
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

38

Evaluation of Hypothesis: Towards Better Architecture

for “Web of Things”

Shrinivasan R.P. Patnaikuni
Walchand Institute of Technology

Solapur. India.
Solapur University, Solapur.

Raj B. Kulkarni
Walchand Institute of Technology

Solapur. India.
Solapur University, Solapur.

ABSTRACT

In this paper we study Internet of Things and Web of Things

to layout a clear distinction between them and we argue that

there is a need for gateway like server in the basic architecture

defined for Web of Things. We state some issues which

emphasize on need for intermediation. We propose solution

by introducing a default gateway in architecture. We test our

approach by using Apache bench a web application

benchmarking tool to load test the architecture proposed. We

also conclude from the results obtained that our approach is a

promisable one.

Keywords

“Web of Things” (WoT), Ubiquitous Computing, “Internet of

Things” (IoT), Gateway Web server.

1. INTRODUCTION
Today, the Web is a global platform for information-based

applications, but that is about to change. What is driving this

is the rapidly changing incremental cost of networking for all

kinds of devices. This is a happy side effect of Moore’s law

which describes the ongoing exponential improvements in

integrated circuitry which by now has been happening for

more than half a century. It is now easy to integrate radio-

frequency components alongside digital circuitry for

microcontrollers. We are in the midst of a proliferation of

devices that are largely invisible as they are embedded within

everyday objects from toasters to cameras and cars.

Microcontrollers are the fastest growing segment of the

computer industry, with hundreds in every home. These

devices are programmed to serve a single purpose, and today

are mostly isolated. Networking them will allow many new

kinds of applications that add values in the way that the

original manufacturer may not have envisaged.

In this scenario there is strict need for good scalable and

reliable architecture for existing “Web of Things”. Making the

smart things interconnectable such that bits can be transferred

between devices is only the first step, more works are

expected to make smart things interoperable such that they are

understandable with each other. Interoperability in context of

IPv4 and IPv6 is particularly essential, and a must, to build

system with various devices. In this paper we will discuss

some of the possible loop holes in existing architecture and

propose solutions towards better architecture for “Web of

Things”.

2. RELATED WORK
During the early stages of “Web of Things” [1] two

architectures where proposed these architectures rely on

concept that sensors act as a RESTful resources [2]. Here

sensors can be of any type. Main architecture is REST based

architecture [3]. This allows the end devices to be accessible

through HTTP protocol using RESTful APIs [4]. The two

architectures are Web oriented architectures. Creating

resource oriented architecture has been the main achievement

of “Web of Things”. The first architecture earlier proposed [5]

is for direct access to the API on de- vices which have

capability to run embedded web servers on them hence the

capability to interact using REST principles. Second

architecture has been for access to API on smart gateways

which act like an intermediately in between end devices and

web server [6]. Even earlier similar architecture was proposed

[7] but they are not a promising one. Ostermaier et al. [8]

presented a prototype using programmable low power WiFi

modules for connecting things directly to the web. No suitable

methods have been proposed till date in context of

heterogeneous IPv4/IPv6 enabled devices in “Web of

Things”. Detailed description about REST principles and

Resource Oriented Architecture can be found at [4].

3. “WEB OF THINGS” & “INTERNET

OF THINGS”
While there has been various definitions of Internet of Things

, the word “Internet of Things” has been derived from two

“Internet” and “Thing”, where “Internet” can be defined as

“The world-wide network of interconnected computer

networks, based on a standard communication protocol, the

Internet suite (TCP/IP)”, while “Thing” is “an object not

precisely identifiable” Therefore, semantically, “Internet of

Things” means “a world-wide network of interconnected

objects uniquely addressable, based on standard

communication protocols”. The main motive of Internet of

Things is to envision a scenario where Things which are

uniquely addressable can connect to and communicate under

user, social or various application domain specific contexts.

IoT can be seen as a part of internet services similar to the

World Wide Web (WWW), email, file sharing, video,

online chat, file transfer, telephony, shopping, or rating.

The attributes of the IoT almost completely exclude humans

from direct intervention.

Web of Things as said by Dominique Guinard & Vlad Trifa is

 “It’s about taking the Web as we know it and

extending it so that anyone can plug devices to it.”

 “It’s basically about giving eyes, ears, and all kinds

of sensory appendixes located worldwide to it.”

 “It’s about seamlessly connecting the physical

world with the virtual.”

WoT focuses on software standards and frameworks such as

REST, HTTP and URIs to create applications and services

that combine and interact with a variety of network devices.

