
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

18

 Quality Evaluation of Object Oriented Visual Models in

Unified Software Development Process

Meena Sharma

IET-DAVV
Institute of Engineering & Technology

DAVV, Indore, India

Rajeev G Vishwakarma
Shri Vaishnav Institute of Technology & Science

Rajiv Gandhi Technical University
Indore, India

ABSTRACT

In object oriented paradigm the analysis and design activities

are performed to produce models like analysis model, use case

model and design model. These models are developed using

Unified Modeling Language abbreviated as UML. Visual

modeling using UML is the part of unified software

development process. The wholeness or fullness of

documenting requirement engineering models like use case

model, result in a better quality software product. If we miss

anything or commit any mistake in use case model it may

propagate to analysis phase. Further there are chances that the

same bug is propagated to design, testing and so on until

deployment. The cost of removing bugs in testing is very

costlier than that of its removal in the starting phase or model.

It is therefore very necessary to verify what model we are

developing and after the model making process is verified it is

necessary to validate the model; that is to declare that the

model we have made is correct. In this paper we have

investigated the verification of the process of modeling in

object oriented paradigm and the validation of the models.

This workout makes certain that we are working on the

precise models to yield correct product from quality point of

view.

General Terms

Object Oriented Software Development, Modeling,

Verification, Validation, Quality Model, Semantic Checks,

Aesthetic Checks, Syntax Checks

Keywords

Verification, Validation, UML Diagrams, Class Diagram, Use

Case Diagrams, Activity Diagrams

1. INTRODUCTION
Goals, means and performance are the three crucial aspects of

quality. These strategic aspects of quality translate

operationally into verification and validation techniques.

Verification is related with the syntactic accuracy and

accuracy of the software and models, while validation

agreements with semantic meanings and their value to the

customers of the system. V&V are quality techniques that are

meant to prevent as well as detect errors, inconsistencies and

inwholeness or fullness. V&V comprises a set of activities

and checks that ensure that the model is correct. Based on

Perry’s definitions, verification focuses on ascertaining that

the software functions correctly, whereas validation ensures

that it meets the user’s needs. Thus, verification comprises a

separate set of activities that ensure that the model is correct.

Validation works to ensure that it is also meaningful to the

users of the system. Therefore, validation of models deals

with tracing the software to the requirements. Because of the

subjective nature of quality, it cannot be simply quantified.

However, one simple way to grapple with this subjectivity is

to utilize a checklist-based approach as a first step in V&V of

the quality aspects of a model. The accuracy of the software is

verified by a suite of checklists that deal with the syntax of the

models, whereas the meaning and consistency of the software

models are validated by creating a suite of checklists dealing

with semantic checks. Thus, verification requires concrete

skills like knowledge of the syntax; validation starts moving

toward the abstract, as shown in Figure 1.2. Once augmented

with aesthetic checks, this complete suite of checklists

provides a quantifiable way of measuring quality, and it can

be used as a benchmark for further developing qualitative

understanding. Since UML is a language for visualization, it

is appropriate to consider how the quality checks can be

applied to UML-based diagrams and models. Therefore, the

major part of V&V deals with the visual aspects of the model.

This can lead not only to detection of errors in the model

(quality checks that ensure validation of the model) but also

appropriate quality assurance and process-related activities

aimed at the prevention of errors. While recognizing the wide

variety of definitions of quality in the software literature, we

now start moving toward the basis for creating three types of

V&V checks. For V&V of a software artifact, there are three

levels of checks: syntax, semantics and aesthetics. These

checks have close parallels to the quality approach of Lindl ,

who created a framework with three axes for quality

assessment: language, domain and pragmatics. They

translated these axes into syntactic quality, semantic quality

and pragmatic quality, providing the theoretical background

on which the current quality checks are built. While the

syntax and semantic checks outlined here have close parallels

to the work of Lindl, the aesthetic checks are also discussed

by Ambler under the heading of ―styles.‖ Building further on

the framework of , the understanding of good-quality software

modeling results in V&V of software models as follows:

 All quality models should be syntactically correct,

thereby adhering to the rules of the modeling language

(in our case, UML 2.0) they are meant to follow.

 All quality models should represent their intended

semantic meanings and should do so consistently.

 All quality models should have good aesthetics,

demonstrating the creativity and farsightedness of their

modelers. This means that software models should be

symmetric, complete and pleasing in what they represent.

2. UML DIAGRAMS
Now we discuss how each UML diagram contributes its

purpose in modeling that is what each UML diagram

represents.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

19

Table 1. UML diagrams & their purposes

S.

