
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

30

A Methodology to Compose Web Services using
Compatible Components based on QoS and Security

Requirements of the Users

Urjita Thakar
Associate Prof,

Deptt. of Comp. Engg.,
 Shri G.S.Inst. of Tech. & Sc.,
23, Sir Visweswaraiya Road,
Indore (MP) INDIA 452003

Nirmal Dagdee
Director & Professor CSE,

S.D.B. College of Tech.
A.B. Road,

Umaria, Indore (MP)

Abhishek Agrawal
Department of Comp.Engg.

Shri G.S. Inst. of Tech. & Sc.,
23, Sir Visweswaraiya Road,
Indore (MP) INDIA 452003

ABSTRACT
Many online businesses offer services to the users that are

complex in nature. A number of simple services need to be

combined to form a composite service. User demands may

include not only complex functional requirements but may

also pertain to specific QoS and security needs. The overall

QoS of the composite service and the offered security may

be decided by the QoS and the security support given by

each individual constituting component. In this paper, a

methodology has been proposed to form complex service

sets using component services with matching QoS values

that shall also offer a minimal of security support satisfying

user‟s requirement. Availability, response time and

throughput are important QoS parameters. Taking into

account, the user‟s requirements related to confidentiality,

integrity and authentication, service sets are presented to

the user in the form of a list such that the set with highest

level of compatibility appears at the top. The proposed

method thus is very useful for the user and enables him to

avail the complex service that suit the best to his needs.

General Terms: Composite Web services

Keywords: Composite Web Services, Compatibility,

Security, QoS

1. INTRODUCTION
The number of web services available on the Internet has

increased exponentially. Many such services are complex

in nature. Multiple simple services need to be combined to

form such complex services. To meet the expectations of

the customer, the component services constituting them

should be in harmony with each other. Different services

are offered with different values for quality of service

(QoS) parameters and different security support by various

providers. Some providers may offer high value for a

particular QoS parameter, while some other providers may

offer lower value for the same parameter. The overall QoS

of the composite service may be decided by the worst QoS

value of a constituting component. Availability, response

time and throughput are QoS parameters indicating

performance of a service and are important for providers as

well as requesters. Service requesters are highly concern

about the security related issues as services are accessed in

open environment. They wish to access the services that

shall fulfill the required security needs. Corresponding to

different security functions, a number of algorithms with

varying strengths exist. Different service providers may

apply different algorithms to provide the same security

function. The strength of the algorithm decides the strength

of the offered security to the user. The strength of the

security of the offered complex service corresponds to the

weakest algorithm used by a constituting component

service.

Presence of large number of services, with diverse values

of QoS and the offered security support, is a challenge for a

business to offer a complex service that shall fulfill not

only the desired functional need but shall also provide

adequate quality of service while guarantying the minimal

requisite security. Some earlier work present in the

literature pertaining to composition of services based on

user‟s constraints was presented by Senkul et al.[1].

However, it does not take care of the QoS and security

related needs of the user.

In this paper, a method has been presented to compose web

services using component services with matching QoS

values that shall offer the minimal security support

satisfying user‟s requirements.

Rest of the paper is organized as follows: Related work is

discussed in section 2. In section 3, the proposed method is

discussed and the proposed algorithms are discussed in

section 4. In section 5, testing and results of the presented

approach have been discussed. Concluding remarks and the

future work are given in section 6.

2. RELATED WORK
Some earlier research work carried out by various

researchers relevant to the field is surveyed and discussed

in this section.

In the work proposed by Ming et al., a solution for dynamic

web service composition is discussed in which user‟s

requirement is broken down into a series of abstract web

services [2]. Carminati et al. have proposed a solution to

achieve dynamic service composition. In the work, the

BPEL document describing the composite service is

modified to add some compatibility checking constraints

[3]. The method for dynamic web service composition

proposed by Wang et al. is useful in finding matching

serices using semantic information.[4]. An architecture for

dynamic composition of web services as per user‟s

requirements and availability of resources has been

proposed by Boumhamdi et al.[5].

Al-Masri et al. developed Web Service Relevancy Function

(WsRF) for measuring the relevancy ranking of a particular

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

31

Web service based on client‟s preferences and QoS metrics

[6]. The ranking function finds the best available Web

service during service discovery process based on a set of

given client QoS preferences. Thakar et al. have proposed

an approach to enable a service provider to publish the

information related to the security support offered and to

facilitate the service requester to discover the providers as

per the security related needs [7].

