
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.7, May 2012

39

Anatomy Study of Execution Time Predictions in

Heterogeneous Systems

J. Shanthini

Assistant professor,
Department of Computer Science and

Engineering,
INFO Institute of Engineering,

Coimbatore,

K. R. Shankarkumar
Professor,

Department of Electronics and
Communication Engineering,

Sri Ramakrishna Engineering College,
Coimbatore,

ABSTRACT
To make effective job placement policies for a volatile large

scale heterogeneous system or in grid systems, scheduler must

consider the job execution time. In most grid schedulers,

execution time of job is to be known in the prior. The

execution time given by user may not be more precise,

execution time predictors are used in order to facilitate the

dynamic scheduling. The prediction algorithms use analytical

bench marking/ code profiling, historical data, and code

analysis. The prediction algorithm should be nonclairvoyant

in nature. This study reviews execution time prediction

algorithms in a different perspective. This algorithm considers

memory accessing, network performance, and fluctuation of

competing CPU load and so on, as interference factors for

prediction. Based on the understanding comprehensive

analysis is made among them.

General Terms

KNN Smoothing, Linear Regression, Instance Based Learning

Keywords

Task scheduling, historical data, code analysis, profiling,

benchmarking.

1. INTRODUCTION
We are now in the era of production grids, where large no of

users with different needs, use different application areas, live

geographically distributed areas share the same resources.

Guaranteed quality of service is one of the most challenging

aspects of grid computing environment. Due to increased

parallelism, tools to match code with candidate architecture

and to evaluate the performance of such match are essential.

So we need new ways for predicting the run time estimation

of the job submitted by user. The fig. 1 shows the methods

for execution time prediction, that can be classified in two

categories like, code profiling/ Analytical benchmarking

[1,2,3,4,5], and Statistical prediction [8,9,10,11].

2. CODE PROFILING
Code profiling was initially introduced by Freund et at. The

code profiling is a code specific function, signified to identify

the embedded parallelism inside the code. Actually the source

code is broken into code segments, where the processing

requirements of the each segment may be same or

heterogeneous. These segments were given an optimum

processor that produces better efficiency on the given code

segments. Once the code is divided into parts, the code-type

profiler is called, which will identify the nature of the code.

The types of code may be vectorizable decomposable,

vectorizable non-decomposable, fine/coarse grain parallel,

SIMD/MIMD parallel, scalar, and special perfectly purpose

(like Fast Fourier Transforms, or specialized sort algorithms).

 Code Profiling & Analytical Benchmarking

Runtime
Predictorr

 Application based

 Using Historical

 Data

 Resource based

Fig.1. Taxonomy of Run time predictions

3. ANALYTICAL BENCHMARKING
In parallel programming, user may give their input

data statically or dynamically. The static timing is generally is

unaffected by the run time environment .But dynamic time

values are highly sensitive to run time environment, these are

identified by analytical benchmarking [1,2,3,4,5]. Analytic

benchmarking/ code profiling was first presented by Freund

[5], and has been extended by Pease et al. [3], Yang et al.

[6],and Khokhar et al. [1,2]. Ashfaq A. Khokhar, Viktor K.

Prasanna [1] stated that Analytical benchmarking is a test to

make sure how well a machine performs on given code type.

Once the code profiling is done, the type of code is identified.

Now analytical bench marking determines the performance of

the machine on identifying code type. Levit [7] has proposed

a novel analytical model for grid communication, it takes

geometry of physical and virtual processor, dimensions of

communication and size of input data’s in to consideration.

4. STATISTICAL PREDICTIONS
Here the run time of a task is predicted using the past

observations. Each machine consists of set of past

observation; this history is used to make a new prediction.

The prediction method takes data’s from input parameters, so

no additional knowledge is required. This method has two

iterations, in first iteration similar jobs are found and in the

second iteration the prediction is performed. The intrinsic

complexity of this method falls in selecting the similar jobs.

The similar jobs an identified using or comparing different job

parameters like user of the job, OS, No. Of. Nodes used and

machine architecture etc. Once similar jobs are found they are

grouped together. In the second iteration, the prediction is

performed either by considering mean, or by using probability

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.7, May 2012

40

functions of previous execution times or even by regression

analysis model. Isolation of job histories in individual

machine, prediction error on lower data sets, are seems to be a

major drawback of this method.

In recent grid computing environments[15], it is suggested

that, this history can be stored in cluster heads. These cluster

heads will make the decision on the scheduling hierarchical

workflow model.