No.
Diagram Type Purpose or Representation

1 Use case
functionality from the user’s

viewpoint

2 Activity
the flow within a Use case or the

system

3 Class
classes, entities, business

domain, database

4 Interaction interactions between objects

5
Interaction

overview

interactions at a general high

level

6 Communication interactions between objects

7 Object objects and their links

8 State machine
the run-time life cycle of an

object

9
Composite

structure

component or object behavior at

run-time

10 Component
executables, linkable libraries,

etc.

11 Deployment hardware nodes and processors

12 Package subsystems, organizational units

13 Timing
time concept during object

interactions

Use case diagrams—deliver the complete view and scope of

functionality. The use cases in these diagrams have the

behavioral (or functional) explanation of the system. Activity

diagrams—offer a pictographic depiction of the flow

anywhere in MOPS. In MOPS, these diagrams work more or

less similar to flowcharts, illustrating the flow inside the use

cases or even displaying the dependencies midst many use

cases. Class diagrams—deliver the structure of the domain

model. In the problem space, these diagrams signify business

domain entities (such as Account and Customer in a banking

domain), not the particulars of their implementation in a

programming language. Sequence and state machine

diagrams—seldom and intermittently used to help us

comprehend the dynamics and behavior of the problem better.

Interaction overview diagrams—recently added in UML

version 2.0; these diagrams offer a summary of the flow

and/or dependencies between other UML diagrams. Package

diagrams—can be used in the problem space to establish and

scope the requirements. Domain experts, who have a justly

worthy understanding not only of the existing problem but

also of the overall territory of the domain in which the

problem exists, help deliver a good understanding of the likely

packages in the system. The words ―syntax,‖ ―semantics‖ and

―aesthetics‖ are chosen to replicate the methods or means of

accomplishing the V&V of the models. One motive that these

words properly represent our quality assurance effort is that

they relate directly to the UML models—particularly those

models that are created and stored in CASE tools. As a result,

their quality can be importantly improved by applying the

syntax, semantics and aesthetic checks to them. We will now

study these three classes of checks in further detail.

3. QUALITY MODELS — SYNTAX
All sort of languages have syntax. So do Java, XML and

UML. However, two major characteristics of UML

differentiate it from the other languages:

 UML is a visual language, which means that it has a

significant amount of notation and many diagram

specifications.

 UML is a modeling language, which means that it is not

planed primarily to be compiled and used in generation

of source code (as programming languages are)—

although the trend toward support for both ―action

semantics‖ in UML 2.0 and in MDA, both from the

OMG, will probably contain the usage of UML in this

framework in the future.

Needless to say, improper syntax affects the quality of

visualization and specification, also, while a diagram itself

cannot be compiled, improper and wrong syntax at the

diagram level drips down to the implementation level, causing

faults in generating the software code. CASE tools are

supportive to guarantee that syntax errors are kept to a

minimum. For example, on a UML class diagram, the rules of

the association relationship, creation of default visibilities

(e.g., private for attributes) and setting of multiplicities are

cases of how CASE tools benefit to decrease syntax errors. In

UML-based models, when we apply syntax checks, we ensure

that each of the diagrams that make up the model has been

created in conformance with the standards and guidelines

specified by OMG. We also ensure that the notations used, the

diagram extensions annotated and the corresponding

explanations on the diagrams all follow the syntax standard of

the modeling language. Figure 1.3 shows a simple example of

a rectangle representing a dog. This rectangle is the notation

for a class in UML. The syntax check on this diagram ensures

that it is indeed a rectangle that is meant to represent animals

(or other such things) in this modeling mechanism. The

rectangle is checked for accuracy, and we ensure that it is not

an ellipse or for an arrowhead (both of which would be

syntactically incorrect when using UML’s notation) that is

intended to represent the animal in question. In terms of UML

models, a syntax check is a list of everything that needs to be

accomplished to achieve the syntax for the diagrams and

associated artifacts of UML as laid out by OMG. Permissible

deviations on these diagrams in fulfilling with the meta-model

can become a project-specific part of the syntax checks.

Syntactic accuracy greatly enhances the readability of

diagrams, especially when these diagrams have to be read by

different sets in different establishments in different countries.