A composition method taking care of user preferences in

which the services are described using OWL-S has been

presented by Naiwen Lin et al. that uses AI based technique

[8]. Another method for service selection and composition

has been presented by Matskin et al. which uses agents [9].

The method is based on logic and uses semantic reasoning.

By semantic matching among these abstract services, a

service composition is obtained for execution. In the work

presented by Liu et al., a compatibility checking algorithm

based on the concept of equivalence has been presented

[10]. The paper discusses compatibility at different levels

and its impact on composition and substitution of Web

services. An architecture based on agents for evaluating

web service QoS parameters has been proposed by

Thirumaran et al. [11]. The paper discusses various useful

QoS parameters for web services.

3. PROPOSED METHOD
In the proposed method, the online business offers the

complex service to the user through an agent. The agent

takes user‟s requirements for the desired functionality,

security functions and the cost that he is ready to pay for

the QoS and the security while the complex service is

availed. Architecture of the proposed system is shown in

Fig. 1.

Fig. 1: System Architecture

Agent is the key module in the proposed architecture.

Based on user‟s requirement for service functionality

obtained through the user interface, it discovers the services

from the registry along with security related information.

Values of QoS parameters for all the component services

are calculated by the agent. For the desired complex

service, it then finds the component service combinations

that contain services that are compatible to each other with

regard to the QoS values also meeting the cost requirement

of the user. These service sets are then ranked based on the

security support of the service set such that set with high

security strength appears at the top. Architecture of the

agent is shown in Fig. 2.

Fig. 2: Architecture of Agent

The modules present in the agent are discussed below.

1. User Interface- This module takes user‟s need related

to functionality, security and the cost he is ready to pay to

avail the service.

2. Service Discovery Module- This module discovers

component services based on user‟s functional

requirements along with the offered security support and

cost from registry. It prepares a list of discovered

component services required for composition.

3. Compatibility Checking Module- In this module the

compatibility among component services based on cost and

QoS parameters is checked. It prepares the sets of

compatible component services.

4. Ranking Module- This module ranks the service sets

based on the security offered by the service set and the cost

such that set offering highest security strength appears at

the top.

In the next subsection, the method for calculation of values

for QoS parameters is discussed.

3.1 Calculation of Values for QoS

Parameters
In this work, three important QoS parameters availability,

response time and throughput are considered. The agent

calculates the values for these QoS parameters for each

service provider as discussed below and stores in a

database.

Availability: To find the availability of services, agent

takes endpoint URL of a service from the service registry

and generates a request for each service. If a reply is

received in expected time then that service is considered to

be available. The number of successful and total

invocations are counted for each service for a given time

interval. Availability of the service is calculated using

following equation.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

32

Availability = Number of successful invocations / Total

invocations

Response Time: To find the response time of a service,

agent notes the time of sending the request and arrival of

response. The response time of the service is calculated as

given below.

Response Time = Time of receiving Response – Time of

sending the request

Throughput: To find the throughput of services, agent

generates a number of requests for a particular service for a

fixed time period. The corresponding responses from the

service are captured. Throughput of the service is

calculated using following equation.

Throughput = Total number of handled requests / time

Performance of a service with high availability, low

response time and high throughput is considered better than

others.

The steps followed to generate list of compatible

component service sets are given below.

Step 1: Agent accepts functional, security and cost related

requirements of the services from the user.

Step 2: Agent searches the UDDI registry to find the

services based on the requirement.

Step 3: Values of QoS parameters for each service are

calculated as discussed in previous section and are stored in

the database. The compatibility of the discovered services

is checked using their QoS parameter values by applying a

„compatibility checking algorithm‟ described in section 4.1.

Service sets containing compatible component services are

also generated.

Step 4: A ranking algorithm described in section 4.2 is

applied on the service sets to arrange these sets in an order

such that set with highest security strength with the desired

requirement appears at the top.

Step 5: The component services present in the service set

are executed as per the business process.

Step 6: If at the time of service execution, any component

service fails then a rollback is performed and the next

highest ranked set is selected and the execution of its

services is started.

Step 7: This process is repeated till either a complete set is

executed or all the sets have been tried.

Step 8: Final result is displayed to the user.

The algorithms proposed to determine compatibility of

services and ranking of the service sets are presented in the

next section.

4. PROPOSED ALGORITHMS
In this section, the algorithm proposed for obtaining sets of

compatible component services and ranking these sets are

discussed. The algorithm for checking compatibility among

component services based on QoS parameters is discussed

next.

4.1 Compatibility Checking Algorithm
The compatibility checking algorithm works in two steps.

In the first step, complex service sets satisfying cost

constraints are obtained. In the second step, compatibility

among component services of each complex service set is

checked based on QoS parameters.

