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ABSTRACT 
To make effective job placement policies for a volatile large 

scale heterogeneous system or in grid systems, scheduler must 

consider the job execution time. In most grid schedulers, 

execution time of job is to be known in the prior. The 

execution time given by user may not be more precise, 

execution time predictors are used in order to facilitate the 

dynamic scheduling. The prediction algorithms use analytical 

bench marking/ code profiling, historical data, and code 

analysis. The prediction algorithm should be nonclairvoyant 

in nature. This study reviews execution time prediction 

algorithms in a different perspective. This algorithm considers 

memory accessing, network performance, and fluctuation of 

competing CPU load and so on, as interference factors for 

prediction. Based on the understanding comprehensive 

analysis is made among them. 
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Keywords 
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1. INTRODUCTION 
We are now in the era of production grids, where large no of 

users with different needs, use different application areas, live 

geographically distributed areas share the same resources. 

Guaranteed quality of service is one of the most challenging 

aspects of grid computing environment. Due to increased 

parallelism, tools to match code with candidate architecture 

and to evaluate the performance of such match are essential. 

So we need new ways for predicting the run time estimation 

of the job submitted by user. The fig. 1 shows the  methods 

for execution time prediction, that can be classified in two 

categories like, code profiling/ Analytical benchmarking 

[1,2,3,4,5], and Statistical prediction [8,9,10,11]. 

2. CODE PROFILING 
Code profiling was initially introduced by Freund et at. The 

code profiling is a code specific function, signified to identify 

the embedded parallelism inside the code. Actually the source 

code is broken into code segments, where the processing 

requirements of the each segment may be same or 

heterogeneous. These segments were given an optimum 

processor that produces better efficiency on the given code 

segments. Once the code is divided into parts, the code-type 

profiler is called, which will identify the nature of the code. 

The types of code may be vectorizable decomposable, 

vectorizable non-decomposable, fine/coarse grain parallel, 

SIMD/MIMD parallel, scalar, and special perfectly purpose 

(like Fast Fourier Transforms, or specialized sort algorithms). 

 
                      Code Profiling & Analytical Benchmarking 

Runtime 
Predictorr  

                                                                     Application based 

                                                                            
                               Using Historical 

                                 Data                                   

                                                                      Resource   based   
 

Fig.1. Taxonomy of Run time predictions 

 

3. ANALYTICAL BENCHMARKING  
In parallel programming, user may give their input 

data statically or dynamically. The static timing is generally is 

unaffected by the run time environment .But dynamic time 

values are highly sensitive to run time environment, these are 

identified by analytical benchmarking [1,2,3,4,5]. Analytic 

benchmarking/ code profiling was first presented by Freund 

[5], and has been extended by Pease et al. [3], Yang et al. 

[6],and Khokhar et al. [1,2]. Ashfaq A. Khokhar, Viktor K. 

Prasanna [1]  stated that Analytical benchmarking is  a test to 

make sure how well a machine performs on given code type. 

Once the code profiling is done, the type of code is identified. 

Now analytical bench marking determines the performance of 

the machine on identifying code type. Levit [7] has proposed 

a novel analytical model for grid communication, it takes 

geometry of physical and virtual processor, dimensions of 

communication and size of input data’s in to consideration. 

4. STATISTICAL PREDICTIONS 
Here the run time of a task is predicted using the past 

observations. Each machine consists of set of past 

observation; this history is used to make a new prediction. 

The prediction method takes data’s from input parameters, so 

no additional knowledge is required. This method has two 

iterations, in first iteration similar jobs are found and in the 

second iteration the prediction is performed. The intrinsic 

complexity of this method falls in selecting the similar jobs. 

The similar jobs an identified using or comparing different job 

parameters like user of the job, OS, No. Of. Nodes used and 

machine architecture etc. Once similar jobs are found they are 

grouped together. In the second iteration, the prediction is 

performed either by considering mean, or by using probability 
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functions of previous execution times or even by regression 

analysis model. Isolation of job histories in individual 

machine, prediction error on lower data sets, are seems to be a 

major drawback of this method.  

In recent grid computing environments[15], it is suggested 

that, this history can be stored in cluster heads. These cluster 

heads will make the decision on the scheduling hierarchical 

workflow model. 

5. RECENT WORKS 
R. F. Freund [5] proposed a new idea the , where his proposal 

consists of 2 parts. In the first part he tends to split the code, 

these code groups may homogeneous or heterogeneous 

requirements. After finding the code types, he tries to assign 

to a machine which  optimally suits to execute the code type. 