4. QUALITY MODELS — SEMANTICS
While one of the qualities enhanced by rigorous syntax checks

is the quality of construction (read ―compilation‖), one cannot

be satisfied merely by a program that compiles and executes

correctly yet does not consider the manner in which it is

interpreted and understood. Such a model, although

syntactically correct, would fail to achieve the all-important

semantic accuracy. The semantic aspect of model quality

ensures not only that the diagrams produced are correct, but

also that they faithfully characterize the underlying reality

denoted in the domain. In UML, for example, the business

objectives stated by the users should be correctly reflected in

the use case diagrams, business rules, constraints, and pre-

and post-conditions documented in the corresponding use case

documentation. Once again, models in overall are not

executable; therefore, it is not likely to verify and validate

their purpose by simply ―executing‖ them, as one would the

final software product (the executable). Consequently, we

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

20

need to identify alternative evaluation techniques. In this

context, the traditional and well-known quality techniques of

walkthroughs and inspections are tremendously valuable and

are castoff more frequently and more thoroughly than for

syntax checking. Another example of such techniques, for

instance as applied to use case models in UML, is that we

claim each of the actors and use cases and act through an

entire diagram as if we were the objects themselves. We can

insist that testers walk through the use cases, verify the

purpose of every actor and all use cases, and determine

whether they depict what the business really wants. This is the

semantic feature of verifying the quality of a UML model,

supplemented, of course, by the actual (non-UML) use case

descriptions themselves.

5. QUALITY MODELS — AESTHETICS
Once the syntax and the semantics are right, we need to reflect

the aesthetics of the model (e.g., Ambler, 2003). Very simply,

aesthetics implies style. Often, while reading a piece of code,

one is able to point out the style or programming and hence

trace it to a specific programmer or a programming team.

Although the code (or, for that matter, any other deliverable)

may be accurate (syntactically) and meaningful

(semantically), difference still arises due to its style. The style

of modeling has a bearing on the models’ readability,

comprehensibility and so on. One example of a factor that

affects style is granularity. In good OO designs, the level of

granularity needs to be considered, as it strongly affects

understandability. For example, how many rectangles

(classes) are there on a diagram (as against the previous two

checks: ―Is that a class notation?‖ and ―What is the meaning

behind this class?‖)? It is, of course, possible that a system

with 10 class diagrams, each with 10 classes and numerous

relationships, may accurately represent a business domain

model—although such large numbers should be regarded as a

warning (e.g., Henderson-Sellers, 1996). In another example,

one class diagram may have 20 classes (not wrong from a

UML viewpoint, but ugly) and another class diagram may

have only 1, albeit an important and large one. This aesthetic

size consideration is studied in terms of the granularity of the

UML models. It requires a good metrics program within the

organization to enable it to enhance the aesthetics of the

model. Such a model will then offer and provide a high level

of customer satisfaction, primarily to the members of the

design team but also in their considerations with the business

end-user(s).

6. QUALITY TECHNIQUES AND V&V

CHECKS
The three aspects of quality checks—syntax, semantics and

aesthetics—should not be treated as totally independent of

each other. A change in syntax may change the meaning or

semantics of a sentence or diagram. While syntax is checked

minutely for each artifact, an error in syntax may not be

limited to the error in the language of expression. This also

happens in UML, where syntax and semantics may depend on

each other. For example, the direction of an arrow showing

the relationship between two classes will certainly affect the

way that class diagram is interpreted by the end user.

Similarly, aesthetics or symmetry of diagrams facilitates

easier understanding (e.g., Hay, 1996), making the semantics

clearer and the diagrams more comprehensible to their

readers. This brings us to the need to consider the various

traditional quality techniques of walkthroughs, inspections,

reviews and audits in the context of the V&V checks of

syntax, semantics and aesthetics, as shown in Figure 1.4.

 Walkthroughs—may be done individually, and help

weed out syntax errors (more than semantic errors).

 Inspections—are more rigorous than walkthroughs, are

usually carried out by another person or party, and can

identify both syntax and semantic errors.

 Reviews—increase in formality and focus on working in

a group to identify errors. The syntax checks are less

important during reviews, but the semantics and

aesthetics start becoming important.

 Audits—formal and possibly external to the project and

even the organization. As a result, audits are not very

helpful at the syntax level, but they are extremely

valuable in carrying out aesthetic checks of the entire

model.

7. SYNTAX CHECKS & UML

ELEMENTS (FOCUS ON ACCURACY)
When we say that we want to apply syntax checks to a use

case diagram, what exactly do we mean? Are we checking the

use case itself and its specification, or are we checking

whether the ―extends‖ relationship arrow in a use case

diagram is pointing correctly to the use case being extended?

This question leads us to expand our V&V effort to levels

beyond just one diagram. In syntax checks, we are looking at

the ground-level view of the models. This includes the

artifacts and elements of UML, as well as their specifications

and documentation. Furthermore, when we check the syntax

of these elements, we focus primarily on the accuracy of

representation as mandated by UML. Therefore, during syntax

checks the semantics, or the meaning behind the notations and

diagrams, are not the focus of checking. For example,

consider a class diagram that contains Car as a class. The

syntax check of the accuracy of this artifact would be

something like this:

 Is the Car class represented acceptably and correct by

attributes (state) and operations (behavior)?