In the first part of algorithm, maximum cost value payable

for a complex service is used as threshold value to shortlist

the complex services. In first iteration, two services with

different functionalities that appeared in the business

process are considered for service set and total cost of this

service set is compared with the threshold. If it is less than

or equal to the threshold cost then that service set is

considered to be partially accepted, otherwise rejected. In

the next iterations accepted partial service sets are

combined with other services with different functionality

one by one to obtain more such service sets. Total cost of

these service sets is compared with the threshold cost.

These iterations are repeated until complex service sets

containing all required component services of different

functionalities for desired business process are generated.

In next part of the algorithm, to determine compatibility

among component services of complex service sets,

maximum acceptable difference of QoS values defined by

the administrator is used as threshold. All component

services with required functionality that have acceptable

difference in QoS values are included in the set of

compatible service, otherwise rejected.

QoS value of a service set can be defined by the weakest

QoS value of that set, therefore this algorithm calculates the

weakest QoS value for all compatible service sets and

arranges all sets in descending order of the offered QoS.

Input:Number of services, Number of Service Providers

for each service, Service Providers for each type of service,

User‟s Readiness to pay, Cost charged by each service

provider, QoS parameter values for each Service Provider,

Maximum acceptable difference in QoS values, Required

number of composite service sets.

Output: Compatible Component Service Sets

Algorithm:

CompatibilityCheck()

Declare arrays arr1[], arr2[] and arr3[]

//arr1[], arr2 and arr3[] stores service sets.

set: arr1[] = All Service Providers of 1st type of service.

for (i = 2 to Number of Services to be composed)

 set: arr2[] = All Service Providers of ith type of

service for (j = 1 to number of service sets in arr1[])

 for(k = 1 to number of service providers

in arr2[])

 arr3[] = arr1[j] + arr2[k] //Generates

new service set by combining service

providers of arr1[j] with service

providers of arr2[k]. //

 End of for loop // k

 End of for loop //Gets number of service sets. Each

service set is combination of i type of services.

 clear arr1[]//Delete data stored in arr1[].

 arr1[] = MaxCost(arr3[])//Checks service sets

stored in arr3[] that are satisfying user‟s readiness

to

pay and stores in arr1[].

 clear arr3[] and arr2[] //Delete data stored in

arr3[] and arr2[].

 End of for loop //i //Generates service sets having

Service Providers of all types and satisfying user‟s

readiness to pay.//

arr3[]: MinQoS(arr1[])//Checks compatibility based on

QoS parameters among component services of each

service set.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

33

for (i = 1 to Required number of composite service sets)

 final[i] = arr3[i]

End of for loop//Required number of Compatible

Composite service sets with highest QoS values are

resulted.

MaxCost(arr3[] ServiceSets)

 Declare variable arr1[].//arr1[] contains service sets

satisfying user‟s readiness to pay.

 for (i = 1 to Number of service sets in arr3[])

 if (total cost of service set arr3[i] <= Readiness to

pay) then

 arr1[] = arr3[i]//Service set arr3[i] is satisfying cost

constraints, therefore stored in arr1[].

 End of if

 End of for loop//Checks cost constraints for all service

sets.

 return arr1[]

MinQoS(arr3[]

ServiceSetsSatisfyingUser’sReadinessToPay)

 Declare variable flag, arr1[], arr2[][], qos[]

 //arr1[] stores compatible service sets, arr2[][] stores

component service providers of each service set, qos[]

stores QoS value of service sets.

 for (i = 1 to Number of service sets in arr3[])

 set: flag = 0

 Parse component service providers from service set

arr3[i]

 for (j = 1 to Number of Component service providers

in service set arr3[i])

 arr2[i][j] = jth component service provider of service

set arr3[i]

 End of for loop

 for (j = 1 to Number of Component service

providers in service set arr2[i][])

 for (k = j+1 to Number of Component service

providers in service set arr2[i][])

if (abs(QoS parameter value of service

provider arr2[i][j] – QoS parameter

value of service provider arr2[i][k]) >

Maximum acceptable difference in QoS

values) then set: flag = 1//Difference in

QoS parameter values of service

providers of service set arr3[i] is

greater than maximum acceptable

difference in QoS values.

