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ABSTRACT 

In this paper, new adaptive medical image coding technique 

based orthogonal polynomials transformation is proposed. 

The input image is first applied with the proposed orthogonal 

polynomials based modified zero crossing algorithm for edge 

detection since it is not sensitive to noise and surface 

irregularities. Then the scan filling algorithm is used to 

separate the foreground that contains the most important 

information of medical image from the background region. 

The orthogonal polynomials based transform coding 

technique is applied on foreground region for lossless 

encoding and on background region for lossy encoding. The 

proposed work uses variable quantization to maintain 

different quality levels for entire image coding and preserve 

the most important features that contained in the foreground 

region of medical image.  The experiment results of the 

proposed technique shows that a higher compression ratio is 

achieved for coding of medical images with lower 

computational complexity when compared with existing 

techniques. 

General Terms 

Image coding. 

Keywords 

Edge segmentation, scan filling algorithm, orthogonal 

polynomials based transform coding. 

1. INTRODUCTION 
Medical imaging [1,2] plays a significant role in 

contemporary health care, both as a tool in primary diagnosis 

and as a guide for surgical and therapeutic procedures. With 

increasing number of patient data, the compression techniques 

for digital transmission and storage of medical images have 

become a necessity [3]. Medical image compression is 

constrained by the fact that most radiologists are not willing to 

base a diagnosis on an image that has been compressed in a 

lossy way. This is partially due to legal reasons (depending on 

the corresponding country's laws) and partially due to the fear 

of misdiagnosis because of lost data in the compression 

procedure [4]. Therefore, only lossless techniques are 

accepted, which limits the amount of compression to a factor 

of about 3 (in contrast to factors of 100 or more achievable in 

lossy schemes). Since the compression rate in lossless model 

is poor, there is a need for efficient and widely accepted 

techniques for medical image compression. A possible 

solution to this dilemma is to offer the image compression 

techniques which allow an image to be selectively 

compressed. The parts of the image that contain crucial 

information (called foreground region) are compressed in a 

lossless way whereas regions containing unimportant 

information (called background region) are compressed in a 

lossy manner. This leads to considerably higher compression 

ratios as compared to pure lossless schemes while critical 

information is preserved. The lossless compression scheme 

reproduces the same original data without any loss of 

information and the lossy compression scheme produces the 

approximation of the original data at a higher compression 

rate. The techniques in the art of compressing the image data 

can be classified into two categories: i) time-domain (or space 

domain) encoding and ii) transform domain coding. The time 

domain techniques that appear practical are mostly of the 

prediction-compression type. This includes schemes like delta 

modulation and differential pulse code modulation [5]. The 

transform coding schemes are proved to be an effective image 

compression scheme and is the basis of all world standards for 

lossy compression [6]. These transforms being unitary, 

conserve the signal energy in the transform domain, but 

typically most of this energy is concentrated in relatively few 

samples which are usually the lower frequency samples. The 

simple and powerful class of transform coding is linear block 

transform coding, where the entire image is partitioned into a 

number of non-overlapping blocks and then the 

transformation is applied to yield transform coefficients.  This 

is necessitated because of the fact that the original pixel 

values of the input image are highly correlated. Compression 

is achieved by considering the high energy samples to be 

sufficient for reconstruction subsequent to transmission, 

storage or processing. The international compression 

standards JPEG [7] and JPEG2000 [8] use the Discrete Cosine 

Transformation [9,10] and wavelet transform [11,12] 

respectively for image coding. 