 Do the attributes (information associated) have correct

types and do the operations (methods associated) have

correct signatures?

 Is the Car class properly divided into three

compartments?

 Is the Car class has correctness to be compiled? (This

syntax check belongs to implementation.)

In UML terms, when we start applying syntax checks to a use

case diagram, we first apply them to the artifacts or elements

that make up the diagram, such as the actors and the use cases.

In a class diagram, these basic syntax checks apply to a class

first and whatever is represented within the class. Since these

artifacts are the basic building blocks from which the

diagrams and models are created in UML, checking them in

terms of accuracy of the UML syntax is the first thing that

should be done in any quality control effort.

This syntax check for an element or artifact is followed by a

check of the validity of the diagram itself. Here we do not

worry about whether, say, the specifications of the use case

itself follow a standard and whether the use case semantically

represents what it is meant to represent. Instead of focusing on

one element at this level, we inspect the entire diagram and

ensure that it is syntactically correct. If these syntax checks

for the elements and the diagrams that comprise them are

conducted correctly, they ensure the accuracy of the UML

diagrams. As a result, the intensity of syntax checks will be

reduced when the entire model is checked.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

21

8. SEMANTIC CHECKS AND UML

DIAGRAMS (FOCUS ON WHOLENESS

OR FULLNESS AND CONSISTENCY)
Semantic checks deal with the meaning behind an element or

a diagram. Therefore, this check focuses not on the accuracy

of representation but on the wholeness or fullness of the

meaning behind the notation. In the example of the Car class

considered above, the semantic check for the model of Car

would be: ―Does the Car class as named in this model actually

represent a car or does it represent a garbage bin?‖ It is worth

noting here that should a collection of garbage bins be named

as a Car class, so long as it has a name, an attribute and

operation clearly defined, the UML syntax checks for the Car

class will be successful. It is only at the semantic level that we

can figure out that something is wrong because in real life the

name Car does not represent a collection of garbage bins.

Because the meaning of one element of UML depends on

many other elements and on the context in which it is used,

therefore, semantic checks are best performed from a

standing-level view of the UML models. This means that we

move away from the ground-level check of the accuracy of

representation and focus on the purpose of representation.

Needless to say, when we stand up from the ground (where

we inspect the syntax), a lot more becomes visible. Therefore,

it is not just one element on the diagram but rather the entire

diagram that becomes visible and important. Semantic checks,

therefore, become more intense at the diagram level rather

than just at an element level. Taking the Car example further,

semantic checks also deal with consistency between diagrams,

which includes, for example, dependencies between doors and

engine and between wheel and steering. In UML terms, while

a class door may have been correctly represented

(syntactically correct) and may mean a door (semantically

correct). Further, the dependencies between door and car, or

between door and driver (or even between door and burglar),

will need a detailed diagram-level semantic check. This check

will also include many inter-diagram dependency checks that

extend the semantic check to more than one diagram.

Semantic checks also focus on whether this class is given a

unique and coherent set of attributes and responsibilities to

handle or whether it is made to handle more responsibilities

than just Car. For example, do the Driver-related operations

also appear in Car? This would be semantically incorrect.

Thus, semantic checks apply to each of the UML diagrams

intensely, as well as to the entire model.

9. AESTHETIC CHECKS AND UML

MODELS (FOCUS ON SYMMETRY AND

CONSISTENCY)
As noted in the preceding sections, the precision and fullness

of UML elements and the corresponding individual diagrams

are ensured by applying detailed syntax and semantic checks

to them. The aesthetic checks of these diagrams and models

add a different dimension to the quality assurance activities,

as they deal not with accuracy or wholeness or fullness but

rather with the overall consistency and symmetry of the UML

diagrams and models. They are best done with a birds-eye

view of the model. Because these checks occur at a very high

level, far more is visible—not just one diagram, but many

diagrams, their interrelationships, and their look and feel. This

requires these aesthetic checks to be conducted at certain

―checkpoints,‖ where a certain amount of modeling is

complete. Therefore, aesthetic checks also require some

knowledge and understanding of the process being followed

in the creation of the models and the software. The process

ensures that the aesthetic checks are applied to the entire

model rather than to one element or diagram. In UML terms,

the aesthetic checks of the Car class involve checking the

dependency of Car on other classes and their relationships

with persistent and graphical user interface (GUI) class cross-

functional dependencies. This requires cross-checks between

various UML diagrams that contain the Car class as well as

checks of their consistency. Furthermore, aesthetic checks,

occurring at a birds-eye level, focus on whether the Car class

has too many or too few attributes and responsibilities. For

example, if the Car class has too many operations, including

that of ―driving itself,‖ the entire model would become ugly.