5. RECENT WORKS
R. F. Freund [5] proposed a new idea the , where his proposal

consists of 2 parts. In the first part he tends to split the code,

these code groups may homogeneous or heterogeneous

requirements. After finding the code types, he tries to assign

to a machine which optimally suits to execute the code type.

Jaehyung Yang, Ishfaq Ahmad, Arif Ghafoor [4] has proposed

Augmented code profiling and augmented analytical

benchmarking, to characterize applications and architectures

in a Distributed Heterogeneous Supercomputing System. This

method is based on generating Representative Set of

Templates (RST). This RST’s allows user to generate code

profiles, which can represent the execution behaviour of the

task at varying levels of details.

In [9] the run times were predicted using the past

observations. Initially high density usage of resources was

identified and clustered, using these cluster state transitions

were built in order to characterize the resource usage in

previous runs. They have used k-means clustering with three

dimensional populations which include CPU time, file I/O,

memory used. In [10,11] Ian Foster and their colleagues

presented methods for predicting queue wait times and run

time of a job. In earlier cases, the authors concentrated on

eliciting the similarity between the jobs. They proposed two

templates (q,u)and (u,n),which are used to categorize the

application A. The category CA was eliminated from the

universal set of C. For each CA run-time estimates were

calculated and the one with smallest confidence interval was

chosen as run time of the job A, Either mean or linear

regression was used to compute the estimates.

M. A. Iverson et al [12] and their fellow mates have proposed

a method that uses a non parametric regression technique

based execution time prediction that used past observations.

Since the non parametric regression technique does not any

machine architecture, this algorithm also acts like

architectural neutral. This algorithm uses K-Nearest

Neighbour (K-NN) smoothing. Here estimate m (x) for the

parameter A is calculated from k observations with x values

closest to the parameter A. From their result it is determined

that 1 D K-NN give lower computational cost than 4-D and

11-D K-NN smoothing, It is also found that is method works

well on increasing jobs. Maciej Drozdowski et al. [12]

Proposed some metrics for a good prediction system they are

1) Actual order of the program operation 2) respect

communication delay 3) eliminates the influence of other user

and application sharing computing environment and 4) having

simple implementation. G (V, A) represents DAG with V

forking events and A activity arcs .The duration of the

computational arc between two events is measured as process

time of jobs. The GetProcessTime and time methods give

process time and eliminates eliminating influences by other

user. It was shown that with growing contributions of

processing time in overall execution time, the difference

between estimated and astronomical times diminishes. It is

also shown that estimation of communication time is an

important source of error in this method. In [13] Christian

Glasner, Jens Volkert has proposed an adaptive architecture

for running time predictions. The method they proposed not

only considers job parameters but also considers behaviour of

users as single or as group. Here are set of observations cost

is taken at time t and historic information is described as a

tuple (ti, xi), using which a filtered set is created. These sets

are given as input to the predictors, and quantifiers are used to

select the most opted predictor for the situation. This selection

is based on the earlier behaviour of the user, and final forecast

is made.

A prediction model for grid environment has been proposed

by Xilong Che, Liang Hu, Dong Guo, Kuo Tang and Debin

Hu sed in [14]. This work is utilizes the Globus Toolkit [15],

where GT has four major components such as Grid

Information System (GIS), Monitoring and Discovery System

(MDS), Grid Resource Allocation Management (GRAM),and

Grid File Transfer Protocol (GridFTP). This work makes use

of MDS and GIS component. The prototype system proposed

here registers and publishes the prediction information in GIS

and realized through MDS.

In this work, the prototype runs in each grid node, monitors

the usage of resources, which is used in the run time

prediction. This model has two methods for collecting

information namely local registration and global registration.

The local registration service collects the resource information

and stores it in native information service; later global

registration method aggregates it with superior. Run time

prediction subsystem uses this buffered information to predict

the future run time in accordance with confidence degree.Hui

Li [16] have used Instance based learning algorithm. His

approach is based on statistical learning on historical dataset

with two performance metrics namely Application run time

and queue wait time. The non parametric learning technique

called Instance based learning (IBL) to predict run time from

historical data. The run time attributes like group name, user

name, job name is used for prediction analysis.

