
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

38

Precision in Design Reusability using Software Agent
based Design Triggers

Vinay Goyal

Assistant Professor
Panipat Institute of Engineering & Technology

Samalkha, Panipat (HR.) INDIA

Ashok Kumar
Professor

Department of Computer Sc. & Applications
Kurukshetra University, Kurukshetra

ABSTRACT

Conventional software development methodologies for

today‘s software developments have not been proven good

enough to cope with the unconventional demands and rapid

application development. There is a serious need for computer

aided methodology which can cope with the challenging need

of the today‘s requirements. Computer aided software agents

playing important role in new age of software development.

The software design phase development experience of

software development lifecycle can be enhanced using design

triggers agents. This can result in increased efficiency in

overall software development process and can help in

producing quick solutions resulting in reduced development

cost and effort.

General Terms

Agent based systems, Agent oriented software engineering,

Design agents, Design triggers.

Keywords

Agent based systems, Agent oriented software engineering,

Design agents, Design triggers.

1. INTRODUCTION
The categories and classification of the software requirements

is continuously changing over the time in computer history

and so are the software development methodologies. The

conventional requirement gathering techniques get more

advanced when the nature of project become more wide and

complex. Design methodologies also require a touch of

excellence to cater the cases where old design becomes no

more of great usage [2]. The consideration of design pattern is

the most advance topic to be considered in the design phase of

software development life cycle [7]. It has been identified that

the nature of problem statement in the SRS can be categorized

into some of known field of domain.

The design statements have been identified on the basis of the

domain of SRS problem statements. The design solution

frames have been identified; its domain pattern is followed for

bridging the problem domain with solution domain. This lead

to a planned and rapid development after following the design

patterns which get matured over a period of time and over the

time they get more organized with heuristics. Finally, it was

observed that every software development assignment is

having a well defined problem domain whose solution can be

identified in parallel in design patterns. One can say that

design patterns are the recurring solution to design problems.

As there is a need to bridge the domain gap, the software

agents who are also actively associated in the software

development lifecycle can play a vital role. Research shows

that it is technically possible to associate the software agents

for strong assistance for requirement analysis phase [8][12].

The key point is the domain of the software development. For

recurring problem statement in a well defined domain,

software agents have been used to identify the importance of

requirement entities. Agents ensure that all the important

aspects have been analyzed and there is nothing left, which is

important. This is the most important assurance which any

system analyst is always in need of.

On the parallel track, for software design phase, the software

agents can be helpful in identification of the most valuable

design for a particular (problem) requirement in some well

defined domain of solution. The design pattern serves as

recurring solution to design pattern, but this could be added

with design agents to make a shot in arm. The design pattern

or design repository [10] for a well defined problem statement

category can be made more useful with the association of

design agents which will assist in selecting the best design out

of available design on the basis of some well defined

parameters.

2. RELATED WORK
Agents and current information technology tools are capable

enough to explore trends and patterns of information in plenty

from many different heterogeneous sources. Once the

information has been gathered in a repository, the user can go

through this information and can extract whatever information

they are seeking. An agent can operate in a data warehouse

discovering information of domain interest. A 'data

warehouse' brings together information from lots of different

heterogeneous sources. "Data mining" is the process of

looking through the data warehouse to find information of

interest that you can use to take further actions such as ways

to increase sales, find appropriate marketing strategy, etc.

 'Classification' is one of the most common types of data

mining, which finds patterns in information and categorizes

them into different classes. Data mining agents has the

capability to perceive major shifts in trends or a key indicator

and can detect the presence of new information and can make

alert notifications automatically, based on the domain

requirements of the user. For example, the agent may detect a

decline in the construction industry for an economy; based on

this relayed information construction companies will be able

to make intelligent decisions regarding the hiring/firing of

employees or the purchase/lease of equipment in order to best

suit their firm. [6][11].

