
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.1, May 2012

41

Building Domain Specific Enterprise Applications using
Model Driven Development

ABSTRACT
In this paper we explain an approach on how to develop domain

specific applications using model driven development. Model

Driven Development in its core, uses the MDA (Model Driven

Architecture) principles defined by OMG (Object Management

Group) and its primary artifact for development is model.

MDA principles dictate that the domain specific model be built

on specifications and standards [1].

On the other hand Domain Driven Design principles addresses

the domain problem in a well defined manner that when

captured as requirement and developed as a system results in a

cohesive system that addresses the business problem [2].

Our discussion previews the Domain Driven Design principles

for developing a domain specific application, limitations of

traditional software development and highlights the advantages

of Model Driven Development and an example explaining the

discussed principles.

Keywords
Model Driven Development, MDD, Domain Driven Design,

CQS, UML

1. INTRODUCTION

The current software development methodologies have passed
its infancy stage. The advent of new software tools and
techniques to ease software development process has played
vital role in the area of software development and delivering
solutions on time. In addition to the evolving software
methodologies the business domains have also evolved and
turned complex which poses serious challenges in designing
software. Rapidly changing requirements and stringent
deadlines, high quality and reliability of the software gets
challenged due to faster delivery mechanisms. Ensuring reduced
project costs and time to market has actually hit the software
quality and reliability and in turn increases costs.

In traditional software development both the domain model and
the technology are tightly coupled. The rapidly changing
requirements dictate the domain model to change accordingly
and provide the desired outcome. Few domains dictate that the
errata must be negligible For Example: Healthcare, then there
are more likely chances that the project will fail. There might be
other issues such as the developer or the business analyst
himself is not able to understand the problem statement in sync
with the current system then it might result in the development
of a system which will eventually lead to the failure of the
project.

The challenge in developing such rapidly changing software is
the mapping of the domain to the constantly developing
solution. Successful software is one which captures the business
requirement in the context of the stakeholder, transform the
same business problem without any loss of business
understanding as technical requirement for the developer and at

last develop a solution which addresses the business problem
that meets the stakeholder’s expectation.

The core idea of this paper is to provide a design solution in
order to develop a domain specific enterprise application. This
paper consists of five parts. Principles of Domain Driven
Design, Issues in traditional software development, Need for
Model driven development, Sample Solution and Conclusion
and Future Work.

2. PRINCIPLES OF DOMAIN DRIVEN

DESIGN

Domain Driven Design's primary principle is to understand the
deep issues of the domain collaborate with the domain experts
and design a conceptual model to build a software solution that
addresses the domain problem. It is a paradigm shift in
designing software where the core focuses is on the problem
bounded by the domain. Domain Driven Design is best
expressed by using modeling languages [8]. Modeling
languages need not necessarily be UML. They could be simple
whiteboard diagrams as well. In order to have a consistent
understanding among the developers, the industry specifications
standard such as UML is followed. A core principle of Domain
Driven Design is to use a language which is understood by all
stakeholders. Hence domain driven languages are ubiquitous by
nature [3]. Such languages provide consistent understanding
across the project lifecycle. Hence there is no loss of knowledge
during the initial phases of software development.

The core idea of Domain Driven Design is not to bind the
domain to any implementation, rather express the domain
problem in such a way that the designers and architects design
the artifacts that represent's the domain. The application model
is usually large to comprehend as a whole. Hence the Domain
Driven Design is always bounded by a context called “Bounded
Context”. Bounded context is specific to each subpart of the
main model [3]. For Example: Shopping cart context allows the
user to select items, remove the items, search the catalogue and
display the cart items. This helps us to have a clear segregation
of responsibility. Bounded Contexts has a well defined
responsibility and must be able to communicate with other
bounded contexts.

Domain Driven Designs another core principle is the CQS
(Command Query Separation) which is used in
imperative computer programming and borrowed from Eiffel
programming language. This pattern states that “every method
should either be a command that performs an action or
a query that returns data to the caller, but not both”. But this is
an implementation level detail. Bringing this detail to a layer up
addresses the reporting issues found in traditional applications.
Hence we use the command for domain operations and query
for reporting operations.

The core elements of Domain Driven Design are the value
objects and entities. An entity is unique in the system and has an
identity. A value object in turn doesn’t have an identity and

Clarence J M Tauro
Centre for Research, Christ University

Hosur Road, Bangalore, India
Vijay Gopal.M

N Ganesan
Director (MCA), RICM

Bangalore, India

Rinu Thomas

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.1, May 2012

42

describes itself with the help of attributes and a value object
cannot live on its own. Hence it must be immutable.

The final element of Domain Driven Design is the Aggregates
and Aggregate Root. Aggregates are collection of entities and
value objects. But an aggregate root must always be an entity
[9].

Using the above principles in the area of software design can
result in well designed software with less documentation effort.