Shonali Krishnaswamy, Arkady Zaslavsky and Seng Wai

Loke [17] have used rough set theory to predict the run time

of application. They have used rough set to find the similarity

analysis and mean value for prediction. In rough set

algorithm, reduct and Dispensability are used to reduce the

iterations in finding similarities. Their conditional attributes

include the application name, size, computational resources

used etc. This work outperforms the previous work [10],

where [10] suffers from a mean error in runtime. The work

presented in [18] made an assumption that similar jobs have

similar run times. They have used around

 Seven conditional attributes for making decision on runtime.

Templates were prepared to fine similarity between job

properties, function sim(j1,j2) finds similarity between j1 and

j2. Assume k is the neatest jobs found, and then the estimation

of job j is the mean of run times of k nearest jobs. A standard

deviation was applied to the estimation in order to overcome

the problem of under estimation. It was shown that this

proposal out performs the one presented in [19] and [10]. The

result shows low range to mean absolute error 0% on 50% of

load and 7.5% on the rest of the 50%.

Maleeha Kiran , Aisha-Hassan A. Hashim, Lim Mei Kuan

and, Yap Yee Jiun[21] have projected a method exclusively

for R! Scripts. Their idea has a clue from compiler operations,

source code of an R job (or script) will be parsed and

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.7, May 2012

41

tokenized similar to the way a compiler does. The execution

time each token were obtained from the database and help to

improve the accuracy of the prediction. Only the

benchmarked combined as a whole using mathematical

calculation. Here each machine begins with benchmarking

application, which data’s are stored in the repository hence it

servers as architectural neutral method. Using R! Scripts limit

this method in using different jobs. The method shows around

91% of accuracy with only 9% of prediction error

Table 1: Performance analysis of prediction algorithms
Method Proposed Type of prediction

used

Application/

Resource

Based

Run time

value

estimated by

Performance Limitations

/Advantages

Augmented Analytical

Benchmarking

Representative Set

Analytical

Benchmarking

Application

Based

RST Methodology alone

Predictability of process

resource usage [9]

K-means Resource

based

By estimating

Resource
usage

 Mean error 7.3%

Statistical Prediction of

Task Execution Times [8]

Hybrid method

Analytical

Benchmarking and K-

NN smoothing

Application

based

Linear

Regression

Low prediction error

with large no of jobs

1-D K-NN smoothing

give lower

computational cost.

Run time of a job using

historical data[10,11]

Template Based

Historic Information

Application linear

regression

Wait time prediction

error – 34%

Suffers from mean

error in runtime

Estimating execution time

of distributed applications,

[12]

Graph Based Application Weight of

vectors

Low error with

diminishing job

matrix

Low contribution of

communication

delay is source of

error

Information Service

Prototype System for Run-

time Prediction [14]

Statistical

Resource Based

GIS,MDS

Application

Regression Demanded run time

decreases if relative

error on prediction

decreases

Adv: Architectural

Neutral

An Architecture for an

Adaptive Run-time

Prediction System[13]

Historic information Application quantifiers 14% deviation in

prediction of 95% of

submitted

Evaluation of grid

computing a model and

prediction perspective [16]

Historic Information Application Instance based

learning (IBL)

Methodology alone

Predicting runtime of

application using rough

sets[17]

Historic Information

Rough set

Application Regression Mean error less lower

by 50% than worst

case analysis [10]

Using Historical Data to

Predict Application

Runtimes [18]

Historic information

Application Mean with

std.deviation

Mean absolute error

0% on 50% load and .

7.5% on rest , out

performs [9]

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.7, May 2012

42

Emmanuel Jeannot, Keith Seymour and their fellow mates

[22] have proposed a template based run time prediction,

which done on Network Enabled Servers implemented on

GridSolve. The GridSolve is a client-agent server system

which provides remote access to hardware and software

through a variety of client interfaces. Here the template used

to predict the run time has two parts, the first part complaints

polynomial of parameters of the problem and the second part

consists of a set of categories far the parameters be passed for

operation. The parametric regression system used to set or

update the coefficient at run time . Each time when model

asks for the run time prediction, system switches to the

corresponding model or category and gives the execution time

value. There is inadequacy in this approach on initial stage

when coefficient is one this model may not work well, but

later stage when the information is sufficiently high, this

model gives precise result.

Marco A.S. Netto ,Christian Vecchiola, Michael Kirley ,

Carlos A. Varela, Rajkumar Buyya [23], has suggested a new

prediction method to be used processor collocation, which

employees iterative analysis. If the job has n iterations in an

execution and K be iteration where execution becomes steady.