One of the widely acclaimed architecture is the Brook‘s

subsumption architecture [10]. This architecture is used to

model physical robots to bridge perception to action. The

same architecture can be used as basis to pure reactive

software agents. The architecture consists of a set of modules,

each of which is described in a subsumption language based

on augmented finite state machines (AFSM). An AFSM is

triggered into action if its input signal surpasses some

threshold value, though this is also dependent on the values of

suppression and inhibition signals into the AFSM. Unlike the

classical Artificial Intelligence work, AFSMs represent the

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

39

only processing units in the architecture without usage of any

kind of symbols [9]

The layered approach is used to place the grouped modules

which work in asynchronous manner such that modules in a

higher level can inhibit those in lower layers. Each layer has a

hard-wired purpose or behavior or in agent domain, we can

term it as agent goal, e.g. to avoid obstacles or to

enable/control wandering as shown in figure 1. This

architecture has been used to construct ten mobile robots at

MIT. Steels use similar agents to Brooks in order to

investigate cooperation between distributed simulated robots

using self-organization [10].

EXPLORE

WANDER

AVOID OBSTACLES

Fig 1: Brooks Subsumption Architecture

The most basic reactive architecture is based on situated-

action rules. The work done by Suchman provides basis to

this kind of architecture. Positioned action agents act

fundamentally in ways which is appropriate to its position,

where position refers to a prospectively compound

combination of internal and external events and states.

Positioned-action agents have been used in PENGI [22], a

video game.

Scientist and Researchers at Philips research laboratories in

UK have implemented a position-action based language called

the RTA programming language. This language has been used

to implement characters in computer games. Wavish &

Graham [23] have proposed another language based on a

modal logical formalism, which in turn is based on a

paradigm called situated automata. Agents written in this

language are compiled into digital circuits which implement

the reactive agent system.

Though the agents discussed in this paper are termed as

collaborative, deliberative agents; they may not have been

fully collaborative as defined, but they were in character. For

example each agent in distributed vehicle monitoring system

is a blackboard knowledge source whose task is to identify the

vehicles track from acoustic data.

As each of these agents shared a global pool of knowledge for

problem solving, these agents can be considered as purely

autonomous and moreover cooperation between them is also

considered as basic as all the agents share knowledge from the

common knowledge pool. The other works such as MACE

[15], MCS [16] and IPEM [17] have deliberative agents with

non- linear planning modules that support the mutual

cooperation among themselves in their operating

environment. Other planning-based prototypes include Hayes-

Rothi‘s GUARDIAN architecture [18].

At BT Labs, two prototype collaborative agent-based systems

have been developed recently: the ADEPT and MII

prototypes. ADEPT [19] employs collaborative agents in the

application area of business process re-engineering (BPR)

while MII [20] demonstrates that collaborative agents can be

used to perform decentralized management and control of

consumer electronics, typically PDAs or PCs integrated with

services provided by the network operator.

High Level Logic (HLL) is a framework for intelligent

applications that is easy to understand and use, even by less

experienced programmers. Applications consist of integrated

chains of decisions and operations. Development of

cooperating systems, each of which is built on HLL, is as easy

as building a single integrated system.

Application programmers build protocols that link to

specialized application components. HLL ―message passing‖

is taken to the extreme, as with independent interacting

agents, while providing the backbone for complete

applications around which specialized application components

are applied and interact. Individual actors (intelligent agents)

within the framework have specialized roles and

responsibilities (and authorities) that are designed to

complement one another as shown in figure 2.

The HLL components form a complete working organization

that controls, manages, and executes the ―chains of decisions

and operations‖ of the application.

 AGENTS

Fig 2: Agents and interpretation policies.

Today, the concept of software agents that perform tasks

previously performed by specialized humans is getting

popular – such as an Internet salesperson. It also includes

automated telephone answering systems that try to figure out

what you want and direct your call, perhaps to another

automated system.