Thus, a good understanding of the aesthetic checks results in

diagrams and models that do not look ugly, irrespective of

their accuracy. Finally, aesthetic checks look at the entire

model (MOPS, MOSS, MOBS or any other) to determine

whether or not it is symmetric and in balance. If a class

diagram in a model has too many classes, aesthetic checks

will ensure redistribution of classes. Thus we see that,

together, the syntax, semantic and aesthetic checks ensure that

the artifacts we produce in UML, the diagrams that represent

what should be happening in the system, and the models that

contain diagrams and their detailed corresponding

documentation are all correct, complete and consistent.

10. STRENGTHS & WEAKNESSES OF

UML DIAGRAMS
Characteristics of the UML diagrams are divided into two

groups: intrinsic and extrinsic. UML diagrams have some

basic or intrinsic characteristics that they exhibit irrespective

of the type or size of the project in which they are used. These

intrinsic characteristics of the diagrams are both their

strengths and their weaknesses. UML diagrams also have

extrinsic characteristics, which become important when these

diagrams are applied in creating practical models. These

extrinsic characteristics are dependent not only on the

modeling spaces in which the diagrams are used, but also on

the type of project in which they are applied. It is therefore

possible that a diagram that provides a lot of value to one

modeler and is extremely important in one modeling space

may not be of much relevance to a different modeler in a

different modeling space. The relevance can shift even with

different project types and project sizes. For example, a use

case diagram in a data warehousing project will not provide

the same advantages of quality and relevance as in, say, a new

development project. Thus, the extrinsic characteristics of the

UML diagrams are derived from the particular objectives of

the project in which the diagrams are used.

The study of the intrinsic and extrinsic characteristics of UML

diagrams has been dubbed SWOT analysis . Following is a

description of what is included in SWOT analysis.

Strengths—intrinsic strengths of the diagram represented by

the reason for having that diagram in UML. The strength of

the diagram remains the same irrespective of the modeling

space, roles of people, and type and size of the project.

Weaknesses—intrinsic weaknesses of the diagram that are

due primarily to the lack of modeling capabilities of that

diagram, irrespective of the modeling space, roles of people,

and type and size of the project. Further in the coming

sections we will investigate the strengths and weaknesses of

few UML diagrams viz. Use Case Diagram, Class Diagram

and Activity Diagrams

11. USE CASE DIAGRAMS
In software and systems engineering, a use case is a list of

steps, typically defining interactions between a role (known in

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

22

UML as an "actor") and a system, to achieve a goal. The actor

can be a human or an external system. Use Case actually

captures the functional requirements of the system. Now we

discuss the strengths and weaknesses of this diagram.

11.1 Strengths of Use Case diagrams
One of the significant strengths of a use case diagram is its

ability to model the actor. The actor proves clearly to the

user—who is involved in specifying requirements—where he

exists in the context of the software system. The actor also

plays a crucial role in enabling the business analyst to

understand and document the user’s requirements. In addition,

the actor helps users to express their requirements in greater

detail. Once the users see themselves represented on the use

case diagram, they find it easier and more attractive

(expressive) to explain what they want from the system and

how they plan to use it. This involvement of users at a very

early stage of the development life cycle is one of the major

contributions of use case diagrams in software projects. By

their very nature, use case diagrams facilitate discussions

among various parties involved in requirements modeling.

The business analysts, users and designers of the system are

able to see pictorially the structure of their system. Such

visual representation is of immense value to the information

architect in creating the system architecture. Use cases and

use case diagrams help to organize the requirements. The

notation for a use case represents a cohesive set of interactions

between the user and the system. By simply referring to a use

case, a complex set of interaction can be accessed easily,

thereby simplifying the discussions. Use cases document

accomplish functional requirements. Thus, for projects using

use cases and use case diagrams, no separate functional

requirements document is needed, although additional

operational and interface requirements or additional details

such as mathematical formulas may be placed in a separate

document. The three relationships of include, extend and

generalize between use cases provide means to extend and

reuse requirements. This ability of use case diagrams to

enable reuse and extension of requirements is one of their

major strengths. Actors can also be generalized in use case

diagrams. The ability to show pictorially an abstract actor that

deals with the most common users of the system is a major

strength of use case diagrams. Use cases facilitate tracing of

requirements. By providing well-organized documentation of

the requirements, a use case creates a trace for a particular

requirement throughout the system. This is very helpful in

creating and executing acceptance tests by the user. Use case

diagrams also provide an excellent mechanism to document

the context of the system. By creating a system boundary, it is

possible to clearly visualize what is inside the system as

compared with external entities in the system, including the

users. Use case diagrams provide high-level workflow across

the boundary of the system. This creates an understanding of

the major internal and external functionalities of the system.

