Efficient Clustering Approach using Statistical Method of Expectation-Maximization

P.Srinivasa Rao MVGRCE Vizianagaram

K.Sivarama Krishna T.R.R.Engg.College Hyderabad Nagesh Vadaparthi MVGRCE Vizianagaram

> S.Vani Kumari GMRIT Rajam

ABSTRACT

Clustering is the activity of grouping objects in a dataset based on certain similarity. Available reports on clustering present several algorithms for obtaining effective clusters.Among the existing clustering techniques, hierarchical clustering is one of the widely preferred algorithms. Though there are many algorithms existing, K-Means for hierarchical clustering stand top.But still it is observed that the K-Means algorithm has number of limitations like initialization of parameters. To overcome this limitation, we propose the utilization of E-M algorithm. The K-Means algorithm is implemented by using measure of Cosine similarity and Expectation-Maximization(E-M) with Gaussian Mixture Model. The proposed method has two steps.In first step, the K-Means and E-M methods are combined to partition the input dataset into several smaller sub clusters.In the second step, sub clusters are merged continuously based on maximized Gaussian measure.

Key Terms

K-Means, Expectation-Maximization, Gaussian Mixture Model, clustering, similarity measure.

1. INTRODUCTION

It is very common to differentiate an object with another object by some similarity or dissimilarity. The similar things are grouped together to form clusters. Forming these clusters automatically for a large dataset requires a clustering algorithm [6]. Though there are numerous novel algorithms emerged with additional features and capabilities to form clusters, K-Means [3] with its ever acceptable features of simplicity, understandability, and scalability stood forward among all other algorithms.

With the clustering algorithm it is equally important to know the similarity measure used to find the similarity between objects. Many analysts strongly recommend highly performing similarity measure like Cosine Similarity [2]. Though there are even more similarity measures performing more or less equally to cosine similarity[9] here clustering is illustrated by performing similarity check using cosine rule.

In this paper, we propose an iterative method of clusteringcalled Expectation-Maximization (E-M), [4], which is defined in two steps. Expectation step calculates the similarity values between two objects. Maximization step which maximizes the similarity values in finding finite clusters.

Our analysis is highly focused on parameterless K-Means with E-M which is briefly given in section 2. The process of

clusteringand relative theory is explained in section 3. Section 4 is conclusion and 5 is future work.

2.PARAMETERLESS K-MEANS with E-M

2.1. Initial K-Means

The previous approach of K-Means is finding the k clusters of n observations of which each observation belongs to the cluster with the nearest mean.

Given a set of n observations (x1, x2, ..., xn), where each observation is a d-dimensional real vector, k-means clustering aims to partition the n observations into k sets ($k \le n$) S = {S1, S2, ..., Sk} so as to minimize the within-cluster sum of squares (WCSS): arg min $\sum_{k=1}^{k} \sum_{i=1}^{k} ||_{i=1}^{k} ||_{$

$$\sum_{s}^{g\min} \sum_{i=1}^{k} \sum_{x_i \in S_i} \left\| x_j - \mu_i \right\|^2$$
(1)

Whereµi is the mean of points in Si.

The algorithm is composed of the following steps:

- **1.** Place K points into the space represented by the objects that are being clustered. These points represent initial group centroids.
- **2.** Assign each object to the group that has the closest centroid.
- **3.** When all objects have been assigned, recalculate the positions of the K centroids.

Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation of the objects into groups from which the metric to be minimized can be calculated

2.2. Expectation- Maximization

E-M involves calculating two steps. Here expectation aims at finding values of similarity between two objects. The next step maximizes the likelihood of the existing similarities.

This model, consisting of a set \mathbf{X} of observed data, a set of unobserved latent data \mathbf{Z} , and a vector of unknown parameters $\boldsymbol{\theta}$, along with a similarity function

$$L(\theta; X, Z) = p(X, Z|\theta)$$
⁽²⁾

the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data

$$L(\theta; X) = p(X|\theta) = \sum_{z} p(X, Z|\theta)$$
(3)

However, this quantity is often intractable.