So, you could think of the Web of Things as everyday objects

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

39

being able to access Web services. The key and most

important aspect here in Web of Things is that this doesn't

involve new standards for of communication but existing

standards are used.

In summary Internet of things focuses on interconnecting the

things, creating a network of devices. IoT basically envisions

on making every smart physical thing a tiny computing

resource attached to Internet, making it a part of Internet. And

Web of Things envisions on making the attached smart things

to internet a part of World Wide Web using popular

application layer protocols like HTTP. We see Web of things

as an extension to Internet of Things where Internet of Things

serves as foundation for Web of Things.

4. NEED FOR REFINEMENTS AND

SOLUTIONS IN WOT
The prerequisite for WoT is for the "things" to have

embedded computer systems that enable communication with

the Web. Such smart devices would then be able to

communicate with each other using existing Web standards.

We reintroduce the issues and solutions stated out in our own

previous work [15]

Issues: We see following issues in architecture proposed

earlier.

Embedded devices are designed to be more power efficient

and hence in most cases they have computationally less

powerful resources. Though they are equally capable to

function like a normal device running web server like utility

but they cannot function as robustly as computationally

powerful system for example a Web Server running on

multicore processor with high clock speed.

These most low powered devices often for need to save power

run customized execution runtime which makes it not suitable

for running computationally intensive algorithms to detect

intrusions, spams, and denial of service attacks. Due to this

they are vulnerable to attacks easily.

Solutions: As a solution to issues stated, we propose

introduction of Gateway webserver which takes care of

detection of intrusions, spams, and denial of service attacks.

This gate way web server is computationally powerful system

which is capable to run computationally intensive algorithms.

Apart from security aspects this gate way server would also

focus on caching and gatewaying of messages in between

IPv4/IPv6 enabled devices using SOCKS protocol [9]. The

figure 1 shows architectural overview and the extended

functions of gateway webserver in web of things architecture

derived from the previous RESTful architecture [1] and

considers scenario where embedded devices are IPv4 /IPv6

enabled and interact directly with help of protocols of TCP/IP

suite. We can see that this architecture can be easily extended

to a scenario where devices in web of things context

communicate in proprietary protocols like ZigBee [10].

5. EXPERIMENT SETUP
Experimental setup contains a Gate way server which is

computationally powerful desktop machine and a low power

device called Netduino Plus [11] which runs .NET micro

runtime and is provided as Open Source. The low powered

device is based on ARM architecture with configurations, as

Atmel 32-bit microcontroller incorporating ARM7TDMI

ARM Thumb Processor, Speed of 48MHz, ARM7Code

Storage of 64 KB and without networking of 128 KB and

RAM of 28 KB with networking and without networking of

60 KB.

The low powered device runs a small program which acts like

a web server when requested using GET method and sends a

JSON response which contains the current room temperature.

The current room temperature is obtained by using a

Temperature sensor LM35 [12] attached to the low powered

device.

The gateway server in our experiment is Apache Tomcat

Server and all the functionalities have been implemented as

servlets running on the Apache Tomcat [13]. The caching

feature is embedded into the server using Java caching system

[14] with cache expiration time set of 10 seconds.

In another experiment setup, the actual proposed architecture

has been tested with an Android based smart phone acting as a

device in “Web of Things”. The devices’ computational

specifications are as follows

 Processor: 830 MHz ARMv6.

 Ram: 180 MB internal, 290 MB user available

RAM.

 OS: Android 2.3.57

 Linux Kernel Version: 2.6.35.7

The Android Smartphone had a jetty based web server on it

which can host a Java based web application. We developed a

web application using Java servlets technology. The Java

servlet’s task was to compute a GCD (Greatest Common

Divisor) value for two numbers provided in GET request and

return a JSON response containing the GCD value as HTTP

response. The algorithm for GCD computation is Euclid’s

Algorithm (Iterative version), the complexity of this algorithm

is bounded by quadratic function [17].

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

40

Figure 1: An architectural overview of proposed architecture for Scenario in which embedded devices are IP enabled.

Figure 2: A gnuplot obtained for case 7 of Table 1 (Direct request to Embedded Device).

Caching DoS attacks handling

Device Failure

Handling

Message Encoding &

Decoding

IPv4/IPv6 Gatewaying RESTful APIs for Devices

Gateway Webserver & Common Functionalities

RESTful APIs for Web for Searching, Mashups, Visualize.

Gateway

Webserver

User

2

User

1

IP Enabled RESTful API Device 1 IP Enabled RESTful API Device 2

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

41

Figure 3: A gnuplot obtained for case 7 of Table 2 (Indirect request to embedded device through Gateway Server).