Jaehyung Yang, Ishfaq Ahmad, Arif Ghafoor [4] has proposed 

Augmented code profiling and augmented analytical 

benchmarking, to characterize applications and architectures 

in a Distributed Heterogeneous Supercomputing System. This 

method is based on generating Representative Set of 

Templates (RST). This RST’s allows user to generate code 

profiles, which can represent the execution behaviour of the 

task at varying levels of details.  

 

In [9] the run times were predicted using the past 

observations. Initially high density usage of resources was 

identified and clustered, using these cluster state transitions 

were built in order to characterize the resource usage in 

previous runs. They have used k-means clustering with three 

dimensional populations which include CPU time, file I/O, 

memory used. In [10,11] Ian Foster and their colleagues 

presented methods for predicting queue wait times and run 

time of a job. In earlier cases, the authors concentrated on 

eliciting the similarity between the jobs. They proposed two 

templates (q,u)and  (u,n),which are used to categorize the 

application A. The category CA  was eliminated from the 

universal set of C. For each  CA   run-time estimates were 

calculated and the one with smallest confidence interval was 

chosen as run time of the job A, Either mean or linear 

regression was used to compute the estimates. 

M. A. Iverson et al [12] and their fellow mates have proposed 

a method that uses a non parametric regression technique 

based execution time prediction that used past observations. 

Since the non parametric regression technique does not any 

machine architecture, this algorithm also acts like 

architectural neutral. This algorithm uses K-Nearest 

Neighbour (K-NN) smoothing. Here estimate m (x) for the 

parameter A is calculated from k observations with x values 

closest to the parameter A. From their result it is determined 

that 1 D K-NN give lower computational cost than 4-D and 

11-D K-NN smoothing, It is also found that is method works 

well on increasing jobs. Maciej Drozdowski et al. [12] 

Proposed some metrics for a good prediction system they are 

1) Actual order of the program operation 2) respect 

communication delay 3) eliminates the influence of other user 

and application sharing computing environment and 4) having 

simple implementation. G (V, A) represents DAG with V 

forking events and A activity arcs .The duration of the 

computational arc between two events is measured as process 

time of jobs. The GetProcessTime and time methods give 

process time and eliminates eliminating influences by other 

user. It was shown that with growing contributions of 

processing time in overall execution time, the difference 

between estimated and astronomical times diminishes. It is 

also shown that estimation of communication time is an 

important source of error in this method. In [13] Christian 

Glasner, Jens Volkert has proposed an adaptive architecture 

for running time predictions. The method they proposed not 

only considers job parameters but also considers behaviour of 

users as single or as group. Here are set of observations cost  

is taken at time t and historic information is described as a 

tuple (ti, xi), using  which a filtered set is created. These sets 

are given as input to the predictors, and quantifiers are used to 

select the most opted predictor for the situation. This selection 

is based on the earlier behaviour of the user, and final forecast 

is made. 

A prediction model for grid environment has been proposed 

by Xilong Che, Liang Hu, Dong Guo, Kuo Tang and Debin 

Hu sed in [14]. This work is utilizes the Globus Toolkit [15], 

where GT has four major components such as Grid 

Information System (GIS), Monitoring and Discovery System 

(MDS), Grid Resource Allocation Management (GRAM),and   

Grid File Transfer Protocol (GridFTP). This work makes use 

of MDS and GIS component. The prototype system proposed 

here registers and publishes the prediction information in GIS 

and realized through MDS. 

In this work, the prototype runs in each grid node, monitors 

the usage of resources, which is used in the run time 

prediction. This model has two methods for collecting 

information namely local registration and global registration. 

The local registration service collects the resource information 

and stores it in native information service; later global 

registration method aggregates it with superior. Run time 

prediction subsystem uses this buffered information to predict 

the future run time in accordance with confidence degree.Hui 

Li [16] have used Instance based learning algorithm. His 

approach is based on statistical learning on historical dataset 

with two performance metrics namely Application run time 

and queue wait time. The non parametric learning technique 

called Instance based learning (IBL) to predict run time from 

historical data. The run time attributes like group name, user 

name, job name is used for prediction analysis. 

Shonali Krishnaswamy, Arkady Zaslavsky and Seng Wai 

Loke [17] have used rough set theory to predict the run time 

of application. They have used rough set to find the similarity 

analysis and mean value for prediction. In rough set 

algorithm, reduct and Dispensability are used to reduce the 

iterations in finding similarities. Their conditional attributes 

include the application name, size, computational resources 

used etc. This work outperforms the previous work [10], 

where [10] suffers from a mean error in runtime. The work 

presented in [18] made an assumption that similar jobs have 

similar run times. They have used around 

 Seven conditional attributes for making decision on runtime. 