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

Expectation step (E step): Calculate the expected value of the similarity function, with respect to the conditional distribution of \mathbf{Z} given X under the current estimate of the parameters $\boldsymbol{\theta}^{(t)}$:

$$Q(\theta|\theta^{(t)} = E_{Z|X,\theta^{(t)}}[\log L(\theta; X, Z)]$$
(4)

Maximization step (M step): Find the parameter that maximizes this quantity:

$$\theta^{(t+1)} = \frac{\arg\min}{\theta} Q(\theta|\theta^{(t)})$$
 (5)

The EM algorithm works as follows

1. Set i to 0 and choose theta_iarbitrarily.

2. Compute Q(theta | theta_i)

- 3. Choose theta_i+1 to maximize Q(theta | theta_i)
- 4. If theta_i != theta_i+1, then set i to i+1 and return to Step 2.

where Step 2 is often referred to as the expectation step and Step 3 is called the maximization step.

The generalized EM (GEM) algorithm is the same except that instead of requiring maximization in Step 3 it only requires that the estimate be improved.

2.3 E-M with GaussianMixture Model

Initial parameters:

$$\lambda_0 = \{\mu_1^{(0)}, \mu_2^{(0)}, \dots, \mu_k^{(0)}, p_1^{(0)}, p_2^{(0)}, \dots, p_k^{(0)}\}$$

E-step:

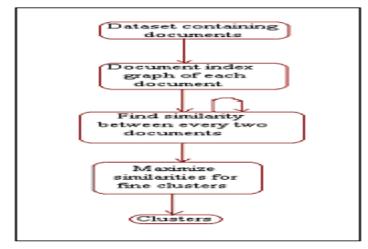
$$P(\omega_j | X_k, \lambda_t) = \frac{P(X_k | \omega_j, \lambda_t) P(\omega_j | \lambda_t)}{P(X_k | \lambda_t)} = \frac{P(X_k | \omega_i, \mu_t^{(t)}, \sigma^2) p_i^{(t)}}{\sum_k P(X_k | \omega_i, \mu_t^{(t)}, \sigma^2) p_j^{(t)}}$$
(6)

M-step:

$$\mu_i^{(t+1)} = \frac{\sum_k P(\omega_i | x_k, \lambda_t) x_k}{\sum_k P(\omega_i | x_k, \lambda_t)}$$
(7)

$$p_i^{(t+1)} = \frac{\sum_k P(\omega_i | x_k, \lambda_t)}{R}$$
(8)

where R is the number of records,[11].


2.4. Proposed method

In this paper we proposed a method to construct the clusters by k-means with cosine similarity without initially declaring the number of clusters. Also an attempt is made to prove the finiteness of emerging clusters by maximizing the similarities using concept of E-M.

3. EXPERIMENTAL EVALUATION

The experimentation is carried out on the dataset of few web documents. They are parsed and preprocessed to give cumulative index graph. The node structure of every document is represented. Then initial similarities of all the documents with every other related document in the dataset are calculated. Now the similarities are maximized by statistical method and maximized values are represented. Clusters are formed based on the maximized similarities.

In the entire process of forming clusters the initial number of clusters is nowhere spoken. Process time for finding similarities and forming clusters after maximizing are compared.

The process is illustrated briefly by the following flow chart.

Fig 1 Flow Chart of process

Volume 46-No.12, May 2012

Operations		
Browse	HTML	
Process	HIME.	
E-M		
	Corresponding OLP:	
	-> 0.17048996910459288 -> 0.42053319341925777	
Tuble	-> 0.42053318341825777 -> 0.37180723416303624	
Performance	-> 0.10375268936988642	
	-> 0.15165053873841694	
	-> 0.10375268936988642	
	-> 0.15422691533698976	
	-> 0.43743107599923947	
	-> 0.15422691533698976	
m(0,10): OLF	> 0.07813299555757187	
m(1,2): OLP	-> 0.3885995313409388	
m(1,3): OLP	-> 0.18035340662479377	
	-> 0.09007311180947954	
	-> 0.7360399932639555	
	-> 0.09007311180947954	
	-> 0.12782318789105465	
	-> 0.2163844463432702	
	-> 0.12782318789105465	
	> 0.07253431170201285	
	-> 0.5241086259152012	
	-> 0.15899607428980356	
	-> 0.46892634059792454	
	-> 0.15899607428980356	
	-> 0.2129523271243609	
	-> 0.5048445391712109	
	-> 0.2129523271243609	
	> 0.10277795613399127 -> 0.14610967018689772	

