
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

20

Process Resource Allocation in Grid Computing using
Priority Scheduler

Mayank Kumar Maheshwari

Amity University Noida, India

Abhay Bansal,PHD
Amity University Noida, India

ABSTRACT
Grid Computing has emerged as an important new field

focusing on resource sharing. One of the most challenging

issues in Grid Computing is efficient scheduling of tasks.

Load Balancing is a technique to improve parallelism,

utilization of resources increasing throughput managing and

to reduce response time through proper distribution of the

tasks. Generally there are three type of phases related to Load

balancing i.e. Information Collection, Decision Making, Data

Migration. In this paper, we propose a Load balancing

algorithm for optimal scheduling. It scheduled the task by

minimum completion time and rescheduled by waiting time of

each task to obtain load balance. This algorithm scheme tries

to provide optimal solution so that it reduces the execution

time and expected price for the execution of all the jobs in the

grid system is minimized. Load balancing algorithms is of two

types, static and dynamic. Our algorithms in this paper based

on dynamic nature.

General Terms
Grid computing, scheduling

Keywords
Computational Grid,Load balancing, Priority scheduler,

Execution Cost, Resource Monitoring.

1. INTRODUCTION
Grid computing, individual users can retrieve computers and

data, transparently, without taking into account the location,

operating system,
account administration, and other details. In Grid computing,

the details are abstracted, and the resources are virtualized.

Grid Computing should enable the job in question to be run

on an idle machine elsewhere on the network [6] The main

task of grid computing is the allocation of resources for a

process; i.e., mapping of tasks to various resources. For

example, mapping of 100 tasks into 20 resources produces

20^50 possible mappings. This is because every job can be

mapped to any of the resources. In our case the allocation of

jobs is in terms of reallocation which means depending on the

status of resources either it is heavily loaded or not. Here

resource means processors which are involved in the

scheduling process. We used resources and processors

simultaneously. The other complexity of resource allocation is

the lack of accurate information about the status of the

resources.

Before scheduling the tasks in the grid environment, the

characteristics of the grid should be taken into account. Some

of the characteristics of the grid include

 Geographical distribution where the resources of

grid may be located at distant places

 Heterogeneity, a grid consists of hardware as well

as software resources that may be files, software

components, sensor programs, scientific

instruments, display devices, computers,

supercomputers networks etc.

 Resource sharing, different organizations may own

the resources of the grid

 Multiple administrations, each organization may

establish different security and administrative

policies to access their resources

 Resource coordination, to get combined computing

capabilities, grid resources must be coordinated

[4].Scheduling is highly complicated by the

distributed ownership of the grid resources as Load

balancing algorithm are two type static and

dynamic, In the case of static scheduling, all the

information regarding the tasks and resources such

as execution time of the tasks, speed of the

processor are available by the time the application

is scheduled.

 In this type of Scheduling, it is easy to program from the

scheduler‟s point of view. But in the case of dynamic

scheduling, the execution time of the tasks may not be known

due to the direction of branches, number of iterations in the

loop etc. So, the task has to be allocated on the fly as the

application executes. Both static and dynamic scheduling are

widely adopted in the grid. Here, system need not be aware of

the run time behavior of the application before execution and

dynamic load balancing algorithms distributes the tasks

among workstations at run-time; they use current or recent

load information when making distribution decisions of tasks.

Multicomputers with dynamic load balancing

allocate/reallocate resources at runtime based on no a priori

task information, which may determine when and whose tasks

can be migrated [7].

As a result, dynamic load balancing algorithms can provide a

major improvement in performance over static algorithms.

However, this comes at the additional cost of collecting and

maintaining load information, so it is important to keep these

overheads within reasonable limits [8]. There are three major

parameters which usually define the strategy a specific load

balancing algorithm will employ [9]. These three parameters

answer three important questions:

 Who makes the load balancing decision?

 What information is used to make the load

balancing decision, and

 Where the load balancing decision is made.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

21

To date several grids scheduling algorithms have been

proposed to optimize the overall grid system performance.

The study of managing resources in the Grid environment

started from 1960s. The economic problem [10] results from

having different ways for using the available resource, so how

to decide what is the best way to use them. Job scheduling in

parallel system has been extensively researched in the past.

