated by the expert judgment.

The affected functions have been calculated with the help of

fore ward slicing algorithm which is shown in the Algorithm 1

Algorithm 1: Affected Function Calculation

Input: A activity Diagram that has a single start node and an

empty set of node identifiers associated with each node.

Output: Forward slice of each node.

1. Initialization: Set Si=∅ and Vi = 0 for ∀i. where Si is the

set associated with node Ni and V denotes the visited status of

node Ni.

2. Call ForwardSlice(start node)

3. ForwardSlice(node Ni)

4. begin

5. if Vi=1

6. exit(0);

7. else

8. begin Vi =1 /* Mark node as visited */

9. Find Fi=Ni | N(i + 1) depends on Ni

10. Set Si=Si U Fi

11. for(each node Ni ϵ Fi)

12. ForwardSlice(Ni); /*Function called recursively*/

13. end

14. end if

15. end

3.2 Evaluating Business Criticality

Value (Bcv)
In this section we have calculated the BCV of each function

i.e. for functional and non-functional requirement. Whenever

regression testing has to carry on a new project, the BCV of

the various affected functions have been calculated in the

following manner. There are lots of changes have been

occurred such as functional changes, non-functional changes,

code changes, delete some functionality, etc. Suppose a new

project has encountered along with the information with us

about the subsequent changes that the project has undergone

according the customer requirement. Then we will first match

the new project with the existing projects that are maintained

in the repository. After the matching process of the new

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.15, May 2012

4

project has been completed and a matching project has been

obtained we will then find out the factors that are being

affected due to the changes occurred in the new project from

the repository.

In our next step we have found out the business

criticality values of the various functions. A Business

Criticality Value (BCV) is defining as “the extends of

contribution towards the bug free application.” For example in

a Banking project we are having two activities such as money

transaction and feedback collection, then money transaction

activity has higher business criticality value than the feedback

collection activity. Because the feedback collection activity is

having less interaction than the money transaction activity.

Business criticality value is an expertise integer value. In the

similar manner the BCV is assigned to different

functionalities.

The Business Critical Test Value is calculated as follows:

 First find out those factors that are being affected

due to the changes made in the project.

 Find out the average interaction of each factor

within that project.

The Business Critical Test Value is calculated by the

following equation 1.

BCV table stores certain kind of information about each factor

such as the factor name along with the average interaction and

the BCV value of each factor.

3.3 Prioritizing Test Cases
In this section we have prioritized our test cases according to

the Business Criticality Test Values (BCTV) of the different

test case. Every test case executes different factors of a

project. We found the affected functionality of each test cases

by using the depth first search of the project. And every factor

is having different integer business critical values which have

been calculated in the previous step. First we found out

different test cases and then added the BCV of the encounter

factor during the traversal process to find out the BCTV. By

adding those values of the business criticality we find an

integer value for each test case to calculate the BCTV. After

that we ordered our test cases in descending order of the

business criticality test values.

Prioritization Algorithm:

Our proposed technique to prioritize regression test cases is

algorithmically represented in algorithm 2.

Algorithm 2

Step-1: Maintain a repository which contains different types

of projects, no. of changes and the affected functionality due

to the changes.

Step-2: Matching the new project with the repository and

identifying the no. of changes and the affected functions

respectively.

Step-3: Calculate the business criticality value of each

function (functional and non-functional) according to the

equation 1.

Step-4: Then traverse the activity diagram of the new coming

project with the help of DFS with individual test case.

Step-5: Find the BCTV of each test case.

Step-6: Then prioritize the test cases according to the

descending order of BCTV for each test case.

 The prioritize table stores the information about the

test cases that are obtained after the traversal process. It also

stores the information about the factors that are being

encountered during the traversal process. Finally we have

found out the BCTV of each test case and prioritized the test

suite according to the descending order of the BCV values.

4. TEST CASE PRIORITIZATION FOR

A MODIFICATION IN A SHOPPING

MALL AUTOMATION: A CASE

STUDY
In this section a case study of our proposed approach is given.

Since in our proposed method we are matching the new

encounter project with the repository to find out the affected

function so we have first maintain a repository..