Fig 2 Finding Similarities of every two documents

Here the documents are parsed and preprocessed to form a node structure and using the document index graph the phrases and words are separated. On the whole, the meta data is obtained and similarities are found between every two documents.

Clustering with Multi-Viewpoint based Similarity Measure	
Operations	
RootPath: index_new.HTML	
Clusters With the Obtained OLP : Cluster1 : (0, 6) Cluster2: (1, 2, 3, 5, 4, 8) Cluster3: (7, 9) Cluster4 : (10)	

Fig 3 Cluster Formation

Clusters are formed using maximized similarities

Operations

K-Means Process Time: 00:0:10 E-M Process Time: 00:0:4

Fig 4: Performance Calculation

Process time is calculated for mere k-means and maximization similarity clusters. The result show that the processing time is better enhanced.

tter				enhanc	ed.						
index.HTML	fishing	1	5	0.2	11	3	1.29928298	0.2598566	1	1	11
members_new.											
html	fishing	4	10	0.4	11	3	1.29928298	0.51971319	2	1	21
index.HTML	wild	1	5	0.2	11	3	1.29928298	0.2598566	1	2	12
index.HTML	river	2	5	0.4	11	6	0.6061358	0.24245432	1	3	13
members_new.											
html	river	1	10	0.1	11	6	0.6061358	0.06061358	2	2	22
index.HTML	rafting	1	5	0.2	11	4	1.01160091	0.20232018	1	4	14
members_new.											
html	trips	2	10	0.2	11	3	1.29928298	0.2598566	2	3	23
members_new.											
html	vacation	1	10	0.1	11	4	1.01160091	0.10116009	2	4	24
members_new.											
html	plan	1	10	0.1	11	4	1.01160091	0.10116009	2	5	25
members_new.											
html	booking	1	10	0.1	11	1	2.39789527	0.23978953	2	6	26
index.HTML	fishing	1	5	0.2	11	3	1.29928298	0.2598566	1	1	11
index.HTML	wild	1	5	0.2	11	3	1.29928298	0.2598566	1	2	12
members_inde											
x.html	wild	1	7	0.14285714	11	3	1.29928298	0.18561185	3	1	31
index.HTML	river	2	5	0.4	11	6	0.6061358	0.24245432	1	3	13
members_inde											
x.html	river	2	7	0.28571429	11	6	0.6061358	0.17318166	3	2	32
index.HTML	rafting	1	5	0.2	11	4	1.01160091	0.20232018	1	4	14
members_inde											
x.html	rafting	1	7	0.14285714	11	4	1.01160091	0.14451442	3	3	33
members_inde											
x.html	adventures	1	7	0.14285714	11	2	1.70474809	0.24353544	3	4	34
members_inde											
x.html	vacation	1	7	0.14285714	11	4	1.01160091	0.14451442	3	5	35
members_inde											
x.html	plan	1	7	0.14285714	11	4	1.01160091	0.14451442	3	6	36
index.HTML	fishing	1	5	0.2	11	3	1.29928298	0.2598566	1	1	11

Fig 5: Input to the Gaussian Mixture Model

This table is the output of the maximized similarity values calculated as Document name, Word(Document Term), C(Count),Term(Total no. of words), TF(Term frequency=C/T), D(Total no. of Documents),DF(word in total no. of documents),IDF(Inverse Document

Frequency=D/DF)ITF, which is in turn an input for Gaussian model. The last three columns are Document id, Document term id in which it belongs to same document of document id. Last column represents both combination of Document id & Document term id.