Many medical image coding systems have been developed 

both in spatial domain [13-17] and in transform domain [18-

22].  The transform based coding techniques provides 

efficient reduction of the high redundancy and achieves higher 

compression ratio than the spatial domain techniques. In [18], 

the selective image compression technique that encodes the 

Region of Interest (ROI) in lossless mode and remaining 

region using loss compression such as wavelet and DCT 

based coders. The wavelet based medical image coding 

algorithms which modifies the original SPIHT and EBCOT 

techniques to provide ROI coding feature for chromosome 

images is reported by Zhongmin liu et . al.[19]. The 

application of 3-D Hartley transform for encoding the medical 

images is described in [20]. The 3-D medical image 

compression using 3-D wavelet coders is presented in [21], 

wherein the four symmetric and decoupled wavelet transforms 

are used in first stage and 3-D SPIHT, 3-D SPECK, 3-D BISK 

are used in second stage of medical image compression. The 

ECG signal compression algorithm presented in [22], uses 

modified Embedded Zerotree Wavelet (EZW) coding 

algorithm and reported better results when comparing with 

traditional EZW algorithm. 
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Hence a medical image coding technique that provides higher 

compression ratio while retaining important information is 

necessitated, a new low complexity orthogonal polynomials 

based lossy to lossless medical image coding technique is 

proposed in this paper. The crucial information present in the 

medical images is separated as foreground region from the 

background region with the proposed edge based 

segmentation algorithm and scan filling algorithm. Since the 

thresholding type edge detection methods is sensitive to noise 

and surface irregularities, the edge detection through the 

identification of zero crossing based on orthogonal 

polynomials is proposed in this work. After segmentation, the 

foreground regions are encoded losslessly and background 

regions are encoded in lossy manner with the proposed 

orthogonal polynomials based transform coding technique.  

This paper is organized as follows: The orthogonal 

polynomials model for the proposed coding is presented in 

section 2. The basis operators of the orthogonal polynomials 

based transformation are given in section 2. The proposed 

edge detection algorithm and transform coding technique 

based on orthogonal polynomials are presented in section 4 

and 5 respectively. The measurement of performance is given 

in section 6. The experimental results of the proposed coding 

and their comparison with existing technique are presented in 

section 7 and the conclusion is presented in section 8. 

2. ORTHOGONAL POLYNOMIALS 

MODEL 
In order to devise a transform coding for lossless image coder, 

a linear 2-D image formation system is considered around a 

Cartesian coordinate separable, blurring, point spread operator 

in which the image I results in the superposition of the point 

source of impulse weighted by the value of the object function 

f. Expressing the object function f  in terms of derivatives of 

the image function I relative to its Cartesian coordinates is 

very useful for analyzing the image. The point spread function 

M(x, y) can be considered to be real valued function defined 

for (x, y)  X   Y, where X and Y are ordered subsets of real 

values. In case of gray-level image of size (n n) where X 

(rows) consists of a finite set, which for convenience can be 

labeled as {0, 1, …,n-1}, the function M(x, y) reduces to a 

sequence of functions. 

M ( i, t) =  ui(t),   i, t  = 0, 1, …, n-1                                (1) 

The linear two dimensional transformation can be defined by 

the point spread operator M(x, y) (M(i, t) =  ui(t)) as shown in 

equation (2). 

         


Xx Yy
dxdyy,xIy,Mx,M, 

                     (2) 

Considering both X and Y to be a finite set of values {0, 1, 2, 

…, n –1}, equation (2) can be written in matrix notation as 

follows 

  IMM
t

ji 
                                                             (3) 

where   is the outer product, |ij| are n2 matrices arranged 

in the dictionary sequence, |I| is the image, |ij| are the 

coefficients of transformation and  the point spread operator 

|M| is  
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We consider a set of orthogonal polynomials u0(t), u1(t), …, 

un-1(t) of degrees 0, 1, 2, …, n-1 respectively to construct the 

polynomial operators of different sizes from equation (4) for n 

 2 and ti = i. The generating formula for the polynomials is as 

follows. 

ui+1(t) = (t–) ui(t) – bi(n) ui-1(t) for i  1,                              (5) 

u1(t)  =  t – , and u0(t) = 1, 
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We can construct point-spread operators |M| of different size 

from equation (4) using the above orthogonal polynomials for 

n  2 and ti = i. For the convenience of point-spread 

operations, the elements of |M| are scaled to make them 

integers.    