Figure 4: An overview of experiment setup.

DoS & DDoS Prevention Mechanism

Device 1

Device Abstraction

Caching

Device 3

Encoding & Decoding RESTful API

RESTful API

Device 2

Internet

Default

Gatewaying

Server

Apache Tomcat

AJP Protocol

Tomcat

Connector

Apache Default Web Server

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

42

6. RESULTS AND SUMMARY
The experimental setup was evaluated using Website

benchmarking tool, Apache Bench [16]. The experimental

setup was evaluated under various test cases using various

options of Apache Bench. The results of evaluation are

tabularized below.

Results in Table 3 have been obtained by using Apache

jMeter [18] as load testing tool. This Euclid’s GCD algorithm

being a computationally intensive, our tests indicate viability

of proposed architecture in computational aspect.

Table 1: Results: Direct Requests to Device

Serial

No

Number of

Requests

Concurrency Time for

completion of load

test (seconds)

Requests/sec

(mean)

Time/Request

(mean)(msecs)

Transfer rate

(mean)(Kbytes/sec)

Longest

response

time

(msecs)

1 50 25 27.844 1.80 13921.875 0.23 24359

2 50 10 3.9535 2.53 395.313 0.33 3953

3 10 1 3.0000 (Forced) 6.00 166.667 0.78 281

4 10 1 30.00(Forced) 6.06 165.093 0.80 313

5 10 1 1.641 (Keeplive) 6.10 164.063 0.80 188

6 10 1 1.688 (Keeplive) 5.93 168.750 0.78 172

7 100 1 16.484 6.07 164.844 0.79 297

8 10000 10 2.00 (Forced) 6.12 1634.615 0.80 828

9 100000 10 (Failed to complete) Failed after 258 requests.

10 10000 10 (Failed to complete) Failed after 634 requests.

11 500 10 83.297 6.00 1665.938 0.79 30844

Table 2: Results: Indirect Requests to Device through Gateway Web Server

Serial

No

Number of

Requests

Concurrency Time for

completion of load

test (seconds)

Requests/sec

(mean)

Time/Request

(mean)

(msecs)

Transfer rate

(mean)

(Kbytes/sec)

Longest

response

time

(msecs)

1 50 25 25.172 1.99 12585.938 0.45 25156

2 50 10 4.125 2.42 4125.00 0.57 4109

3 10 1 3.000 (Forced) 317.33 3.151 66.64 172

4 10 1 30.000 (Forced) 444.93 2.248 95.14 172

5 10 1 0.219 45.71 21.875 9.84 188

6 10 1 0.031 320.00 3.125 68.75 16

7 100 1 0.484 206.45 4.844 44.61 172

8 10000 10 2.00 (Forced) 518.50 19.286 111.15 844

9 100000 10 176.297 567.23 17.630 120.22 3953

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

43

Table 3: Results: Load test in case of Android Smartphone as Device

Parameters Direct Request Request through Gateway Description

Samples 10795 10789 The number of samples(# Requests)

Average 405 239 The average elapsed time of a set of

results (seconds)

Min 6 6 The lowest elapsed time for the samples

Max 104222 1758 The longest elapsed time for the samples

Standard

Deviation

3276.41129707272 277.462072513851 The Standard Deviation of the samples’

elapsed time

Error % 0.00194534506716072 0.00194642691630364 Percent of requests with errors

Throughput 60.0319206321842 96.9553730297093 Throughput (Requests/sec)

Bandwidth 9.94210258048281 20.4435028431046 Throughput (Kb/sec)

Avg. Bytes 169.588327929597 215.915284085642 Average size of the samples’ response in

bytes

Summary

We find some of the observations very impressive showing

our proposal of intermediation in between Web of Things and

the Web. From Table 1 we see that if the direct requests are

made to embedded device the average number of requests per

second across all the test cases having concurrency parameters

value as 10 is 6 requests /sec and from Table 2, under same

concurrency value of 10 the average number of requests /

second is 281 requests/sec when the HTTP request to

embedded device is made through an intermediate gateway

web server. We also see a great difference in average rate of

transfer, in case of direct request to embedded device this rate

is far low while in case of indirect request to embedded device

through a gateway webserver its really very high as compared

to former case. It’s also evident from the results obtained that

the response time is far less if the request to embedded device

is intermediated and cached by intermediating web server. We

see here a graceful type of failure handling by gate way web

server in case of device failure. Test case 9 and 10 of Table 1

clearly points out the lack ability to handle large bursts of

requests by low powered embedded device if it is directly

made open to Web while test case 8 and 9 from Table 2 show

that our approach of intermediation is capable to handle the

burst of requests. From the experimentation and results

obtained we find our approach of introduction of

intermediation through introducing a gate way like web server

with added functionality taking some of non vital functions of

devices to gateway webserver is promisable and feasible for

towards better architecture for “Web of Things “.