End of if

 End of for loop

 End of for loop

 if (flag = = 0) then

 arr1[] = arr3[i] //Difference in QoS

parameter values of all service providers of

service set arr3[i] is less than

maximum acceptable difference in QoS

values. Therefore, accepted as Compatible

service set.

 qos[] = min(QoS parameter values of all

component services of service set arr2[i][])

 End of if

 End of for loop

 for (i = 1 to Number of service sets in arr1[])

 for (j = i+1 to Number of service sets in arr1[])

 if (qos[i] < qos[j]) then

 //Selection Sort is applied to arrange service

sets in descending order of their QoS values.

 Exchange arr1[i] with arr1[j]

 Exchange qos[i] with qos[j]

 End of if

 End of for loop

 End of for loop //Get Compatible service

sets in descending order of their QoS values.

 return arr1[]

4.2 Ranking Algorithm
For each of the acceptable service sets, the security strength

is determined. Security strength of a service set for a

specific security constraint is defined by weakest algorithm

of constituting component services. All service sets are

arranged as per their security strength such that set offering

highest security strength appears first. If security strength

of two sets is same, then set charging less is ranked higher.

The service sets offering highest security are presented to

the user. The algorithm is discussed below.

Input:Compatible Component Service Sets (final[])

Output: Ranked Compatible Component Service Sets

(final[])

Algorithm: Rank()

 Declare variable arr[][], strength[i]

 //arr[][] stores component service providers of each

service set, strength[] stores security algorithm for each

service set.

 for (i = 1 to Number of service sets in final[])

 Parse component service providers from service set

final[i]

 for (j = 1 to Number of Component service providers in

service set final[i])

 arr[i][j] = jth component service provider of service

set final[i]

 End of for loop

 for (j = 1 to Number of Component service providers in

service set arr[i][])

 if (j = = 1) then

 strength[i] = Algorithm supported by

1st component service provider of service set final[i][]

 else if (strength[i] contains better security algorithm

for service set arr[i][] than algorithm supported by jth

component service provider of service set arr[i][]), then

 strength[i] = Algorithm supported by

jth component service provider of service set arr[i][]

 endif

 End of for loop

 End of for loop //strength[] stores weakest algorithm

supported by component service providers of service set

final[]

 for (i = 1 to Number of service sets in final[])

 for (j = i+ 1 to Number of service sets in final[])

 if (strength[i] < = strength[j]) then

 //Security algorithm for service set final[i] is

weaker or equivalent to the Security algorithm for

service set final[j].

 if (strength[i] = = strength[j]) then

 //Security algorithm for service set final[i] is

equivalent to the Security algorithm for service set

final[j]. Therefore, security cost of service set final[i]

and final[j] are compared.

 if (security cost of service set final[i] > security

cost of service set final[j]) then

 //Security cost of service set final[i] is

greater than security cost of service set final[j].

Therefore, values of final[] and strength[] at ith position

is exchanged with jth position.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

34

 Exchange final[i] with final[j]

 Exchange strength[i] with strength[j]

 End of if

 else //Else for step 18 if Security algorithm

for service set final[i] is weaker than the Security

algorithm for service set final[j]. Therefore, values of

final[] and strength[] at ith position is exchanged with jth

position.

 Exchange final[i] with final[j]

 Exchange strength[i] with strength[j]

 End of for if

 End of if

 End of for loop

 End of for loop

The working of the proposed system is tested and results

are discussed in the next section.

5. TESTING AND RESULTS
To test the viability and usefulness of the proposed method,

a complex tour planning service consisting of Travel, Hotel

and Pickup is considered. In the experiment, 15 Travel

Services, 10 Hotel services and 10 Pickup services were

deployed. User‟s requirements were collected through a

user interface to obtain the desired component services,

required security parameters for those services and his

willingness to pay.

Let the requirements given by the user for the three

component services be as follows-

For Travel Service:

Confidentiality: Yes

Integrity : No

Authentication: Yes

For Hotel Service:

Confidentiality: Yes

Integrity : No

Authentication: Yes

For Pickup Service:

Confidentiality : Yes

Integrity : No

Authentication: Yes

Ready to pay the cost: Atmost 68 units.

The service providers that offer different security

algorithms are discovered from the registry. In Table1, the

service providers discovered from the registry and the

algorithms supported by them are given.

Table 1: Service Providers Discovered From the

Registry

S.

No

.