 Figure 2: Activity Diagram of Big Bazaar
So that whenever a new project is encounter we can find out

the affected function. After finding out the affected function

from the repository the BCV value of each factor is

calculated. Then the total BCV value of each test case is

calculated by adding the BCV value of those functions that

are visited during the DFS traversal of the Graph. Finally the

test cases are prioritizing according to descending order of

their BCTV value.

Suppose in the past there was a need for a big bazaar project.

So a project has been designed and submitted to big bazaar.

After the project have been submitted, it was found that there

was a need of some additional functionality for big bazaar

application so the necessary changes have been made, which

activity diagram is shown in Fig 2.

A functionality detail table has been maintained which store

the different types of functions with their function id as shown

in Table 1. The affected functions have been calculated with

the help of fore ward slicing algorithm which is shown in the

Algorithm 1.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.15, May 2012

5

Table 1: Functionality Detail Table

A non-functionality detail table has been maintained which

store the different types of functions with their function id as

shown in Table 2.

Table 2: Non-Functionality Detail Table

The types of changes that have been made in the project with

the functionalities that have been affected by the changes have

been maintained in a repository which is shown in Table 3. In

our project there are three numbers of changes have been

made. C1 change is for payback card. C2 change is for

coupon option and C3 change is for SIM card option.

Table 3: Repository (A Shopping Mall Project)

Suppose we now encounter a new shopping mall project

which Activity Diagram is shown in Fig. 3.

We found that the new project matches to the big bazaar

project which is store in the repository and having C1 and C2

types of changes. Now we match it with the repository and

find the affected functionalities due to change C1 and C2.

This is shown in Table 4.

Figure 3: Activity Diagram of New Shopping Mall

Table 4: Affected Function due to the change in

the new project

Now the Business Criticality Value (BCV) of each functional

requirement has been calculated according to the formula 1

and the value has been store in the Table 5.

Table 5: Business Criticality Value (BCV) Table

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.15, May 2012

6

Now the Business Criticality Value (BCV) of each non-

functional requirement has been calculated according to the

formula 1 and the value has been store in the Table 6.

Table 6: Business Criticality Value (BCV) Table for Non-

Functional Requirement

Now the activity diagram shown in Fig 3 has been traversed

by using to the Depth First Search (DFS) and the traversing

functionalities of each test case are found out. After that the

Business Criticality Test Value (BCTV) of each test cases are

calculated by adding the Business Criticality Value (BCV)

value of each functions and all these information have been

maintained in table 7.

Table 7: Prioritization Table (Functional)

Finally the test suite is prioritized according to the descending

order of the BCTV values of each test case. Hence The

Prioritize Test Sequence is

t16, t15, t6, t11, t5, t10, t13, t12, t3, t8, t2, t7, t14, t4, t9, t1

The Business Criticality Test Value (BCTV) of each test case

are calculated by adding the Business Criticality Value (BCV)

value of each functional and non-functional requirement. And

all these information have been maintained in table 8.

Table 8: Prioritization Table (Both Functional and Non-

Functional)

Finally the test suite is prioritized according to the descending

order of the BCTV values of each test case. Hence The

Prioritize Test Sequence is

t16, t11, t15, t6, t8, t2, t5, t7, t10, t13, t12, t3, t9, t14, t4, t1

5. ANALYSIS AND APFD MEASURE
In this section we have described the experimentation and

analysis of our proposed methodology.

To quantify the goal of increasing a test suite’s rate of fault

detection, in we introduce a metric, APFD, which measures

the weighted average of the percentage of faults detected over

the life of the suite. APFD values range from 0 to 100; higher

numbers imply faster (better) fault detection rates.

APFD can be calculated [11] using a notation:

Let T = the test suite under evaluation,

m = the number of faults contained in the program under test

P,

n = the total number of test cases and

TFi = the position of the first test in T that exposes fault i.

The APFD for test suite T’ could be given by the Equ. 2.