3. ISSUES IN TRADITIONAL

SOFTWARE DEVELOPMENT

Software development is inherently complex by nature.
Ensuring a software delivery with expected quality has become
difficult to achieve due two major factors.

1.Technical Factors

2.Business Factors

3.Domain Factors

The technical factors such as interoperability of the systems,
rapidly changing technology, upgrading from older to newer
systems and custom application development often throws
unseen challenges. Most of the time it throws challenges in
terms of understanding the newer technology stacks and so on.
Though less it throws its own share of hurdles in the area of
software development.

Business Factors contributes as the prime factor in the area of
software development. Business plays the vital role in the area
of software development. The business factors contribute to the
area of software development are time to delivery and time to
market, stringent business processes and evolving business
standards. For Example: The offshore onsite delivery model
which is focused at reducing costs and faster time to market
actually at times increase cost due to reduced development time
and poor quality of development. Most of the time, it becomes
difficult to maintain piles of documentation for every change
done in software. During the estimation the time for this activity
is never taken and the developer is burdened. Hence loses focus
on the deliverable and works on activities which surround the
deliverable. Sometimes due to reduced market time
organizations resort to COTS (Commercial of the Shelf). It does
provide a solution and along with it comes its own set of
problems, such as interoperability and closed source code.
Though these problems are not directly related to the
development activity yet these balks the progress of software
development.

The key challenge in building the enterprise application is to
understand the problem domain [5]. Most of the time the
requirements are captured either too broadly or in a shrewd
manner. This results in loss of actual problem information. Even
the experts fail sometimes in understanding the requirement. Or
it also happens that the client himself is not clear of what he
wants from the software. And above that the requirements tend
to change over time. Mapping these changing requirements to
the developing software and ensuring that these requirements
are in alignment with the domain is one critical challenge.

These challenges balk the progress of the software development
as a whole. Addressing these challenges from the beginning
could help us to deliver successful software.

4. NEED FOR MODEL DRIVEN

DEVELOPMENT

Model Driven Development is all about developing software
with the help of software models. Model Driven Development
in its core follows MDA (Model Driven Architecture)

principles. With the help of modeling one can translate the
business to much low level technical detail. UML is the de-facto
used in Model Driven Development due to its wide acceptance
[4].

Modeling is the language of the business analysts. Models help
to bridge the gap between gathering requirements and
translation of the same requirements to technical requirement
[6]. These models when used with specific tools generate code
which adheres to architectural principles [7]. Most of the time
due to stringent deadlines or lack of understanding of
architectural design patterns developers might try to breach the
design principles and develop software that are unstable or
prone to enhancement and maintenance issues.

Amidst many development methodologies why do we need
model driven development? The current buzz word in software
industry is Agile Development methodology. Agile
development is a discipline, the ability to adapt to changing
needs of the customer [8]. This methodology is customer driven
and has better principles such as better return on investment,
improved software quality and improved control on the
development activity due to constant interaction with the client.

The aim of Model driven development is to transform the model
to code and during this phase their is greater chance of errata
due to wrong interpretation of the model. By using sophisticated
tools the model can be used to generate code , which is basically
the skeletal of the system and the developer is focused to code
only the business logic of the system. This results in improved
productivity.

By incorporating agile principles with MDD we can address
various issues of software development from technical and
business perspectives. For Example: One can achieve improved
quality by constantly interacting with the client and
incorporating the suggested changes in the developing software
and showcasing the same to the client. The time taken to
incorporate a change and see the immediate result is extremely
less when compared to traditional methodology. This helps in
understanding the changing software needs, develop software
with acceptable quality and overall better returns for the
organization and better understanding of the domain. Hence we
consider MDD as a pervasive development methodology in the
area software development which addresses the issues in
traditional software development.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.1, May 2012

43

4.1.Sample implementation

Consider the code in Figure 1

Figure 1: Anemic Code

The code in Figure 1has anaemic problems .This program does

a lot of tasks at the same time. Hence we use the first basic

principle of Domain Driven Design CQS (Command Query

Separation). The other issue associated with the above code in

Figure 1 is the maintainability issue.

Figure 2: Trading Service

Figure 3: Account Class

Figure 4

Figure 4: Order Class

Figure 2, 3, 4 discusses about the implementation of CQS

design pattern where every business logic is separated as per

the bounded context principle. This also clearly signifies the

separation between the validation logic and the business logic.

Now the separated logic has to be placed in different layers as

per the layering design principle. An enterprise application

usually consists of different layers. Apart from placing the

segregated logic in different layers we have to ensure that the

aggregate principle is also implemented. Given below are the

different layers for a domain specific enterprise application.

Figure 5: Architecture of Domain Driven Design

The Figure 5 describes the layering architecture used in

Domain Driven Design. The architecture clearly describes the

segregation between the business logic, the infrastructure, the

services and the validation parts. The rules layer is optional and

contains the rules pertaining to specific domain. Ex:

Government services domain.