Provide

r
Supported Algorithms

Tota

l

Cost

1. TravelA

3DES +

DigitalSignatureWithTimeStam

p

13

2. TravelA 3DES + DigitalSignature 9

3. TravelA

RC6 +

DigitalSignatureWithTimeStam

p

15

4. TravelA RC6 + DigitalSignature 11

5. TravelA MARS + 17

DigitalSignatureWithTimeStam

p

6. TravelA MARS + DigitalSignature 13

7. TravelA

AES128 +

DigitalSignatureWithTimeStam

p

19

8. TravelA AES128 + DigitalSignature 15

9. TravelA

AES192 +

DigitalSignatureWithTimeStam

p

21

10. TravelA AES192 + DigitalSignature 17

11. TravelA

AES256 +

DigitalSignatureWithTimeStam

p

23

12. TravelA AES256 + DigitalSignature 19

13. TravelB

3DES +

DigitalSignatureWithTimeStam

p

13

14. TravelB 3DES + DigitalSignature 8

15. HotelA

AES192 +

DigitalSignatureWithTimeStam

p

22

16. HotelA AES192 + DigitalSignature 18

17. HotelA

AES128 +

DigitalSignatureWithTimeStam

p

17

18. HotelA AES128 + DigitalSignature 13

19. HotelA

3DES +

DigitalSignatureWithTimeStam

p

14

20. HotelA 3DES + DigitalSignature 10

21. HotelB

3DES +

DigitalSignatureWithTimeStam

p

13

22. HotelB 3DES + DigitalSignature 9

23. HotelB

RC6 +

DigitalSignatureWithTimeStam

p

15

24. HotelB RC6 + DigitalSignature 11

25. HotelB

MARS +

DigitalSignatureWithTimeStam

p

17

26. HotelB MARS + DigitalSignature 13

27. HotelB

AES128 +

DigitalSignatureWithTimeStam

p

19

28. HotelB AES128 + DigitalSignature 15

29. PickupA

3DES +

DigitalSignatureWithTimeStam

p

13

30. PickupA 3DES + DigitalSignature 8

31. PickupA

RC6 +

DigitalSignatureWithTimeStam

p

15

32. PickupA RC6 + DigitalSignature 10

33. PickupA

MARS +

DigitalSignatureWithTimeStam

p

17

34. PickupA MARS + DigitalSignature 12

35. PickupA

AES128 +

DigitalSignatureWithTimeStam

p

19

36. PickupA AES128 + DigitalSignature 14

37. PickupA
AES192 +

DigitalSignatureWithTimeStam
21

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

35

p

38. PickupA AES192 + DigitalSignature 16

39. PickupA

AES256 +

DigitalSignatureWithTimeStam

p

23

40. PickupA AES256 + DigitalSignature 18

41. PickupB

AES256 +

DigitalSignatureWithTimeStam

p

25

42. PickupB AES256 + DigitalSignature 21

As per user‟s need, 2 services for Travel service, 2 services

for Hotel service and 2 services for Pickup service with

different combinations of security algorithms were

discovered from the registry.

If the travel service is obtained from the service provider

„TravelB‟ that offers security using AES256 and

DigitalSignatureWithTimeStamp algorithms, hotel service

is obtained from HotelG that offers security using

algorithms AES256 and DigitalSignatureWithTimeStamp

and the pickup service is obtained from the service provider

PickupB that offers security using algorithms AES256 and

DigitalSignatureWithTimeStamp, then the total cost for

security of this service set is 73 units which is greater than

the user‟s readiness to pay. Therefore, this service set is

discarded. Similarly, when TravelF with security support

AES192 and DigitalSignatureWithTimeStamp, HotelD

with security support AES192 and

DigitalSignatureWithTimeStamp and PickupK with

security support AES192 and

DigitalSignatureWithTimeStamp are composed then the

total cost for security of this service set is 65 units which is

less than the user‟s readiness to pay. Therefore this service

set is accepted.

Compatibility among component services of composite

service sets is determined based on QoS parameter values.

Four important QoS parameters namely availability,

response time, and throughput are considered in this paper.

Table 2 shows the QoS values calculated for the discovered

service providers. In Table 3, the normalized QoS values

are shown.