Use case diagrams form the basis for creation and

documentation of use cases. Therefore, they also help identify

major components, objects and functions of a system.

11.2 Weaknesses of Use case Diagrams
Use cases themselves have no good documentation standard.

This leads to misperception and debates on what comprises a

worthy use case. Most projects proceed on the basis of a

predetermined standard for documenting use cases. However,

this lack of standards creates an opportunity for modelers and

project managers to develop their own standards, as well as

their own interpretation of what needs to be documented. Use

cases are not intrinsically object-oriented. Use cases appeared

on the software modeling scene through their original use in

object-oriented modeling by Jacobson. However, they are not

an ideal mechanism to model design-level constructs in the

solution space (where object orientation plays an important

role). The meaning behind the association or communication

relationship between the actor and the corresponding use case

is not clear. If the actor initiating the use case is a human

actor, then the convention is to show an arrowhead pointing to

the use case. However, if the use case represents a series of

interactions between the actor and the system, the arrowhead

on the association between the actor and the use case does not

make sense. The same confusion can exist in the relationship

between a use case and a corresponding actor representing an

interface to an external system. Use case-to-use case

relationships are also not precise, leading to confusion. For

example, generalization between use cases will be imprecise,

as there are no well-defined attributes and operations in a use

case. The other two relationships, include and extend, may

also be confusing, as at times it is possible to visually

represent the requirements with either of the two

relationships. While use cases themselves document business

processes, use case diagrams do not exhibit any sequential

flow and do not depict any dependency. Thus use case

diagrams are not an ideal mechanism to show the flow

between different entities within the system. Use cases and

use case diagrams do not have a granularity standard.

Therefore, sometimes, use cases are written as vast descriptive

documents, preventing the modelers from capitalizing on the

reusable and organizational aspects of use case modeling.

Alternatively, very brief a description results in a huge

number of miniature use cases, making them less

comprehensible and adaptable.

12. CLASS DIAGRAM
A class diagram in UML is a type of static structure diagram

that describes the structure of a system by showing the

system's classes, their attributes, operations (or methods), and

the relationships among the classes. Now we investigate the

strengths and weaknesses of class diagram.

12.1 Strengths of Class Diagrams
Class diagrams, by their very nature, are very strong,

structural, static representations. As a result, they are able to

represent not only the entities in MOPS but also the

implementation classes in MOSS, as well as third-party and

reusable classes in the background space. A major strength of

class diagrams is, therefore, their ability to show the structure

of a problem or solution. Class diagrams were used earlier to

model the problem exclusively like in Object Modeling

Techniques by Rambaugh. The outcome was creation of a

business domain model using classes and class diagrams. In

UML, it is still potential to practice classes to represent

business entities. Thus, a major strength of class diagrams is

to represent business entities. Class diagrams offer a modeling

construct that is nearby to coding. The attributes and

operations mentioned in the classes are a framework of the

code. UML CASE tools can simply create class templates

from class diagrams, depending on the language of execution.

Thus, class diagrams provide a complete basis for code

generation in the solution space. Classes, with their attributes

and operations, are excellent means to incorporate good

object-oriented principles such as encapsulation and

polymorphism. ―private‖ attributes and ―public‖ operations,

for example, provide means for the modelers to ensure that

classes are encapsulated. Classes without their operations or

responsibilities are entities, as represented in E-R diagrams. In

other words, classes with only their attributes are entities.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

23

These entities easily represent the database tables. Therefore,

strength of class diagrams is their capability to represent

relational database schemas in UML format. Multiplicities on

a class diagram are also helpful in relational database

modeling. Depending on the multiplicities on an association

between two classes, primary and foreign keys can be created

and assigned to classes. Class diagrams, through their

relationship of inheritance, facilitate reuse. Reuse can improve

productivity but, more important, it can improve quality.

Therefore, one of the strengths of class diagrams is their

ability to enhance quality and productivity through reuse.

Stereotyping of class diagrams is also an important

mechanism to provide a proper architecture. GUI classes,

entity classes and controller classes should be properly

classified in order to ascertain which classes fit into which

specific type. This is certainly an architectural decision or is

inclined by the architect. There are also further types of

classes, like data, helper or global classes, which should all be

stereotyped properly in order to have progress of

understanding and readability— and finally the quality of

these class diagrams. This provides a major strength in terms

of the ability to ―cast‖ classes into relevant stereotypes to

enhance the architecture. These stereotypes can also be used

to enhance the requirements. In addition to class stereotyping,

stereotyping of operations and attributes is allowed, but this

should be completed either later in the software development

life cycle, in the course of modeling of the solution space, or

not finished at all.