The iteration starts with zero and incremented for a sweep,

until the prediction become steady. The second method

expects user to write outputs on each iteration, time interval

between two iterations were computed. J. M. Ramirez Alcaraz

et al [24] have projected a technique for run time prediction,

which uses user run time estimate, system run time estimate

and run time prediction. Once the job is submitted to the

system a template consists of <Pj, Pj ', Pj''> is prepared, Pj

execution of job j , Pj '

denotes user run time estimate and Pj'' denotes

system generate predictions. Dan Tsafrir, Yoav Etsion, and

Dror G. Feitelson [25] has shown that the prediction of a new

job J is derived from the average runtime of the two most

recent jobs that were submitted by the same user prior to J and

that have already terminated will improve the prediction

performance. If no such jobs exist, they fall back on the

associated user estimate. David Talby Dan Tsafrir Zviki

Goldberg Dror G. Feitelson [26] has come with session based,

estimation–less and information-less run time prediction for

parallel and grid jobs. In session based prediction they used

historical data about users and the user runtime estimates of

submitted jobs. Estimation is based on user session, it takes

work period of user and population of job in the jobs in the

same session. In Estimation less module, the user need not

submit their estimation, predictor uses history to generate the

estimation. In Information less prediction methods, it neither

uses user estimate nor system generated prediction. This

predictor is the constant predictor predict the same, constant

runtime for all jobs

6. CONCLUSIONS

The run time estimates are an important research area in the

current Meta computing environment because of twofold: in a

grid like environment user don’t know in which machine their

job is going to scheduled so their estimation to their job is of

no use or incorrect, the user may overestimate their job in

order to get their job done as earlier. There are many methods

presented for predicting the run time, each of them has their

own advantages and limitations. Table 1. Presents various

aspects of prediction algorithms. This paper analyses about

the statistical prediction. They fall into broad categories of

analytical benchmarking and history based. Great influence of

program execution frequency is a clue for success history

based methods. There are two ways to store the historical

information from job execution. It can be stored in a central

job history database, or it can be decentralized with each

execution site maintaining its own job execution history.

Prediction of run time is a key to improve the scheduling

performance. The more research is anticipated to use data

mining techniques in this field. The prediction of run time is

large area this study is a small light towards that, out of which

we erudite a lot about, run time prediction and branches in

that

7. ACKNOWLEDGEMENTS

I would like to thank Dr. ShankarKumar for guiding me to

come out with this paper. I record my gratitude to ,

Dr.V.Palanisamy, Pricipal and Dr.ChitraManohar, secretary

INFO Intitute of Engineering. I also thank Dr.

Umamaheswari for her valuable suggestions and guidance.

8. REFERENCES
[1] A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C.-

L. Wang.Heterogeneous computing: Challenges and

opportunities. IEEE Computer, 26(6):18–27, June 1993

[2] A. Khokhar, V. Prasanna, M. Shaaban, and C.-L.Wang.

Hetro- geneous supercomputing: Problems and issues. In

Proc. of the 1992 Workshop on Heterogeneous

Processing, pages 3–12 . IEEE Computer Society Press,

Mar. 1992

[3] D. Pease, A. Ghafoor, I. Ahmad, D. L. Andrews,K.

Foudil-Bey, T. E. Karpinski, M. A. Mikki, and M.

Zerrouki. PAWS: A performance evaluation tool for

parallel computing systems. IEEE Computer, 24(1):18–

29, Jan. 1991

[4] J. Yang, I. Ahmad, and A. Ghafoor. Estimation of

Execution times on heterogeneous supercomputer

architectures.In the 1993 Inter. Conf. on Parallel

Processing,volume 1, pages 219–226. CRC Press, Aug.

1993.

[5] R. Freund. Optimal selection theory for

superconcurrency. In Proceedings of the 1989

Supercomputing Conference,pages 13–17. IEEE

Computer Society Press,1989.

[6] J. Yang, I. Ahmad, and A. Ghafoor. Estimation of

execution times on heterogeneous supercomputer

architectures. In the 1993 Inter. Conf. on Parallel

Processing, volume 1, pages 219–226. CRC Press, Aug.

1993.

[7] C. Levit, “Grid Communication on the Connection

Machine: Analysis, Performance and Improvements”,

Tech. Report 88.19, Research Inst. for Advanced

Computer Science, NASA Ames Research Center,1988

[8] Michael A. Iverson, FuEsun OE zguEner and

LeePotter,Statistical Prediction of Task Execution

Timesthrough Analytic Benchmarking for Scheduling in

Heterogeneous Environment, IEEE Transactions On

Computers, VOL. 48, NO. 12, DECEMBER 1999.