Table 2: QoS Values for Discovered Service Providers

Service

Provider

Response

Time
Availability

Through

put

TravelA 18101 91.6667 797

TravelB 20760 91.6667 849

TravelC 23000 91.5254 882

TravelD 16081 91.5254 833

TravelF 14678 91.5254 895

TravelK 22000 91.0714 900

TravelL 16037 90.9091 863

TravelM 17000 90.9091 754

TravelN 18167 90.9091 770

TravelO 19000 90.9091 768

HotelA 19036 81.4634 234

HotelD 18000 85.2055 595

HotelF 20000 92.8571 479

HotelG 20000 92.6471 462

HotelH 18036 92.5373 478

HotelJ 20000 92.5373 502

PickupA 20029 92.5373 476

PickupB 17066 92.5373 509

PickupC 25000 92.5373 473

PickupH 20031 91.9355 731

PickupI 20038 91.9355 842

PickupK 18060 91.9355 833

Table 3: Normalized QoS Values

Service

Provider

Response

Time
Availability

Through

put

TravelA 0.8108 1 0.8855

TravelB 0.7070 1 0.9433

TravelC 0.6381 0.9984 0.98

TravelD 0.9127 0.9984 0.9255

TravelF 1 0.9984 0.9944

TravelK 0.6671 0.9935 1

TravelL 0.9152 0.9917 0.9588

TravelM 0.8634 0.9917 0.8377

TravelN 0.8079 0.9917 0.8555

TravelO 0.7725 0.9917 0.8533

HotelA 0.9455 0.8772 0.3932

HotelD 1 0.9175 1

HotelF 0.9 1 0.8050

HotelG 0.9 0.9977 0.7764

HotelH 0.9980 0.9965 0.8033

HotelJ 0.8181 0.9965 0.8436

PickupA 0.8520 1 0.5653

PickupB 1 1 0.6045

PickupC 0.6826 1 0.5617

PickupH 0.8519 0.9934 0.8681

PickupI 0.8516 0.9934 1

PickupK 0.9449 0.9934 0.9893

In this test case, total 180000 composite service sets were

generated. Based on the average normalized QoS values of

all the component services for each set, 30 composite

service sets with highest QoS values are considered.

The agent ranks these service sets based on the offered QoS

as shown in Table 4. To rank the service sets, the agent

checks security strength of each set. Security strength of a

service set depends on security algorithm supported by the

component services for a particular security constraint. The

weakest algorithm for that particular security constraint

shall decide the security strength for required security

constraint of that service set. The service set with strong

algorithm and low cost is ranked better. In this test case,

service set containing services TravelL with security

support AES256 and DigitalSignatureWithTimeStamp,

HotelD with security support AES256 and

DigitalSignatureWithTimeStamp and PickupK with

security support AES192 and

DigitalSignatureWithTimeStamp offer best security costing

67 units, thus it appears at the top.