In the era of 90s, it was not difficult to realize that using

current technology; it is possible to create a much more

powerful system much more easily than originally conceived

S

E

N

S

I

N

G

A

C

T

I

N

G

WHITE BOX

BLACK BOX

INTERPRETATION

POLICIES
KNOWN

AGENTS

P
R

O
C

ES
S

TEMPORARY

TOKEN STORAGE

INTERPRETER

LEARNING

PERFORMER

AMBUGITY

RESOLVER

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

40

more than a decade earlier. Java's network support for

example (and the Internet of course), provides powerful ways

for components to interact even when they are physically on

systems half a world apart (or in outer space). Large

enterprise systems (well supported by Java EE) can provide

systematic interaction between departments and operations

[13].

Agents add value to the traditional software design by

offering tools for handling the most general level of the

problem domain. They represent the main building blocks of a

distributed software system without describing the internal

structure of the individual blocks as shown in figure 3 [3].

TASK SOLUTION

LAYER 1

LAYER 2

 query

INFOSPHERE reply

Fig 3: The Pleiades Distributed System Architecture

To build generic solutions to one-off problems is a tedious

task for the software developers especially in the agent

community. A tailor made design is mostly required for

specific problem domain rather than devising an architecture

or test bed that apparently enables a whole range of potential

types of system to be built. In such situations, a custom built

solution will be easier to develop and far more likely to satisfy

the requirements of the application [4].

The Unified Modeling Language (UML) is gaining wide

acceptance for the representation of engineering artifacts in

object-oriented software. Our view of agents as the next step

beyond objects leads us to explore extensions to UML and

idioms within UML to accommodate the distinctive

requirements of agents. The result is Agent UML (AUML).

[1]

This subset was chosen because interaction protocols are

complex enough to illustrate the nontrivial use of AUML and

are used commonly enough to make this subset of AUML

useful to other researchers. Agent interaction protocols are a

good example of software patterns which are ideas found

useful in one practical context

A specification of an AIP provides correlation that might be

used to solve problems in system analysis and design.

Increased attention is paid by industrial and business users

over the results provided by agent‘s community. These results

can be quickly and correctly implemented in the practical

applications if the research work is done in accordance with

the modern software engineering practices. AUML builds on

the acknowledged success of UML in supporting industrial-

strength software engineering. The idioms and extensions

proposed here for AIP‘s—as well as others that the

researchers are developing are also contributing to this

objective [5].

3. PROBLEM STATEMENT
Most of the design models followed in modern age of

software development are not having the active intelligence or

assistance which can guarantee the successful and

accomplishment of the implementation of the requirements.

Even, the availability of the design patterns for a domain

specific only provides the list of possible solution for a

problem statement. There is a need of the domain specific

knowledge agent for the applicability of design patterns

efficiently.
The design reusability can also be achieved if there is some

mechanism available which can assist in selecting the best

design module out of available modules. In either case, be it a

design pattern, or reusable design, some monitoring

application is required, that can suggest the best design item

for defined problem. The monitoring application will

proactively give the best decision on the basis of previous

experience for similar use-case and aligned domain.
This indicate towards the need of an agent which can trigger

for the best design in available design repository and can

assist the user in selecting the most suitable design pattern out

of available design pattern. The lack of agent assistant results

in the slow process of software development life cycle. If the

design phase can be assisted with the agent based approach, it

will result in reusable design, which in turn, results in

spending very less or no time in software development. This

is because the design module which is selected from the

available modules is already having the code/program

modules.

The design triggers are required which will proactively work

in association to identify the best match for the problem

domain inputs. While the user will be looking into the

repository and search for some of required design modules,

design triggers [trigger, because it will initiate itself on user

activated event of search process] initialize the agents. The

attribute matching for the design lookup from repository and

pattern search initialization within the design pattern

statement need to be self initialized without the user

dependency.

We need a reliable approach to tackle the problem of overall

time saving for any SDLC activity. The reusable design, with

associated code available, and the available code is tested as

well, there is no need to write fresh test cases for newly

developed module. This kind of reusable environment is

required which can assist for all stages of SDLC.

The UML design details are project oriented. They need to be

defined on the problem statement. There have been some

initiative taken by researchers to make UML more useful to

designers and programmers but even after UML definitions

for problem based namespace, they have not added much

value to overall system. This is because of the reason that

there is no system available which can search in UML

modules and give the value for appropriateness for a given

UML design requirement.