[9] M. V. Devarakonda and R. K. Iyer. Predictabilityof

process resource usage: A measurement-based study on

UNIX. IEEE Trans. Software Engineering, 15(12):1579–

1586, Dec. 1989

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.7, May 2012

43

[10] WarrenSmith, ValeirTaylor, and IanFoster, Using Run-

Time predictions to estimate queue wait times and

improve scheduler performance, Lecture Notes in

Computer Science (LNCS), 1659, Springer-

Verlag,pp.202-229.

[11] Warren Smith, Ian Foster, and Valerie Taylor, Predicting

application run times using historical information,

J.parallel and Dist.computing. 64(2004)1007-1016

[12] Maciej Drozdowski, Estimating execution time of

distributed applications,PRAM 2001,LNCS 2328,pp 137-

144,2002

[13] Christian Glasner, Jens Volkert, An Architecture for an

Adaptive Run-time Prediction System. 2008 International

Symposium on Parallel and Distributed Computing.

[14] Xilong Che, Liang Hu, Dong Guo, Kuo Tang and Debin

Hu, Information Service Prototype System for Run-time

Predictionof Grid Applications, 2nd International

conference on Pervasive Computing and Applications,

ICPCA 2007.

[15] www.globus.org

[16] Hui Li, Performance Evaluation of grid computing a

model and prediction perspective, Seventh IEEE

International Symposium on Cluster Computing and the

Grid(CCGrid'07)

[17] Shonali Krishnaswamy, Arkady Zaslavsky and Seng Wai

Loke,Predicting runtime of application using rough

sets.IEEE distributed systems online,April 2004.Vol.5.

[18] Tran Ngoc Minh, Lex Wolters, Using Historical Data to

Predict Application Runtimes on Backfilling Parallel

Systems, 2010 18th Euromicro Conference on Parallel,

Distributed and Network-based Processing

[19] D. Tsafrir, Y. Etsion, D. G. Feitelson, “Backfilling Using

System Generated Predictions Rather than User Runtime

Estimates”, IEEE Transactions on Parallel and Distributed

Systems, Volume 18, Pages 789-803, 2007

[20] H. Li, D. Groep, L. Wolters, “Mining Performance Data

for Metascheduling Decision Support in the Grid”, Future

Generation Computer Systems 23, Pages 92-99, Elsevier,

2007.

[21] Maleeha Kiran , Aisha-Hassan A. Hashim1, Lim Mei

Kuan, Yap Yee Jiun, Execution Time Prediction of

Imperative Paradigm Tasks for Grid Scheduling

Optimization, IJCSNS International Journal of Computer

Science and Network Security, VOL.9 No.2,February

2009

[22] Emmanuel Jeannot, Keith Seymour, Jack J. Dongarra, and

Asym Yarkhan, Improved runtime and transfer time

prediction mechanisms in a network enabled servers

middleware, Parallel Processing Letters, World Scientific

Publishing Company, January 2006

[23] Marco A.S. Netto , Christian Vecchiola , Michael Kirley ,

Carlos A. Varelab, Rajkumar Buyya, Use of run time

predictions for automatic co-allocation of multi-

clusterresources for iterative parallel applications, J.

Parallel Distrib. Comput. 71 (2011) 1388–1399

[24] Juaan manuel ramirez, Alcaraz ,Andrei

Tchernykh,raminyahyapour,Uwe Schwiegelshohn , Ariel

Quezada Pina,Jose Luis Gonzalez,garacia,Adan Hiralgies

,Carbajal, Job Allocation Strategies with with User run

time Estimation for online scheduling for hierarchical

grids, Journal of Grid Computing, Volume 9 Issue 1,

March 2011 9:95–116

[25] Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson,

Backfilling Using System-Generated Predictions Rather

than User Runtime Estimates, IEEE Trans. on Parallel

And Distributed Systems, Vol. 18, No. 6, June 2007

[26] David Talby Dan Tsafrir Zviki Goldberg Dror G.

Feitelson, Session-Based, Estimation-less, and

Information-less Runtime Prediction Algorithms for

Parallel and Grid Job Scheduling, Technical Report,

school of computer science and Engineering, Hebrew

University of Jerusalem 2006