Table 4: Ranked Compatible Component Service Sets

Provi

der
Supported Algorithms

T

o

t

a

l

C

o

st

Strength

Trave

lL+H

otelD
+Pick

upK

AES256+DigitalSignatureWithTimeSt
amp+AES256+DigitalSignatureWithTi

meStamp+AES192+DigitalSignature

WithTimeStamp

6

7

AES192+

DigitalSig

natureWit
hTimeSta

mp

Trave AES192+DigitalSignatureWithTimeSt 6 AES192+

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

36

lF+H

otelD
+Pick

upH

amp+AES256+DigitalSignatureWithTi

meStamp+AES256+DigitalSignature
WithTimeStamp

8 DigitalSig

natureWit
hTimeSta

mp

Trave

lL+H
otelD

+Pick

upK

AES256+DigitalSignatureWithTimeSt

amp+AES192+DigitalSignatureWithTi

meStamp+AES192+DigitalSignature
WithTimeStamp

6

5

AES192+

DigitalSig
natureWit

hTimeSta

mp

Trave

lF+H

otelD
+Pick

upH

AES192+DigitalSignatureWithTimeSt
amp+AES256+DigitalSignatureWithTi

meStamp+AES192+DigitalSignature

WithTimeStamp

6

6

AES192+

DigitalSig

natureWit
hTimeSta

mp

Trave

lF+H
otelD

+Pick

upH

AES192+DigitalSignatureWithTimeSt

amp+AES192+DigitalSignatureWithTi

meStamp+AES256+DigitalSignature

WithTimeStamp

6

6

AES192+

DigitalSig
natureWit

hTimeSta

mp

Trave

lF+H

otelH
+Pick

upI

AES192+DigitalSignatureWithTimeSt
amp+AES256+DigitalSignatureWithTi

meStamp+AES192+DigitalSignature

WithTimeStamp

6

7

AES192+

DigitalSig

natureWit
hTimeSta

mp

Trave

lF+H
otelD

+Pick
upI

AES192+DigitalSignatureWithTimeSt

amp+AES256+DigitalSignatureWithTi
meStamp+AES192+DigitalSignature

WithTimeStamp

6
7

AES192+

DigitalSig
natureWit

hTimeSta
mp

Trave

lF+H

otelD
+Pick

upK

AES192+DigitalSignatureWithTimeSt
amp+AES256+DigitalSignatureWithTi

meStamp+AES192+DigitalSignature

WithTimeStamp

6

7

AES192+

DigitalSig

natureWit
hTimeSta

mp

Trave
lF+H

otelH

+Pick
upK

AES192+DigitalSignatureWithTimeSt

amp+AES256+DigitalSignatureWithTi
meStamp+AES192+DigitalSignature

WithTimeStamp

6
7

AES192+
DigitalSig

natureWit

hTimeSta
mp

Trave

lF+H

otelH
+Pick

upI

AES192+DigitalSignatureWithTimeSt
amp+AES192+DigitalSignatureWithTi

meStamp+AES192+DigitalSignature

WithTimeStamp

6

5

AES192+

DigitalSig

natureWit
hTimeSta

mp

Trave
lF+H

otelF

+Pick
upK

AES192+DigitalSignatureWithTimeSt

amp+AES192+DigitalSignatureWithTi
meStamp+AES192+DigitalSignature

WithTimeStamp

6
5

AES192+
DigitalSig

natureWit

hTimeSta
mp

Trave

lF+H

otelD
+Pick

upK

AES192+DigitalSignatureWithTimeSt

amp+AE192+DigitalSignatureWithTi

meStamp+AES192+DigitalSignature
WithTimeStamp

6

5

AES192+

DigitalSig

natureWit
hTimeSta

mp

Trave
lF+H

otelH

+Pick
upK

AES192+DigitalSignatureWithTimeSt

amp+AES192+DigitalSignatureWithTi
meStamp+AES192+DigitalSignature

WithTimeStamp

6
5

AES192+
DigitalSig

natureWit

hTimeSta
mp

Trave

lF+H
otelD

+Pick

upI

AES192+DigitalSignatureWithTimeSt

amp+AES192+DigitalSignatureWithTi

meStamp+AES192+DigitalSignature
WithTimeStamp

6

5

AES192+

DigitalSig
natureWit

hTimeSta

mp

Trave
lF+H

otelD

+Pick

upH

AES192+DigitalSignature+AES256+

DigitalSignatureWithTimeStamp+AES

256+DigitalSignatureWithTimeStamp

6
5

AES192+

DigitalSig

nature

Trave

lF+H
otelD

+Pick

upH

AES128+DigitalSignatureWithTimeSt

amp+AES256+DigitalSignatureWithTi

meStamp+AES256+DigitalSignature
WithTimeStamp

6

5

AES128+

DigitalSig
natureWit

hTimeSta

mp

Trave

lF+H
otelD

+Pick

upB

AES192+DigitalSignatureWithTimeSt
amp+AES256+DigitalSignatureWithTi

meStamp+AES256+DigitalSignature

6

6

AES192+
DigitalSig

nature

Trave
lF+H

otelD

+Pick
upB

AES192+DigitalSignature+AES256+

DigitalSignatureWithTimeStamp+AES

256+DigitalSignatureWithTimeStamp

6
7

AES192+

DigitalSig

nature

Trave

lF+H
otelD

+Pick

upB

AES128+DigitalSignatureWithTimeSt

amp+AES256+DigitalSignatureWithTi

meStamp+AES256+DigitalSignature
WithTimeStamp

6

7

AES128+

DigitalSig
natureWit

hTimeSta

mp

Trave
lF+H

otelD

+Pick
upB

AES192+DigitalSignatureWithTimeSt

amp+AES256+DigitalSignatureWithTi

meStamp+AES128+DigitalSignature

WithTimeStamp

6

7

AES128+
DigitalSig

natureWit

hTimeSta
mp

The agent offers the composite service to the user by taking

the best service set. The component services are executed

as per the workflow. If any problem arises during execution

of any of the component services, the system performs a

rollback and starts the next best service set.

The best service set meeting user‟s requirement consists of

the service providers TravelL for Travel service, HotelD

for Hotel service and PickupK for Pickup service.

A comparison of the results obtained through the traditional

method and the proposed method is given in Table 5.

Table 5: Comparison of Number of Service Sets

Generated By Traditional Method and Proposed

Method

Test Case

Total Number of

Generated Service Sets

by

%

Impro

vemen

t

Tradition

al

Method

Propose

d

Method
Required service:

Travel Hotel

Pickup

Security

requirement:

Confidentiality

 Yes Yes

Yes

Integrity

No No

No

Authentication

 Yes Yes

Yes

Ready to pay the

cost:

Atmost 68 units

180000 30
99.983

%

Required service:

Travel Hotel

Pickup

Security

requirement:

Confidentiality

 Yes Yes

Yes

Integrity

No No

No

Authentication

 No No

No

Ready to pay the

cost:

Atmost 19 units

56644 30
99.947

%

Required service:

Travel Hotel
10977120 30 99.999

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.10, May 2012

37

Pickup

Security

requirement:

Confidentiality

 Yes Yes

Yes

Integrity

Yes Yes

Yes

Authentication

 Yes Yes

Yes

Ready to pay the

cost:

Atmost 64 units

%

Required service:

Travel Hotel

Pickup

Security

requirement:

Confidentiality

 Yes Yes

Yes

Integrity

Yes Yes

Yes

Authentication

 No No

No

Ready to pay the

cost:

Atmost 34 units

2274700 30
99.998

%

Required service:

Travel Hotel

Pickup

Security

requirement:

Confidentiality

 No Yes

Yes

Integrity

Yes No

Yes

Authentication

 Yes Yes

No

Ready to pay the

cost:

Atmost 52 units

460000 30
99.993

%

Table shows that the method proposed in this paper reduces

the number of service sets to a very small number so that

the users are presented with the most suitable service sets

only.

6. CONCLUSION
For online businesses that offer complex services to users,

QoS and security related issues are very important. The

methodology proposed in this paper facilitates a business to

offer the complex services that contain components that are

compatible to each other with regard to QoS. The complex

service formed also best meets the security requirements of

the user. The method has been exhaustively tested. It is

evident from the results that the presented methodology

significantly increases overall efficiency of the system. The

user is presented with very few service sets corresponding

to most suitable composition that actually meet his

requirements thus allowing him to use the most suitable

composition. The method presented in the paper thus

enables the business to offer the most appropriate complex

services to the user.

In future, semantic approaches to determine compatibility

based on QoS and security support can be investigated.

7. REFERENCES

[1] Pinar Senkul, “Composite Web Service Construction by

Using a Logical Formalism”, 22nd International

Conference on Data Engineering Workshops

(ICDEW'06), IEEE, 2006, pp 56.

[2] Wang Qing-Ming, Tang Yong, Zhang Zan-Bo, “Research

In Enterprise Applications Of Dynamic Web Service

Composition Methods and Models”, Second

International Symposium on Electronic Commerce and

Security, IEEE, 2009, pp 146-150.

[3] Barbara Carminati, Chi Chi-Hung, Elena Ferrari,

Lianghuan Yu, “Compatibility Driven and Adaptable

Service Composition”, Services Computing Conference

APSCC2009, IEEE Asia Pacific, 2009, pp 396-401.

[4] Wang, Q.-M., Tang, Y., Zhang, Z.-B., “Research In

Enterprise Applications of Dynamic Web Service

Composition Methods and Models”, Proceeding of

Second International Symposium on Electronic

Commerce and Security, IEEE, 2009, pp. 146–150.

[5] Boumhamdi, K., Jarir, Z., ”Yet Another Approach for

Dynamic Web Service Composition”, Proceeding of

International Conference on Internet Technology and

Secured Transactions, IEEE, 2009, pp. 1–5.

[6] Eyhab Al-Masri, Qusay H. Mahmoud, “QoS-based

Discovery and Ranking of Web Services”, Computer

and Communication Conference, ICCCN2007, IEEE,

2007, pp 529-534.

[7] Urjita Thakar, Nirmal Degdee, “An Approach to Discover

Web Service Providers Based on Security Support”,

International Journal of Web Applications, Volume 1

Number 2, June 2009, pp. 47-56.

[8] Naiwen Lin, Ugur Kuter, Evren Sirin,”Web Service

Composition with User Preferences”, Proceedings of the

5th European Semantic Web Conference on the Semantic

Web: Research and Applications, ESWC'08, 2008, pp.

629-643.

[9] Mikhail Matskin, Peep Küngas, Jinghai Rao, Jennifer

Sampson, Sobah Abbas Petersen, “Enabling Web

Services Composition with Software Agents”, Proc. of

Internet and Multimedia Systems, and Applications

(IMSA 2005), Honolulu, Hawaii, USA, pp. 93-98.

[10] Fangfang Liu, Liang Zhang, Yuliang Shi, Lili Lin, Baile

Shi, “Formal Analysis of Compatibility of Web Services

via CCS”, International Conference on Next Generation

Web Services Practices (NWeSP‟05), IEEE, 2005, pp. 6.

[11]Thirumaran, M., Dhavachelvan, P., Abarna, S.,

Aranganayagi, G.,”Architecture for Evaluating Web

Service QoS Parameters Using Agents”, Proceeding of

International Journal of Computer Applications 10(4),

2010, pp. 15–21.