Table 9 shows the types of faults detected by each test case in

the test suite for the example of Activity Diagram of New

Shopping Mall Fig. 3.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.15, May 2012

7

Table 9: Types of Fault Table

Table 10 shows the number of faults detected by each test

case in the test suite for the example of Activity Diagram of

New Shopping Mall in Fig. 3. There are 16 number of test

cases t1 through t16 in the test suit. It may be observed that

for this given example, the code contains five faults, which

are detected by those test cases.

Table 10: Non Prioritize Table

Here a new test case prioritization technique is used which

calculates the average faults found per minute and also with

the help of APFD (Average Percentage of Faults

Detected)metric the effectiveness of the prioritized and non

prioritized case is compared. The effectiveness of ordering the

test cases will be measured by the rate of faults detected and

for this APFD metric is taken.

APFD value for Non-Prioritize Test Cases:

Now, APFD value for a non-prioritized test case (i.e. t1, t2, t3,

t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15, t16) can be

calculated as, here m = number of faults = 5 and n = number

of test cases= 16. Putting the values of m, n , TFi (The

position of the first test case in the ordering T’ of T that

exposes fault i) in the Equ. 2, we get

 APFD= 0.79

APFD value for Prioritize Test Cases(Functional

Requirement):

Now let us apply Equation 2 for the prioritized test cases in

case of new prioritization technique (i.e. t16, t15, t6, t11, t5,

t10, t13, t12, t3, t8, t2, t7, t14, t4, t9, t1) to compute the value

of APFD.

 APFD= 0.88

APFD value for New Prioritize Test Cases:

Now let us apply Equation 2 for the prioritized test cases in

case of new prioritization technique (i.e. t16, t11, t15, t6, t8,

t2, t5, t7, t10, t13, t12, t3, t9, t14, t4, t1) to compute the value

of APFD.

 APFD= 0.89

Now, let us compare the APFD values for different

prioritization techniques. It may be seen that the APFD value

obtained for prioritized cases (using our approach) is more

than non-prioritized test cases (random method). Hence, our

approach generates effective prioritized test cases than the

randomized approaches. Fig 4 shows the graph for both

prioritize and non-prioritize test suite.

Figure 5: Comparison of Various Prioritization

Techniques

6. COMPARISON WITH THE

RELATED WORK

Several test case prioritization techniques are discussed in

section 2. Code based test case prioritization techniques are

discussed in [6, 8, 10] but as these are based on code so

execution of code is very slow. Model based test case

prioritization techniques are discussed in [12, 13, 14] and

these are based on the no of mark transition executed by the

test cases. Our approach is based on model and it considers

the business criticality value of the function. As our approach

is based on business criticality value so we gave more

importance to that functionality whose business criticality

value is more. So our approach is detecting fault as earlier to

the other approach.

7. CONCLUSION
Quality of software can’t be ensured without an effective

testing strategy which comprises of automated test case

generation, optimization of test suite design and prioritizing

test cases etc. We have first gone through a literature survey

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.15, May 2012

8

to find out the various approaches proposed by different

researcher to prioritize the test cases with the help of code

based as well as model based test case prioritization. We have

also discussed the corresponding advantages and

disadvantages of them. Our work has proposed Model- Based

Test Case Prioritization for Regression Testing using Business

Criticality Value for prioritizing test cases from UML activity

diagrams. Majority of the test case prioritization approaches

are code-based and suitable for regression testing. The

proposed approach is completely model-based. In this paper

we proposed a model based test case prioritization technique

using the business criticality value of each functions. Business

Criticality Value (BCV) is defining”as the amount of

contribution towards the business of the project.” The BCV of

each factors both function and non-functional requirements

are calculated based on the affected functionality of the

project due to the subsequent changes of the project for

satisfying the requirement of the customers. So the generated

prioritization sequence is more efficient because it is

generated based on the requirement of the customers. So the

proposed prioritization method is more effective and efficient.

This gives an early change to the debuggers to work with the

most critical function first. Then, we compare our approach

with the help of APFD method. We found that our

prioritization test suite detects more faults then the non-

prioritize test suite.