Here, GMM applied in MATLAB the text's are not taken by it, since we given Document id, Document term id (i.e., if Document id is first document consists of first term or 2^{nd} , 3^{rd} ,... in corresponding document term can be represented). So, based upon these values given as an input.

Fig 7: Output of Cluster2 in Gaussian Mixture Model

A MATLAB 7.10.0 (R2010a)		
File Edit View Graphics Debug Paralle	I Desktop Window Help	
। 🔁 🖆 👗 🖻 💼 🤊 🔍 🗃 🗹 🖹 🕚	🖉 Current Folder: C:\Users\Naresh\Desktop\Pro 👻 📊 🛅	
Shortcuts 🖪 How to Add 🖪 What's New		
Current Folder 🗰 🗖	🗙 🛃 Variable Editor - fc3 👘 🗆 🦉 🗙	Workspace 📲 🗖 🛪 🗙
🔹 🕸 🔛 « Desktop 🕨 Pro 🛛 💌 🔎	🏶 🙀 🗸 🖺 🏨 🍓 🔏 🔹 🐂 Stack: Base 👻 🕼 No valid plots for: fc3(1,1) 🔹 🖽 🖽 🗗 🗖 🗖 🛪 🗙	🛅 📷 🝓 👪 Stack: [🚺 plot(fc3) 🛛 🗸
Name 🔺	H fc3 <801x10 double>	Name 🗠 Value
📋 clusterEM.asv	1 2 3 4 5 6 7 8 9 10	co4 802 ^
🖆 clusterEM.m	1 9 1 91 1 11 0.0909 11 3 1.2993 0.1 ^	to44 801
🔄 clustertable.xlsx		d 1
🔤 fc1.JPG	3 9 3 93 2 11 0.1818 11 4 1.0116 0.1	🗮 e 🛛 🗌
fc2.JPG	4 9 4 94 1 11 0.0909 11 2 1.7047 0.1	f 0 fc1 <799x10 double>
🖭 fc2.xls		
fc3.JPG	6 9 6 96 2 11 0.1818 11 4 1.0116 0.1	fc2 <840x10 double> fc3 <801x10 double>
👰 gaussian_pdf.m		fc3 <801x10 double>
🗐 ip.xlsx	8 10 2 102 1 5 0.2000 11 2 1.7047 0.2 9 10 3 103 1 5 0.2000 11 2 1.7047 0.2	ii 41
Ourprojecttable.xlsx	9 10 3 103 1 5 0.2000 11 2 1.7047 0.2 10 10 4 104 1 5 0.2000 11 2 1.7047 0.2	41 iii 840
🕙 t.xlsx	10 10 4 104 1 5 0.2000 11 2 1.7047 0.2 11 10 5 105 1 5 0.2000 11 2 1.7047 0.2	
		iii 42 T
	12 11 1 111 2 12 14 0.1429 11 1 2.3979 0.1429 0.1429 11 1 2.3979 0.1429 0.1429 11 1 1 2.3979 0.1429 0.1429 11 1 1 1 1 1 1 1 1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Command History + - * ×
	15 11 4 114 1 14 0.0714 11 1 2.3979 0.1	2
	16 11 5 115 1 14 0.0714 11 1 2.3979 0.1	% 4/8/12 9:12 PM%
	To orong it and a late	B-% 4/8/12 9:26 PM%
	•	<pre>hist(fc2);figure(gcf);</pre>
	c1 × c2 × c3 × c4 × a × b × c × cen × fc1 × fc2 × fc3 ×	<pre>plot(fc2,'DisplayName','fc2','</pre>
	Command Window 🔿 🗗 र 🗙	contour(fc2,'DisplayName','fc2
	(1) New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .	<pre>mesh(fc2);figure(gcf);</pre>
	fr >>	
	14.77	
Details	^ ·	< >
A Start		
(//) 🖸 🖉 🔚 🐸 🧿		🔺 🔒 🔚 ሌ 11:53 PM 🗼

Fig 8: Output of Cluster3 in Gaussian Mixture Model

Table 1: Comparison Table

Technique	Number of Clusters formed(10 documents)
E-M with K-Means	04
E-M with GMM	03

As shown in the above tabular format,by using E-M with GMM most converged clusters are formed.