UML based design can be made more usable when we add the

attribute assignment to UML design item. On the top of

USER 1 USER 2 USER n

T-A1 T-A2 T-An

I-A1 I-A2 I-An

D-B1 D-B2 D-Bn

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

41

design items, there will be agent which will take care of the

requirement and proactively and collaboratively start its gears

to produce valuable information which will be useful for

reusing UML by the system designer.

4. EXPERIMENT METHODOLOGY
The experiment was carried out with design triggers for

selecting the best design artifact from design pattern and

available reusable design. Nine problem domains have been

identified and their attributes were defined for the reusable

design modeling using design trigger agents. Similarly, for the

design pattern based design approach the attribute were

assigned for the known design pattern method.

Fig 4: Framework to use the Design Agents as pro-active

assistant for design search refinement.

As shown in figure 4, the user needs one design for a problem

space. User interacts with the system to look for a design. The

observer agent (design agent) will monitor for the inputs

supplied by the user, without prompting him, and

automatically starts the design search triggers. This starts the

searching mechanism for design lookup on the basis of

reusable design and the design pattern similarity search.

This process is an added advantage to traditional search where

user will never prompted for best design recommendations

automatically. The recommendation and guidance for design

selection also show the scale of appropriateness of the design

item in the specified scenario. The results are very much

useful for the user and help him in concentrate on the most

suitable designs available.

The domain specific design sheets are stored in software

design repository. This is a collection of the design elements

arranged on the basis of category in order to follow up with

the design patterns. Every design element is having a set of

keywords which will be used for the search process. The

domain specific layout plays an important role with design

triggers. When user input the requirements, the design triggers

take the values from user and start a parallel thread for

providing a better solution on the top of plane/un-intelligent

search. The design triggers filters the results by running a

second process of meta-search which arrange the results on

the basis of appropriateness and clear down all results which

are not associated which the user query.

The experiments are carried out in two separate sessions. The

one setup was using the agent based triggers to assist the

search process. The second session was just simple look up

process without any assistance. The same inputs were passed

to the two setups. The outcomes of the design search were

compared with using design triggers and without using design

triggers. The difference shown was substantial which uses the

design triggers. The appropriateness while using the design

triggers was much better.

The time taken in identifying the best results for design is also

less which improves the user‘s overall experience. The user

feedback for further refinement is collected in interactive

system which is also handled by the feedback agent. This is

two way interactions, where user is specifying his details and

agent feedback agent is providing the related and most

appropriate modules after interacting with the basic design

trigger search engine.

AGENT BASED

REQUIREMENT REFINEMENT

SOFTWARE

DESIGN

REPOSITORY

DOMAIN

SPECIFIC

SHEETS

DESIGN

SEARCH

ENGINE

REUSABLE DESIGN (MORE ALLIGNED

TOWARDS USER REQUIREMENTS)

DESIGN

AGENTS
USER

INPUT

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

42

Table 1: Improvements in user experience in design search

results using design trigger agent.

Simula-

tion run

Reusable

design type

User

experience

with Agent

based

System

User

experie

nce

without

Agent

based

System

 (Time in

min)

(Time

in min)

1

Event

Scheduler 19 150

2 Part search 16 78

3 Report logger 23 67

4 Text reader 16 34

5 Billing 20 56

6

Bar code

generator 13 27

7

PC

Monitoring

system 15 78

8 Contact book 46 102

9

Auto

inventory

reporter 54 133

Fig 5: Improvements in user experience in design search

results using design trigger agent.

Table 2: Improvements in the appropriateness in the

design search results using design trigger agent.