8. FUTURE WORK
Our approach is a model-based test case prioritization which

is specifically deals with the functional and nonfunctional

features of the application. The scalability of the proposed

approach is yet to be tested. A suitable soft computing tool

may be used to increase the effectiveness of the prioritization

algorithm.

9. REFERENCES
 [1] K. Onoma, W-T. Tsai, M. Poonawala, and H. Suganuma,

Regression Testing in an Industrial Environment, Comm.

ACM, vol. 41, no. 5, pp. 81-86, May 1988

[2] D. Binkley, Semantics Guided Regression Test Cost

Reduction, IEEE Trans. Software Eng., vol. 23, no. 8, pp.

498-516, Aug. 1997.

[3] T.Y. Chen and M.F. Lau, Dividing Strategies for the

Optimization of a Test Suite, Information Processing

Letters, vol. 60, no. 3, pp. 135-141, Mar. 1996.

[4] W.E. Wong, J.R. Horgan, S. London, and A.P. Mathur,

Effect of Test Set Minimization on Fault Detection

Effectiveness, Software Practice and Experience, vol. 28,

no. 4, pp. 347-369, Apr. 1998.

[5] G. Rothermel, M.J. Harrold, J. Ostrin, and C. Hong, An

Empirical Study of the Effects of Minimization on the

Fault Detection Capabilities of Test Suites, Proc. Int’l

Conf. Software Maintenance, pp. 34-43, Nov. 1998.

[6] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold,

Prioritizing Test Cases For Regression Testing, IEEE

Transactions on Software Engineering, vol. 27, No. 10,

pp 929-948, October 2001.

[7] Bogdan Korel, George Koutsogiannakis, Experimental

Comparison of Code-Based and Model-Based Test

Prioritization, IEEE International Conference on

Software Testing Verification and Validation

Workshops, pp.77-84.

[8] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold, Test

Case Prioritization: An Empirical Study, Proc. Int’l

Conf. Software Maintenance, pp. 179-188, Aug. 1999.

[9] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg

Rothermel, Sebastian Elbaum, Costcognizant Test Case

Prioritization, Proc. IEEE International Conference on

Software Maintenance,2006.

[10] S. Elbaum, A. Malishevsky, G. Rothermel, Test Case

Prioritization: A Family of Empirical Studies, IEEE

Transactions on Software Engineering, vol. 28, No. 2, pp

159-182, 2002.

[11] Praveen Ranjan Srivastava, Test Case Prioritization,

Journal of Theoretical and Applied Information

Technology, 2005 - 2008 JATIT, pp. 178-181.

[12] H. Srikanth, L. Williams, J. Osborne, System Test Case

Prioritization of New and Regression Test Cases, IEEE,

2005, pp.64-73.

[13] B. Korel, L. Tahat, M. Harman, Test Prioritization Using

System Models, Proc. 21st IEEE International

Conference Software Maintenance (ICSM ’05), pp. 559-

568, 2005.

[14] B. Korel, G. Koutsogiannakis, L. Tahat, Application of

System Models in Regression Test Suite Prioritization,

Proc. 24st IEEE International Conference Software

Maintenance (ICSM ’08), pp. 247-256, 2008.

[15] B. Korel, L. Tahat, B. Vaysburg, Model Based

Regression Test Reduction Using Dependence Analysis,

Proc. IEEE International Conference on Software

Maintenance, pp. 214-223, 2002.

[16] A. Acharya, D. P. Mohapatra and N. Panda, Model based

Test case prioritization for testing component

dependency in cbsd using uml sequence diagram,

IJACSA, vol. 1, no. 3, pp. 108-113, December. 2010.

[17] S. K. Swain, Test Case Prioritization Based on UML

Sequence and Activity Diagrams, PhD thesis, KIIT

University, 2010.

[18] Dr. V. Kumar, Sujata and M. Kumar, Test Case

Prioritization Using Fault Severity, IJCST, vol. 1, Issue

1,, pp. 67-71, September. 2010.

[19] R. Mall and C. R. Panigrahi, Test case prioritization of

object oriented Program, In SETLabs Brieng, Infosys,

vol. 9, pp. 31-40, 2011.