3. ORTHOGONAL POLYNOMIALS 

BASIS 
For the sake of computational simplicity, the finite Cartesian 

coordinate set X, Y is labeled as {1, 2, 3}. The point spread 

operator in equation (3) that defines the linear orthogonal 

transformation for image coding can be obtained as |M| |M|, 

where |M| can be computed and scaled from equation (4) as 

follows.       
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            (6)           

The set of polynomial basis operators Oij
n (0 ≤ i, j ≤ n-1) can 

be computed as  

Oij
n = ûi  ûj

t 

where ûi is the (i + 1) st   column vector of  |M|. 

The complete set of basis operators of sizes (2 2) and (3 3) 

are given below.  

Polynomial basis operators of size (2 2) are 
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Polynomial basis operators of (3 3) are 
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It is also proved that the set of n n (n 2) polynomial 

operators forms a basis, i.e it is complete and linearly 

independent. 

The following symmetric finite differences for estimating 

partial derivatives at (x,y) position of the gray level image I 

are analogous to the eight finite difference operators Oijs 

excluding Ooo. 
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and so on. 

In general,  
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where | | indicates the arrangement in dictionary sequence and 

( , ) indicates the inner product and '
ij are the coefficients of 

the linear transformations defined as follows. 

| '
ij |=|M| t |I|                  (9) 

where |M| is the 2-D point – spread operator defined as |M| = 

|M | |M| 

The orthogonal transformation defined by the orthogonal 

system is |M| complete. An orthogonal system |H| by 

normalizing |M| is obtained as follows 

2

1
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Consider the following orthogonal transformations 
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Since |H| is unitary, 
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where   1t
)MM(  

As per equation (11), the image region |I| can be expressed as 

a linear combination of the 9 basis operators of which |Ooo| is 

the local averaging operator and the remaining 8 are finite 

difference operators. From this the completeness relation or 

Bessel’s equality is obtained as follows. 
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4. EDGE SEGMENTATION BASED ON 

ORTHOGONAL POLYNOMIALS 
In this section, an edge detection method based on identifying 

the zero crossing in the second directional derivatives of the 

image is proposed for monochrome images. After detecting 

the edges, the scan line algorithm is applied to segment the 

foreground and background region for the proposed encoder 

of the medical image. The computational approach for 

detection of zero-crossing in the second directional derivative 

by using the proposed polynomials operator is presented. Let 

the image function be I(x, y), then the first order derivative is 

given by, 
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and the second directional derivative is given by 
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Using equation (8), we obtain 
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Finally, the expression for the second directional derivative in 

terms of the proposed difference operator becomes, 

2
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An edge point can be concluded if the image region 

under analysis has sufficient gradient and its second 

directional derivative has a negative slope i.e., a zero crossing. 

The algorithm for detection of edges in medical images by 

using this method is given below: 

Algorithm: Edge detection using modified zero crossing 

algorithm 
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Input : Medical image of size (image_width image_height) 

Output: Edge detected image 

Steps: 

Begin 

1. Repeat ith loop from 0 to image_width do 

    begin 

    Repeat jth loop from 0 to image_heigh) do 

    begin 

2. Extract a (33) block [I] centred at (i+1,j+1) 

3. Compute                             where [M]=  

 

4.  Estimate the gradient   

5.  If (gradient           ) go to end  

6.  Compute second directional derivative, I   

 

  

 

7. If (      <0) mark the edge point at (i+1, j+1). 

    end 

    end 

End 
Once the edge points are identified with the proposed zero 

crossing algorithm the resultant image is denoted as a two 

dimensional matrix E of size (image_width image_height). 