12.2 Weaknesses of Classes and Class

Diagrams
Class diagrams do not have any dynamics. They have no

concept of time. Therefore, they are only able to represent

how the system is structured and what its relationships are.

There is no chance to model an if-then-else state on a class

diagram. Thus, class diagrams are awfully weak when it arises

to modeling the dynamic-behavioral aspect of the system.

The class-to-class relationships of aggregation and

composition remain to produce confusion in everyday

modeling exercises. This is because aggregation has many

deviations or variants that do not have corresponding

symbolizations in the current UML. For example, within the

aggregation link, the unfilled versus filled diamond on the

aggregation link signifies shared versus non-shared

aggregation, correspondingly. This difference between the

two types of aggregation is still being argued. As suggested in

the section on putting together a class diagram in difference in

the two types of aggregation in the problem space can be

evaded in the exercise.

Multiplicity, as shown on class diagrams, can also sometimes

lead to confusion. For example, in an aggregation

relationship, the multiplicity shown on the diamond side of

the aggregation can create misunderstanding, as the

aggregator side of the relationship should, by default, be 1 to

satisfy a whole-part relationship.

13. ACTIVITY DIAGRAM
Activity diagrams are graphical illustrations of workflows of

stepwise activities and actions with support for choice,

iteration and concurrency. In the Unified Modeling Language,

activity diagrams can be used to describe the business and

operational step-by-step workflows of components in a

system. An activity diagram shows the overall flow of control.

13.1 Strengths of Activity Diagram
Activity diagrams model the flow present inside the system.

This is, since they are similar to flowcharts and are behavioral

static in nature. Thus, one of the main strengths of activity

diagrams is their capability to demonstrate flows within a use

case or among use cases and also in the entire system.

Activity diagrams complement use case diagrams by visually

showing the internals of a use case. Activity diagrams are able

to show multiple flows taking place simultaneously within the

system. This is achieved drawing the forks and joins (derived

from the sync points) on the activity diagrams. ―An activity

diagram is like an old-style flow chart except that it permits

concurrent control in addition to sequential control that is a

big difference‖. This change or difference (to capture

concurrency between an activity diagram and a flowchart) is

one of the major strengths of the activity diagram. Another

important idea shown on an activity diagram (which is

different from a flowchart) is that of partitions. Partitions

neatly classify activities within the activity diagram based on

dependencies among activities and their cohesiveness. They

also offer an opportunity to document not only the flow but

also the role that is responsible for that flow. Activity

diagrams acts as a bridge between use case and sequence

diagrams. This enables the text-based documentation of the

use cases to be shown pictorially in activity diagrams. At the

same time, activity diagrams also enable a high-level view of

what happens at the object level in sequence diagrams. Notes,

appropriately appearing on the activity diagrams, enable

easier reading and understanding of the diagrams for users

with no technical background. Explanations of the activities,

their dependencies and the decisions points all provide

excellent user-level documentation. Activity diagrams have

also been used in training users new to a system.

13.2 Weaknesses of Activity Diagrams
Activity diagrams have no structural features, and they do not

offer direct evidence on how the system or the requirements

are organized and prioritized. Activity diagrams signify use

case behavior pictorially. However, they do not typically give

a complete picture of the system. For huge and complex use

cases, multiple or many activity diagrams are required. The

inability of activity diagram to view the full requirements of

the system at a glance is their weakness. Activity diagrams

portray process flow. Therefore, they should be used

whenever there is a need to show dependencies between

activities. If used for organizational resolutions, they will lose

the value they complement to the requirements model.

14. CONCLUSION
With the aggregate concentration on early development as a

major factor in shaping overall quality, many researchers are

trying to describe what makes a good abstract model.

However, current frameworks often do bit more than jotting

down desirable attributes. We study attempts to describe

quality as it relates to conceptual models and suggest their

evaluation. The information of performing a strength and

weakness investigation on UML models originated in requests

arising in practice on the category, type and application of

UML diagrams. While analysis done for organizations

delivers the strengths, weaknesses, UML exercise revealed

that the strengths and weaknesses provided the necessary

features of the diagrams, whereas the practical application of

these UML diagrams involved an accepting and

understanding of the objectives of the diagrams and the traps

in using them. It was more relevant to consider objectives and

traps, rather than opportunities and threats, in application of

the diagrams. So the evolution of the current strength and

weaknesses analysis of the diagrams is discussed.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.13, May 2012

24

15. REFERENCES
[1] Ambler, S. UML Style Guide. Cambridge: Cambridge

University Press, 2003.

[2] Armour, F., and Miller, G. Advanced Use Case

Modelling. Boston: Addison-Wesley, 2001.