5. CONCLUSION AND FUTURE WORK

This paper illustrates various issues found in the traditional

software development. Our study is categorized only to the

area of capturing requirements in alignment with domain,

development of design in alignment with domain principles

and realizing the design in the code with model driven

public class public TradingService {

public Money

calculateOrderEstimate(Account account,

Order order){

// Calculate basic order estimate

Money unitPrice;

if (order.getType()==orderType.Market) {

unitPrice=

marketDataService.getMarketPrice(order.getS

ymbol());

}

else

{

unitPrice = order.getLimitPrice();

}

Money estimate =

unitPrice.times(order.getQuantity());

// Calculate fees

Money fees =

(account.getOwner().isPreferred()) ?

DISCOUNTED_FEES : REGULAR_FEES;

// Return estimate plus fees

return estimate.plus(fees);

}

}

public class TradingService {

public Money calculateOrderEstimate(

Long accountId, OrderParams orderParams)

{

Account account=

accountRepository.findAccount(accountId)

;

return account.calculateOrderEstimate

(new Order(orderParams));

}

}

public class Account {

public Money calculateOrderEstimate(Order

order)

{

Money estimate = order.estimate();

Money fees = this.isEligibleForDiscount() ?

DISCOUNTED_FEES : REGULAR_FEES;

return estimate.plus(fees);

}

}

public class Order {

public Money estimate() {

Money unitPrice;

if (this.type == OrderType.Market)

unitPrice =

marketDataService.getMarketPrice

(this.symbol);

else

unitPrice = this.limitPrice;

return unitPrice.times(this.quantity);

}

}

 USER INTERFACE LAYER

APPLICATION LAYER

 DOMAIN LAYER

 INFRASTRUCTURE LAYER

 VALIDATION LAYER

SERVICE INTERFACE LAYER

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.1, May 2012

44

development. These challenges have been summarized by prior

literatures. The major challenge in incorporating the suggested

solution is to identify the right problem statement where the

domain complexity is extremely high. It also includes a

paradigm shift in the thought process of the developers and

designers.

In future we will be looking forward to incorporate the

suggested solution to those domains which have intrinsically

complicated problem statement which are difficult to solve by

traditional development methodology.

6. ACKNOWLEDGMENT

We are heartily thankful to Prof. Jibrael Jos and Prof. Joy

Paulose, Department of Computer Science, Christ University,

whose encouragement, guidance and support enabled us to

develop an understanding of the subject.

7. REFERENCES
[1] Marzullo, F.P.; de Souza, J.M.; Blaschek, J.R.; , "A

Domain-Driven Development Approach for Enterprise

Applications, Using MDA, SOA and Web Services," E-

Commerce Technology and the Fifth IEEE Conference on

Enterprise Computing, E-Commerce and E-Services, 2008

10th IEEE Conference on , vol., no., pp.432-437, 21-24

July 2008 doi: 10.1109/CECandEEE.2008.119URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber

=4785103&isnumber=4785030

[2] Laufer, K.; , "A Stroll through Domain-Driven

Development with Naked Objects," Computing in Science

& Engineering , vol.10, no.3, pp.76-83, May-June 2008

 doi: 10.1109/MCSE.2008.67 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber

=4488069&isnumber=4488052

[3] Abel Avram & Floyd Marinescu, “Domain-Driven Design”

[4] Trask, B.; Roman, A.; "Leveraging Model Driven

Engineering in Software Product Line Architectures,"

Software Product Line Conference (SPLC), 2011 15th

International , vol., no., pp.356-357, 22-26 Aug. 2011

 doi: 10.1109/SPLC.2011.63 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber

=6030091&isnumber=6030038

[5] Jamaludin Sallim , “Requirements Engineering for

Enterprise Applications Development: Seven Challenges

in Higher Education Environment,” World Academy of

Science, Engineering and Technology 4 2005.

[6] Gholami, M.F.; Ramsin, R.; , "Strategies for Improving

MDA-Based Development Processes," Intelligent

Systems, Modelling and Simulation (ISMS), 2010

International Conference on , vol., no., pp.152-157, 27-29

Jan. 2010 doi:10.1109/ISMS.2010.38

 [7] Jicheng Fu; Wei Hao; Bastani, F.B.; I-Ling Yen; , "Model-

Driven Development: Where Does the Code Come

From?," Semantic Computing (ICSC), 2011 Fifth IEEE

International Conference on , vol., no., pp.255-262, 18-21

Sept. 2011 doi:10.1109/ICSC.2011.76

[8] Aniket Mahanti." Challenges in Enterprise Adoption of

Agile Methods – A Survey," Software Engineering and

Advanced Applications (SEAA), 2010 36th

EUROMICRO Conference on , Journal of Computing and

Information Technology – CIT 14, 2006, 3, 197–206

doi:10.2498/cit.2006.03.03