The scan line algorithm is then applied in both horizontal and 

vertical direction and the results are combined to get the 

foreground and background medical image region. The 

horizontal scanning starts from left (value 0) to right (value 

image_width) to find the non-zero value in Ei,j and set the 

column value j as the starting column k. Next, scans the 

matrix E from right (image_width) to left (0) to find the right 

most edge pixel and set the jth ending column value as l. Then 

fill the line from Ei,k to Ei,l with value 1 and this iteration is 

repeated for all the rows in the image to get the horizontal 

filled image.  The similar procedure is applied from top to 

bottom with values from 0 to image_height and the vertical 

filled image is obtained. Both the horizontal and vertical 

image is then combined by logical AND operation and the 

resultant binary image is obtained with foreground regions 

denoted by 1 and background region denoted by 0.   

5. PROPOSED LOSSY TO LOSSLESS 

MEDICAL IMAGE CODING BASED ON 

ORTHOGONAL POLYNOMIALS 
The input medical image to be coded is divided into non 

overlapping blocks of size (n n) and is classified as 

foreground region, if 50% or above the (n n) pixel values 

are identified as 1 in matching with the corresponding binary 

image otherwise it is classified as background region. Once 

the image region (nn) is classified, the orthogonal 

polynomials based transform coder is applied to encode the 

foreground region in lossless mode and background region in 

lossy mode with different quantization levels. The image 

region (nn) is applied with orthogonal polynomials based 

transformation(OPT) as described in section II and the 

transformed coefficients are quantized using a quantization 

matrix whose formula, as in JPEG is given below: 

Quantized value(i, j)=round 








)j,i(Quantum

)j,i(OPT
              (16) 

where )j,i(OPT  is transform coefficient matrix obtained 

with the orthogonal polynomials transformation. The quantum 

value matrix )j,i(Quantum  is obtained through an integer, 

called quality_factor. Depending upon the requirement of the 

quality of reconstructed image vis-à-vis compression ratio, the 

quality_factor can be made adaptive and be specified by the 

user. The relationship between )j,i(Quantum and the 

quality_factor is )j,i(Quantum =1+((1+i+j*quality_factor). 

The quality_factor which is a user input is generally in the 

range 1 to 25, and specifies the quantum value, for every 

element position in the original polynomial transform 

coefficient matrix. The quality_factor is chosen in such a way 

that it can discard higher frequency coefficients elegantly. 

That is, when the quality is high, the quantum value 

corresponding to the higher frequency coefficient sample 

positions shall be high so that the quantized value can be zero. 

Thus the quantum value indicates what that the step size is 

going to be for an element in the complete rendition of the 

picture, with values ranging from 1 to 25.  

For encoding the foreground region, the quality_factor 

value is chosen as 1 which encodes the image in lossless 

mode and gives perfect reconstruction of the image. Similarly 

for encoding the background region, the quality_factor ranges 

from 2 to 25 which encodes the image in lossy mode giving 

higher compression ratio with significant reduction in 

reconstructed image quality. The quantized transformed 

coefficients of both regions are then subjected to entropy 

encoding using variable length coding. For this purpose, the 

quantized transform coefficients are reordered using zigzag 

scanning to form a 1D sequence. Due to the fact that DC 

coefficients of the proposed orthogonal polynomials based 

coding have high magnitude and the DC values of 

neighboring blocks are not differing substantially, the DC 

values are subjected to difference pulse code modulation 

(DPCM). The first element of the zigzag sequence represents 

the difference pulse code modulated DC value and among the 

remaining AC coefficients, the non-zero AC coefficients are 

huffman coded using variable length code (VLC) that defines 

the value of the coefficient and the number of preceding 

zeros. Standard VLC tables specified in the JPEG baseline 

system are used for this purpose. The side information bit as 0 

for foreground region and 1 for background region is sent 

along with encoded bitstreams. Since the huffman coded 

binary sequences are instantaneous and uniquely decodable, 

the compressed image can be decompressed easily in a simple 

look-up table manner. The rearranged array of transform 

coefficients is reordered into two dimensional block from the 

one dimensional regenerated zigzag sequence with 

dequantization, after taking care of DPCM DC coefficients 

and we reconstruct the sub image under analysis by using the 

polynomials basis operators as defined in Section 3. The 

detailed algorithm of proposed lossy to lossless image coder is 

described hereunder: 

Algorithm for proposed lossy to lossless image coder based 

on orthogonal polynomials (LLICOPT): 

Input : Medical image and corresponding binary image. 