[3] B. Meyer, eds. Upper Saddle River, NJ: Prentice-Hall,

1995, pp. 229–234.

[4] Beck, K., and Cunningham, W. ―Languages and

Applications,‖ Proceedings of Conference on OO

Programming Systems. New Orleans, LA: ACM Press,

NY, 1989, pp. 1–6.

[5] Booch, G., Rumbaugh, J., and Jacobson, I. The Unified

Modelling Language User Guide. Reading, MA:

Addison-Wesley, 1999.

[6] Chen J., Lu J., and B. Meyer, eds. Nanjing, China: IEEE

Computer Society, 1999, pp. 108–117.

[7] Cockburn, A. Writing Effective Use Cases. Boston, MA:

Addison-Wesley, 2001.

[8] Constantine, L., and Lockwood, L. Software for Use: A

Practical Guide to the Models and

[9] Van. M., Design: Designing Interactive Systems,

Harmelen ed., Addison-Wesley, 2001

[10] Douglass, B.P. Real-Time Design Patterns: Robust

Scalable Architecture for Real-Time Systems. Reading,

MA: Addison Wesley Professional, 2003.

[11] Fowler, M. Patterns of Enterprise Application

Architecture. Reading, MA: Addison-Wesley

Professional, 2003.

[12] Glass, R. Facts and Fallacies of Software Engineering.

Reading, MA: Addison-Wesley, 2003.

[13] Hay, D.C. Data Model Patterns: Conventions of

Thoughts. New York: Dorset House, 1996.

[14] Henderson-Sellers, B. Object Oriented Metrics:

Measures of Complexity. Upper Saddle River, NJ:

Prentice Hall, 1996.

[15] Henderson-Sellers, B., and Unhelkar, B. OPEN

Modelling with the UML. London: Addison-Wesley,

2000.

[16] Hudson, W. ―A User-Cantered UML method,‖ in Object

Modelling and User Interface

[17] Jacobson, I., Booch, G., and Rumbaugh, J. The Unified

Software Development Process.Boston: Addison-

Wesley, 1999.

[18] Jacobson, I., Christerson, M., Jonsson, P., andO¨

vergaard, G. Object Oriented Software Engineering: A

Use Case Driven Approach. Reading, MA: Addison-

Wesley, 1992.

[19] Lauder, A., and Kent, S. ―Two-Level Modelling,‖

Technology of OO Languages and Systems,

[20] Lindland, O.I., Sindre, G., and Sølvberg, A.

―Understanding Quality in Conceptual Modeling,‖

Volume 11 Issue 2, March 1994, IEEE Computer Society

Press Los Alamitos, CA, USA

[21] Mellor, S.J., and Balcer M.J. Executable UML: A

Foundation for Model Driven Architecture. Reading,

MA: Addison-Wesley, 2002.

[22] Miller, G. ―The Magical Number Sever, Plus or Minus

Two: Some Limits on our Capacity for Processing

Information,‖ The Psychological Review, 63(2), 1956,

pp. 81–97.

[23] OMG, Model Driven Architecture Initative; accessed

2004.

[24] OMG. OMG Unified Modeling Language Specification,

Version 1.4, September 2001. OMG

[25] Perry, W. Quality Assurance for Information Systems.

MA: QED Information Sciences, 1991.

[26] Rosenberg, D., and Scott, K. Use Case Driven Object

Modeling with UML: A Practical Approach. Reading,

MA: Addison-Wesley, 1999.

[27] Rumbaugh, J., Jacobson, I., and Booch, G. The Unified

Modelling Language Reference Manual. Reading, MA:

Addison Wesley Longman, 1999.

[28] Schneider, G., and Winters, J. Applying Use Cases: A

Practical Guide, 2nd Edition. Boston: Addison-Wesley,

2001

[29] Unhelkar, B. After the Y2K Fireworks. Boca Raton, FL:

CRC Press, 1999.

[30] Unhelkar, B. Process Quality Assurance for UML-Based

Projects. Boston: Addison-Wesley, 2003.

[31] Unhelkar, B., and Henderson-Sellers, B. ―Modelling

Spaces and the UML,‖ Proceedings of the IRMA

(Information Resource Management Association)

Conference, New Oreleans, 2004.

[32] Unhelkar, B., and Henderson-Sellers, B. ―ODBMS

Considerations in the Granularity of Reuseable OO

Design,‖ Proceedings of TOOLS15 Conference, C.

Mingins and

[33] Warmer, J., and Kleppe, A. The Object Constraint

Language. Precise Modeling with UML. Reading, MA:

Addison-Wesley, 1998.

[34] www.omg.org