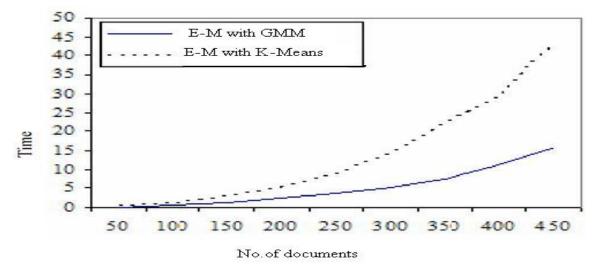


Fig 10 Graphical Comparison

Performance [5] of GMM with EM over the EM with K-Means. The above graphs are represents formation of final clusters data by taking input as cluster data of k-means with expectation-maximization output values into Gaussian Mixture Model with Expectation Maximization. By ensuring output of K-means into input of GMM will provide nearer to the assumption of number of clusters and then again calculates entire data values then observes new data separation and finally results finite clusters. So, the comparison graph will provide better analysis of GMM with E-M over K-means with E-M by showing better performance, finite clusters, less computational time.

4. CONCLUSION

We from the report, concluding that this attempt of forming clusters without giving the parameter beforehand is successful to most of extent. The process time for forming clusters has shown its result.Here, the formation of clusters is can be varied. Initially, when we used K-means with EM found total number of clusters are four and after applied GMM with EM observed finally, three clusters (there two are specifying very similar so, they are merged into one cluster).So, that after refinement we got an finite clusters. Now, for the future enhancement of the results the Gaussian mixture model of expectation-maximization can be used. In the process frequency of each term in every document with its inverse document frequency is taken. This tabular output is converted to CSV file and the resultant is the outcome of Gaussian mixture model.

5. FUTURE WORK

The key contribution of this paper is the fundamental concept of similarity measure frommultiple viewpoints.Finally, we have shown the application of MVS and its clusteringalgorithms for text data. It would be interesting to explore how they work on other typesof sparse and highdimensional data.

6. REFERENCE

- [1] SimilarityMeasures for text document clustering by *Anna Huang*
- [2] Evaluating the Performance of Similarity Measures Used in Document Clustering and Information Retrieval,*IEEE*, <u>ieeexplore</u>.iee.org

- [3] M. Goto, T. Ishida, S. Hirasawa: "Statistical Evaluation of Measure and Distance on Document Classification Problems in Text Mining", *IEEE International Conference on Computer and Information Technology*, 2007
- [4] Expectation–maximization algorithm From Wikipedia, the free encyclopedia.
- [5] Robert Hogg, Joseph McKean and Allen Craig. Introductionto Mathematical Statistics. pp. 359–364. Upper Saddle River, NJ: Pearson Prentice Hall, 2005.
- [6] David J.C. MacKay, *The on-line textbook: Information Theory, Inference, and Learning Algorithm.*
- [7] ShuhuaRen AlinFanSch. of Inf. Sci. & Eng., Dalian Polytech. Univ., Dalian, China: *K-means clustering algorithm based on coefficient of variation.*
- [8] Momin, B.F.; Kulkarni, P.J.; Chau-dhari, A.;Web Document Clustering Using Document Index Graph.
- [9] Mikawa, K.; Ishida, T.; Goto, M.; Dept. of Creative Sci. & Eng., Waseda Univ., Tokyo, Japan.; A proposal of extended cosine measure for distance metric learning in text classification.
- [10] ELdesoky, A.E. Saleh, M. Sakr, N.A. Dept. of Comput. & Syst., Mansoura Univ., Mansoura; Novel similarity measure for document clustering based on topic phrases.
- [11] H.Chin, X. Deng,"Efficient phrase-based document similarity for clustering".