Various Load Balancing Algorithms are available now days

but they contain several drawbacks likes; the use of many of

these scheduling algorithms has been limited due to restriction

in application designs, runtime system, or the job management

system itself.

Proposed scheduling algorithm is one of the algorithms which

follow the economic strategy. Aim of this algorithm, to

decrease the number of jobs that doesn‟t meet their deadlines.

The resources are priced according to their performance. This

algorithm also has a facility of fallback mechanism; which

can inform the grid user to resubmit the jobs again, the jobs

which are not met the deadline of the available resources.

2. PROPOSED ALGORITHM FOR

RESOURCE
ALLOCATION IN GRID COMPUTING

2.1 PRIORITY SCHEDULAR (P S)

MODEL :

Let M is the number of process in process queue „Pq‟ is

indicated by-

P1 P2 … Pm

Process are allocated to N number of Resources queue „Rq‟

resources queue-

R1 R2 …. Rn

Resource queue is maintained according to the priority of the

resources as given below:

The resources which have low loading factor have assigned a

higher priority and which have high loading factor have

assigned a lower priority.

Then we can find the overall cost process execution in terms

of time-

Let t1, t2, t3………..tn are the time of execution of individual

process.

Let T(Pi, Rj) be the total cost for ith process in jth resources

can be calculated as-

m n m n

Σ Σ T(Pi, Rj)=Σ Σ ti×PR+ CT
I=0 J=0 I=0 J=0

Where ti is the execution time of process

PR= Priority Number

CT= Communication Time

2.2 Load factor of a given resource is

calculated as:

2.2.1Algorithm for finding load factor:

In this algorithm we are assuming that all recourses are free

i.e. there are currently no process is running when we start

Load _Factor algorithm –

2.2.1.1 Function Start-

Load Factor ()

{

// Initialize load factor algorithm

Step1. Initialize the process_queue „Pq‟

 And resources_queue „Rq‟

Step2. Loop Begin

 For every resources i=1 to n

Step3. Set the load factor of every resource

 is Ri =0

Step4. Set the priority of every resource is 1

 And insert the resources in a priority

 Queue

 Loop End

Step5. For every process in process queue

 „Pq‟

Step6. Assign the process to the resources

 which is in the FRONT of the priority

 queue

Step7. Update the priority of resources in

 „Rq‟

 SET Rp=Rp+1

Step8. When the process execute

 successfully then the priority of

 resource decrease by 1

 By SETTING Rp=Rp-1

End of the for loop

}

In the load factor algorithm we are setting the load factor of

each resources is zero and priority of each resources is one

because there is no process for execution. As the process

arrives the load factor of resources increased and priority of

resources decrease i.e. the right arrow indicate increase of

load factor and left arrow indicate the decrease of priority.

This can be shown in the following figure 1.

Fig.1 Shows priority VS. Load factor

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

22

2.2.1.2 Pseudo Code Related To Load

Balancing Algorithm Priority Scheduler

(PS) –

Function LB_Start

{
Start

Call Load_ Factor ()

Step1. If (Priority of resources is Maximum

 and CPU queue length is Maximum)

 Then load factor is maximum

 Heavily loaded_Resources

End if

Step2. If (Priority of resources is minimum

 and CPU queue length is minimum)

 Then load factor is minimum

 Lightly loaded_Resources

End if

Step3. Migrate the process from Heavily

 loades_resources to lightly

 loaded_resources

 End of the algorithm

}

2.3 Functions used in the above algorithm

are:-

2.3.1Condition_ happens (): This function return

Binary value 0 and 1. If any of above defined condition is true

it returns 1 otherwise it returns 0.

2.3.2Load Balancing_Start (): This function also

return Binary Value on the basis of given parameters

(Resource priority and queue length) load balancing will be

required it will return 1 else it will return 0. This function also

updates two lists: HeavilyLoaded_Resource list and

LightlyLoaded_Resource list.

3. COMPARISON OF EXISTING

ALGORITHMS AND PROPOSED

ALGORITHMS
 Table-1 Comparison Based Table

 Information

Gathering

policy

Firing

Triggering

Policy

Hitting

Selection

Policy

Existing

Load

Balancing

Load

Balancing

information

is

composed

using

periodic

approach

Load

Balancing is

Triggered

based on

Queue

Length

Task is

selected for

Migration

using Job

Length as

criteria.