Output Encoded image with proposed LLICOPT. 

    ]M][I[M
T' 

111

201

111





2

1

2
10

2
01
' )(  I

TI 

2
10
'2

01
'

11
'

10
'

01
'2

10
'

02
'2

01
'

20
' 2

),(








 yxI

I 



International Journal of Computer Applications (0975 – 8887) 

Volume 46– No.1, May 2012 

9 

Steps: 

1. Partition the input image into (n n) blocks and classify 

it either as foreground region or background region as 

described in this section. 

2. Compute the orthogonal polynomials transformed 

coefficients as |I|)MM( t
ji  as descried in 

section 2. 

3. Quantize the transformed coefficients with quality_factor 

value as 1 if the region is classified as foreground region, 

otherwise encode the background region with 

quality_factor value ranges from 2 to 25 as user input as 

given in equation (16). 

4. Rearrange the quantized transformed coefficients in one 

dimensional sequence using zig-zag scanning. 

5. Encode the DC coefficient using DPCM coder and the 

remaining AC coefficients using huffman coder. 

6. Repeat the above process until all the blocks in the input 

image have been encoded. 

 

Decoding is the reverse process of encoding and is done 

as a simple look up table manner. First entropy decoding is 

applied on the compressed bit streams and the results are 

multiplied with different quantum values for de-quantizing the 

foreground region and background region separately along 

with the side information. The inverse transform is then 

applied with orthogonal polynomials basis operator as 

described in section 3 and the reconstructed image is obtained.

   

6. MEASURE OF PERFORMANCE 
The performance of the proposed lossy to lossless medical 

image coding algorithm is reported by computing the peak 

signal-to-noise ratio (PSNR), as

 















2
ms

2

10
e

255
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where the average mean-square error ems, is a very useful 

measure as it gives an average value of the energy lost in the 

lossy compression of the original image and is given by 

      

                                 (18) 

 

where )j,i(f  and )j,i(g  represent the original and 

reproduced color images of size (N M) respectively. The 

PSNR is measured in decibels (dB).  

7. EXPERIMENTS AND RESULTS 
The proposed algorithm has been tested with more than 200 

medical images of different kinds such as mammogram, X-

ray, CT-scan and MRI images. Some sample medical images 

which are of size (256 256) with pixel values in the range 

(0-255) are shown in fig.1.(a)-(d). The image are applied with 

the proposed orthogonal polynomials based modified zero-

crossing edge detection algorithm as described in section 4 

and the outputs are presented in fig.2.(a)-(d) corresponding to 

the original images in fig.1.(a)-d) respectively. The binary 

imaged with foreground and background region are obtained 

using scan filling algorithm. Then the foreground regions are 

encoded losslessly and background regions are encoded in 

lossy way with the proposed orthogonal polynomials based 

transform coder as described in section 5. For foreground 

region, the quality_factor is set as 1 and for background 

region the quality_factor ranges from 2 to 25 and the results 

are presented in table 1. For a factorquality _  2, the 

proposed LLICOPT coding scheme gives a compression ratio 

of 66.34% with a PSNR of 46.76dB for the mammogram 

image. For the same factorquality _ , the proposed 

coding achieves a compression ratio of 64.39% with a PSNR 

value of 47.50dB for the X-ray image. For the 

factorquality _  value of 5, proposed LLICOPT coding 

achieves a compression ratio of 73.95% with a PSNR value 

45.22dB for mammogram image and 72.78% compression 

ratio with a PSNR value of 46.33dB for X-ray image. The 

reconstructed images corresponding to the original images in 

fig.1.(a)-(d) are presented in fig.3(a)-(d) with the proposed 

algorithm.  For low quality encoding with the 

factorquality _  of 25, the proposed algorithm achieves 

a compression ratio of 85.71% with a PSNR value of 38.70dB 

for the mammogram image and 82.65% compression ratio 

with PSNR value of 39.86dB for X-ray image. 