Results in Table 2 and 3 when analyzed with Table 1 clearly

indict that, the gatewaying approach outweighs in terms of

throughput and even bandwidth in case of lower powered IP

enabled devices in context of “Web of Things”.

The Standard deviation calculated in Table 3 for direct and

indirect method of requesting for a device clearly shows a

consistent behavior by the system in gatewaying approach as

compared to approach in which direct request are made to IP

enabled embedded device.

We see considerable enhancements in architecture of “Web of

Things” in terms of security message encryption, use of SSL

and TLS and further improvement in failure handling, power

consumption reducing techniques, more resilience of

architecture as future a scope.

7. REFERENCES
[1] S. Duquennoy, G. Grimaud and J. Vandewalle, “The

Web of Things: Interconnecting Devices with High

Usability and Performance,” Proceedings of the 6th IEEE

International Conference on Embedded Software and

Systems (ICESS’09), Hangzhou, 25-27 May 2009, pp.

323-330.

[2] T. Luckenbach, P. Gober, S. Arbanowski, A.

Kotsopoulos and K. Kim, “TinyREST—A Protocol for

Integrating Sensor Networks into the Internet,”

Proceedings of REALWSN, Stockholm, 20-21 June

2005, pp. 89-93.

[3] V. Stirbu, “Towards a Restful Plug and Play Experience

in the Web of Things,” In IEEE International Conference

on Semantic Computing, Santa Clara, 4-7 August 2008,

pp. 512-517.

[4] L. Richardson and S. Ruby, “RESTful Web Services,”

Information, UC Berkeley, November 2007. O’Reilly

Media, Inc., Sebastopol, 2007.

[5] V. Trifa, S. Wieland and D. Guinard, “Towards the Web

of Things: Web Mashups for Embedded Devices,”

Second Workshop on Mashups, Enterprise Mashups and

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

44

Lightweight Composition on the Web, Madrid, 20-24

April 2009.

[6] V. Trifa, S. Wieland and D. Guinard, “Design and

Implementation of a Gateway for Web Based Interaction

and Management of Embedded Devices,” SAP Research,

Zurich, 2009.

[7] P. Schramm, E. Naroska, P. Resch, J. Platte, H. Linde, G.

Stromberg and T. Sturm, “A Service Gateway for

Networked Sensor Systems,” IEEE Pervasive

Computing, Vol. 3, No. 1, 2004, pp. 66-74.

[8] B. Ostermaier, M. Kovatsch and S. Santini, “Connecting

Things to the Web Using Programmable Low-Power

Wifi Modules,” Proceedings of the 2nd International

Workshop on the Web of Things (WoT 2011), New

York, June 2011.

[9] P. Patnaikuni and R. Kulkarni, "An Architecture for

“Web of Things” Using SOCKS Protocol Based

IPv6/IPv4 Gatewaying for Heterogeneous

Communication," Advances in Internet of Things, Vol. 2

No. 1, 2012, pp. 8-12.

[10] Zigbee. http://www.zigbee.org

[11] Netduino Plus.

http://www.netduino.com/netduinoplus/specs.htm

(Accessed, 2 April 2012).

[12] LM35: http://www.national.com/mpf/LM/LM35.html,

Precision Centigrade Temperature Sensor (Accessed, 2

April 2012).

[13] Apache Tomcat: http://tomcat.apache.org (Accessed, 2

April 2012).

[14] Java Caching System http://commons.apache.org/jcs/

(Accessed, 2 April 2012).

[15] P. Shrinivasan , R. Patnaikuni and Raj. B. Kulkarni,

Towards Better Architecture for Web of Things, ASME

Press, New York, NY ISBN 9780791859735, doi:

10.1115/1.859735.paper14

http://dx.doi.org/10.1115/1.859735.paper14

[16] Apache Bench,

http://httpd.apache.org/docs/2.0/programs/ab.html

(Accessed, 2 April 2012).

[17] Phong Q. Nguyen , Damien Stehlé, An LLL Algorithm

with Quadratic Complexity, SIAM Journal on

Computing, v.39 n.3, p.874-903, September 2009

 [doi>10.1137/070705702]

[18] E. Halili, Apache JMeter. Packt Publishing, 2008.