Proposd

Load

Balancing

Load

Balancing is

calculated

based on

regular

monitoring of

resources.

Load

balancingis

triggered

based on

queue length

and priority

of resources.

Task is

selected for

migration

using CPU

load.

In Condor (Existing) based algorithm, Information Policy may

be fired by periodic approach while in Proposed algorithm it

may be regular monitoring of resources. Triggering Policy in

Existing Algorithm is based on Queue Length while in

Proposed Algorithm it is based on Queue Length and priority

of resources. Selection Policy in Existing Algorithm is done

by Selected Task may be migrated using Job Length while in
Proposed Algorithm Selection Policy may be fired by

Selected task which is migrated based upon CPU load.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the design the new

scheduling algorithm Priority Scheduler. Our proposed

Priority scheduler completed a task by using highly utilized

low cost resources with minimum computational time. Our

scheduling algorithm uses the priority queue of resources to

achieve a higher throughput. This algorithm is performing

better for task in real environment. However, in all situations,

the proposed algorithms perform better then the some existing

ones.

But grid application performance remains a challenge in

dynamic grid environment. Resources can be submitted to

Grid and can be withdrawn from Grid at any moment. This

characteristic of Grid makes Load Balancing one of the

critical features of Grid infrastructure

We will implement the above algorithm by using Gridsim

toolkit. we can hybrid the Priority Scheduler with any

evolutionary scheduling algorithm like Genetic algorithm,

Particle Swarm Optimization technique to achieve a high

throughput and high resource utilization.

5. REFERENCES
[1] Sashi Tarun, Neeti Sharma Grid Computing: A

Collaborative Approach in Distributed Environment for

Achieving Parallel Performance and Better Resource

Utilization,2011

[2]Dr.K.Vivekanandan, D.Ramyachitra, Professor, BSMED,

Bharathiar University, Coimbatore, Tamil Nadu, IndiaA

Study on Scheduling in Grid Environment ,feb 2011

[3] Prabhat Kr.Srivastava Improving Performance in Load

Balancing Problem on the Grid Computing System, feb

2011

[4]Gregor von laszewaski, Ian Foster, Argonne National

Laboratory, Designing Grid Based Problem solving

Environments.

[5] Junwei Cao1, Daniel P. Spooner, Stephen A. Jarvis, and

Graham R. Nudd, Grid Load Balancing Using Intelligent

Agents.

[6] B. Yagoubi , Department of Computer Science, Faculty of

Sciences, University of Oran and Y. Slimani ,

Department of Computer Science, Faculty of Sciences

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.11, May 2012

23

Tunis, Task Load Balancing Strategy for Grid

Computing .

[7] Rajkumar Buyya and S Venugopal, “A Gentle

Introduction to Grid Computing

andTechnologies”,http://www.buyya.com/papers/GridInt

roCSI2005.pdf

[8] Gregor von laszewaski, Ian Foster, Argonne National

Laboratory, Designing Grid Based Problem solving

Environments.

[9] Junwei Cao1, Daniel P. Spooner, Stephen A. Jarvis, and

Graham R. Nudd, Grid Load Balancing Using Intelligent

Agents.

[10] Nakai J. Pricing computing resources: Reading between

the lines and beyond. Technical report, National

Aeronautics and Space Administration, 2002.

[11] K. Somasundaram, S. Radhakrishnan, Task Resource

Allocation in Grid using Swift Scheduler, Int. J. of

Computers, Communications & Control, ISSN 1841-

9836, E-ISSN 1841-9844, Vol. IV, 2009.

[12] Hai Zhuge, Xiaoping Sun, Jie Liu, Erlin Yao, and

XueChen, A Scalable P2P Platform for the Knowledge

Grid

[13] Klaus Krauter, Rajkumar Buyya, and Muthucumaru

Maheswaran, a Taxonomy and Survey of Grid

ResourceManagement Systems

[14] Akinwunmi A.O., Aderounmu G.A., Onifade O.F.W.

Enhanced Accounting Scheme for Grid Computing

Architecture International Journal of Computer

Applications (0975 – 8887) Volume 37– No.9

[15] Manoj Kumar Mishra, Prithviraj Mohanty, G. B. Mund

A Time-minimization Dynamic Job Grouping-based

Scheduling in Grid Computing International Journal of

Computer Applications (0975 – 8887) Volume 40–

No.16