       

(a) Mammogram                       (b) X-ray 

 

        

           (c) CT scan                        (d) MRI image 

Figure 1 Original medical test images 

  

(a) Mammogram                          (b) X-ray 
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            (c) CT scan                         (d) MRI image 

Figure 2 Edge detection with proposed modified zero 

crossing algorithm based on orthogonal polynomials. 

  

(a) Mammogram                     (b)  X-ray 

  

            (c) CT scan                          (d) MRI image 

Figure 3 Results of proposed coding scheme when 

quality_factor is 5 

In order to measure the performance of the proposed 

technique, the experiments are conducted using DCT based 

coding scheme and the results are presented in table 2. For a 

factor_quality  2, the DCT based coding scheme gives a 

compression ratio of 57.43% with a PSNR of 44.76dB for the 

mammogram image. For the same factor_quality , the DCT 

based coding scheme gives a compression ratio of 55.80% 

with a PSNR value of 45.54dB for the X-ray image. For the 

factor_quality  value of 5, DCT based coding scheme gives 

a compression ratio of 68.55% with a PSNR value 42.22dB 

for mammogram image and 64.06% compression ratio with a 

PSNR value of 43.56dB for X-ray image.  For low quality 

encoding with the factor_quality  of 25, the DCT based 

coding scheme gives a compression ratio of 80.68% with a 

PSNR value of 36.70dB for the mammogram image and 

79.51% compression ratio with PSNR value of 37.61dB for 

X-ray image. 

8. CONCLUSION 

In this paper, new medical image coding technique based on 

orthogonal polynomials is proposed. The edges in the medical 

images are first detected with the proposed orthogonal 

polynomials based modified zero crossing algorithm. The 

critical information in the medical images inside the outer 

edges are identified as foreground region and the remaining 

portion are identified as background region using scan filling 

algorithm. Both regions are encoded using variable 

quantization with proposed orthogonal polynomials based 

transform coding technique. Since the discriminate 

information in the medical images is the foreground region 

and is encoded losslessly, a hundred percent accuracy is 

achieved with the proposed technique for diagnosing the 

problem while at the same time a higher compression ratio is 

achieved by lossy compression of background region.     

Table 6.5 Compression ratio(%) and PSNR(dB) values obtained for various quality_factors with proposed LLICOPT 

algorithm. 

QF Proposed LLICOPT based coding scheme 

 Mammogram X-ray CT-scan MRI image 

 CR PSNR CR PSNR CR PSNR CR PSNR 

2 66.34 46.76 64.39 47.50 63.01 46.81 67.01 44.86 

5 73.95 45.22 72.78 45.33 70.43 45.11 74.89 43.10 

10 79.65 43.34 77.32 43.21 73.87 43.07 80.35 42.51 

15 81.29 41.95 78.68 42.75 75.07 41.23 82.70 40.63 

20 83.44 40.51 80.14 41.08 79.05 40.69 82.53 39.78 

25 85.71 38.70 82.65 39.86 81.59 38.42 85.90 37.98 
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Table 6.6 Compression ratio (%) and PSNR (dB) values obtained for various quality_factors(QF) with 

 proposed algorithm using DCT based coding scheme. 

QF Proposed algorithm using DCT based coding scheme 

 Mammogram X-ray CT-scan MRI image 

 CR PSNR CR PSNR CR PSNR CR PSNR 

2 57.43 44.76 55.80 45.54 56.32 44.02 55.64 45.32 

5 68.55 42.22 64.06 43.56 67.67 43.76 64.78 43.12 

10 73.90 40.34 72.11 41.94 72.43 42.69 71.86 41.54 

15 75.90 39.78 74.61 40.30 74.06 40.18 73.85 40.52 

20 77.21 38.51 76.80 39.36 75.23 39.89 75.34 39.13 

25 80.68 36.70 79.51 37.61 79.46 37.78 78.67 38.63 
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