Simula-

tion run

Reusable

Design Detail

Level of

appropriate

ness with

Design

trigger

system

Level of

appropri

ateness

without

Design

trigger

system

1

Event

Scheduler 35 10

2 Part search 56 16

3 Report logger 51 13

4 Text reader 33 8

5 Billing 67 13

6

Bar code

generator 87 17

7

PC

Monitoring

system 33 19

8 Contact book 22 7

9

Auto

inventory

reporter 25 9

Fig 6: Improvements in the appropriateness in the design

search results using design trigger agent.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

43

5. RESULT & CONCLUSION
The reusable system can be useful if they can be easily

identified, can easily be fitted in to the required domain. The

term reusability can be considered as a benefit for the

development of a system if it saves time, resources and speed

up the final deliverable product. However, the reusable system

are hard to implement and to identify the reusable module

which can be best fit in a required domain requires a lot of

time and efforts.

The experiment carried out to identify the reusable system

using agent based triggers. The experiment shows that the

system solved the problem of identification of best fit solution

up to some extent. The agent based triggers work on the result

set of first level query output. User provides the input to

search the reusable design module, and the design trigger will

further match the result with the problem domain. This act

will minimize the result set and users have to spend less time

to find the reusable module.

Table 1 shows the level of reduction in time spent (in

minutes) to find a reusable module. The reduction in the

amount of time to get the final reusable module is

considerably much lesser as compared to the agent-less

system. The design trigger agent refines the search for Event

scheduler by matching its category to its domain of ‗Planner‘.

When the design element is identified by design trigger, it

matches its fitment in the requested domain by checking the

subsequent keywords supplied.

The figure 5 shows the overall improvement in the time

reduction which provides the enhanced overall solution to the

problem and hence improves the user experience. As per our

experiment, we have considered the user experience as how

much time is being spent to get the valuable results. Less time

taken for the search result means user experience is very

good.

The time spent on the results obtained is not the only the sole

parameter. The design search process should produce the most

appropriate results with great precision. When we have used

the design trigger based search, we have found that the search

results are less in number and they are closely related to the

problem domain for which the reusable solution is required as

shown in table 2. Figure 6 shows the level of improvement in

the appropriateness in the design search results.

All elements that make up the control-flow of a particular

agent are grouped under the common concept, making it

easier to identify larger units of the program that belong

together semantically. This is a key factor to use the pro-

active agents to assist the user for taking the decision in

domain specific problems. It supports the principle of locality

even better then the object-oriented view does. In object-

oriented systems, the control-flow specification is spread all

over the entire program code. The agent-oriented view

introduces a novel approach for conceptual grouping of

software design components with some well defined

bounding. These well defined bounds help in assignments of

the search targets with satisfactory precision level.

Agents can be very helpful in the decision making assistance

process. The proactive agents can work in background and

they can be tuned to run in a parallel mode, which user may

be in need of as an assistance to accomplish a task. The results

of the normal process can be compared with the agent‘s

process and the best possibilities can be generated. The

domain specific problems get more refinements. Agent works

in a co-operative and autonomous mode and this is the most

desirable task for the query search and shortening the domain

specific results without active or direct human intervention.

Agents are found useful in our experiment and the perfection

of reusability is achievable to a great extent.

6. REFERENCES
[1] Bryson, Joanna, and Brendan McGonigle, "Agent

Architecture as Object Oriented Design," Intelligent

Agents IV: Agent Theories, Architectures, and

Languages.

[2] S. Matsuoka and A. Yonezawa. Analysis of Inheritance

Anomaly in Object-Oriented Concurrent Programming

Languages. In G. Agha, P. Wegner and A. Yonezawa,

Eds. Research directions in Concurrent Object-Oriented

Programming, pp. 107-150. The MIT Press,

Cambridge, MA, 1993.

[3] Henry A. Kautz, Bart Selman, Michael Coen, Steven

Ketchpel, and Chris Ramming, An Experiment in the

Design of Software Agents, AI Principles Research

Department AT&T Bell Laboratories, Proceedings of

AAAI-94, Seattle, WA, July 1994,

http://www.cs.cornell.edu/selman/papers/pdf/94.aaai.bo

ts.pdf

[4] Nicholas R. Jennings and Michael Wooldridge, Agent-

Oriented Software Engineering, London E1 4NS,

United Kingdom,

http://icc.mpei.ru/documents/00000827.pdf

[5] , James J. Odell, H. Van Dyke Parunak Bernhard Bauer

James Odell Associates,‖ Representing Agent

Interaction Protocols in UML‖, 3646 W. Huron River

Dr., Ann Arbor, MI 48103 USA.

[6] Kundu, S., "Design of web data mining in agents based

e-commerce", Computer and Communication

Technology (ICCCT), 2011 2nd International

Conference on 15-17 Sept. 2011

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides.

Design Patterns: Elements of Reusable Object Oriented

Software. Addison Wesley, 1995.

[8] Ashok Kumar, Vinay Goyal, "Software requirement

analysis enhancements by prioritizing requirement

attributes using rank based Agents", (IJCSIS)

International Journal of Computer Science and

Information Security, Vol. 9, No. 8, August 2011, (pp.

105-114).

[9] The Distributed System Architecture for agents,

http://agents.umbc.edu/introduction/ao/5.shtml

[10] Brookís Subsumption Architecture,

http://agents.umbc.edu/introduction/ao/5.shtml

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

44

[11] D. Kerr, D. O'Sullivan, R. Evans, R. Richardson and F.

Somers. Experiences using Intelligent Agent

Technologies as a Unifying Approach to Network and

Service Management. In Proc. of IS&N 98, Antwerp,

Belgium. 1998.

[12] P.K. Suri, Gurdev Singh, ―Framework to represent the

software design elements in markup text - Design

Markup Language (DGML)”, International Journal of

Computer Science and internet security, Vol. 10 No. 1

pp. 164-170.

[13] G. Lavender and D. Schmidt. Active Object: An object

behavioural pattern for concurrent programming. In

J.M. Vlissides, J.O. Coplien, and N.L. Kerth, Eds.

Pattern Languages of Program Design. Addison-

Wesley, Reading, MA, 1996.

[14] http://isr.nu/hll/project /JavaNetReflect/

[15] Gasser, L., Braganza, C. & Herman, N. (1987),

"MACE: A Flexible Testbed fo Distributed AI

Research", In Huhns, M. (ed.), Distributed Artificial

Intelligence, Research Notes in Artificial Intelligence,

London: Pitman, Chapter 5, 119-152.

[16] Doran, J., Carvajal, H., Choo, Y. & Li, Y. (1991), "The

MCS Multi-agent Testbed: Developments and

Experiments", in Deen, S. (ed.), Cooperating

Knowledge based Systems, Heidelberg: Springer-

Verlag, 240-251.

[17] Ambros-Ingerson, J. & Steel, S. (1988), "Integrating

Planning, Execution and Monitoring", In Proceedings

of the 7th National Conference on Artificial

Intelligence (AAAI-88), St Paul, MN, 83-88.

[18] Hayes-Roth, B. (1991), "An Integrated Architecture for

Intelligent Agents", SIGART Bulletin 2, (4), 79-81.

[19] OíBrien, P. & Wiegand, M. (1996), "Agents of Change

in Business Process Management", British

Telecommunications Technology Journal 14 (4),

October.

[20] Titmuss, R., Winter, C. S. & Crabtree, B. (1996),

"Agents, Mobility & Multimedia Information",

Proceedings the First International Conference on the

Practical Application of Intelligent Agents and Mullti-

Agent Technology (PAAM ë96), London, 22-24 April,

693-708.

[21] Brooks, R. A. (1986), "A Robust Layered Control

System for a Mobile Robot", IEEE Journal of Robotics

and Automation 2 (1), 14-23.

[22] Agre, P. E. & Chapman, D. (1987), "Pengi: An

Implementation of a Theory of Activity", Proceedings of

the 6th National Conference on Artificial Intelligence,

San Mateo, CA: Morgan Kaufmann, 268-272.

[23] Graham, M. & Wavish, P. R. (1991), "Simulating and

Implementing Agents and Multiple Agent Systems", In

Proceedings of the European Simulation Multi-

Conferencce, Copenhagen, June.