Templates were prepared to fine similarity between job 

properties, function sim(j1,j2) finds similarity between j1 and 

j2. Assume k is the neatest jobs found, and then the estimation 

of job j is the mean of run times of k nearest jobs. A standard 

deviation was applied to the estimation in order to overcome 

the problem of under estimation. It was shown that this 

proposal out performs the one presented in [19] and [10]. The 

result shows low range to mean absolute error 0% on 50% of 

load and 7.5% on the rest of the 50%. 

Maleeha Kiran , Aisha-Hassan A. Hashim, Lim Mei Kuan 

and, Yap Yee Jiun[21] have projected a method exclusively 

for R! Scripts. Their idea has a clue from compiler operations, 

source code of an R job (or script) will be parsed and 
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tokenized similar to the way a compiler does. The execution 

time each  token were obtained from the database and help to 

improve the accuracy of the prediction. Only the 

benchmarked combined as a whole using mathematical 

calculation. Here each machine begins with benchmarking 

application, which data’s are stored in the repository hence it 

servers as architectural neutral method. Using R! Scripts limit 

this method in using different jobs. The method shows around 

91% of accuracy with only 9% of prediction error 

 

Table 1: Performance analysis of prediction algorithms 
Method Proposed Type of prediction 

used 

Application/ 

Resource 

Based 

Run time 

value 

estimated by 

Performance Limitations 

/Advantages  

Augmented Analytical 

Benchmarking  

Representative Set 

Analytical 

Benchmarking 

Application 

Based 

RST  Methodology alone  

Predictability of process 

resource usage [9] 

K-means Resource 

based 

By estimating  

Resource 
usage 

 Mean error 7.3%  

Statistical Prediction of 

Task Execution Times [8] 

Hybrid method  

Analytical 

Benchmarking and K-

NN smoothing 

Application 

based 

Linear 

Regression  

Low prediction error 

with large no of jobs  

1-D K-NN smoothing 

give lower 

computational cost. 

 

Run time of a job using 

historical data[10,11] 

Template Based 

Historic Information 

Application  linear 

regression 

Wait time prediction 

error – 34% 

Suffers from mean 

error in runtime 

Estimating execution time 

of distributed applications, 

[12] 

Graph Based Application Weight  of 

vectors 

Low error with 

diminishing  job 

matrix 

Low contribution of 

communication 

delay is source of 

error 

Information Service 

Prototype System for Run-

time Prediction [14] 

Statistical 

Resource Based 

GIS,MDS 

Application 

Regression Demanded run time 

decreases if relative 

error on prediction 

decreases 

Adv: Architectural 

Neutral 

An Architecture for an 

Adaptive Run-time 

Prediction System[13] 

Historic information Application  quantifiers 14% deviation in 

prediction of 95% of 

submitted 

 

Evaluation of grid 

computing a model and 

prediction perspective [16] 

Historic Information Application Instance based 

learning (IBL) 

Methodology alone  

Predicting runtime of 

application using rough 

sets[17] 

Historic Information 

Rough set 

Application Regression  Mean error less lower 

by 50% than worst 

case analysis [10] 

 

Using Historical Data to 

Predict Application 

Runtimes [18] 

Historic information 

 

Application Mean with 

std.deviation 

Mean absolute error 

0% on 50% load and . 

7.5% on rest , out 

performs [9] 
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Emmanuel Jeannot, Keith Seymour and their fellow mates 

[22] have proposed a template based run time prediction, 

which done on Network Enabled Servers implemented on 

GridSolve. The GridSolve is a client-agent server system 

which provides  remote access to hardware and software 

through a variety of client interfaces. Here the template used 

to predict the run time has two parts, the first part complaints 

polynomial of parameters of the problem and the second part 

consists of a set of categories far the parameters be passed for 

operation. The parametric regression system used to set or 

update the coefficient at run time . Each time when model 

asks for the run time prediction, system switches to the 

corresponding model or category and gives the execution time 

value. There is inadequacy in this approach  on initial stage 

when coefficient is one this model may not work well, but 

later stage when the information is sufficiently high, this 

model gives precise result. 

 

Marco A.S. Netto ,Christian Vecchiola, Michael Kirley , 

Carlos A. Varela, Rajkumar Buyya [23], has suggested  a new 

prediction method to be used processor collocation, which 

employees iterative analysis. If the job has n iterations in an 

execution and K be iteration where execution becomes steady. 

The iteration starts with zero and incremented for a sweep, 

until the prediction become steady. The second method 

expects user to write outputs on each iteration, time interval 

between two iterations were computed. J. M. Ramirez Alcaraz 

et al [24] have projected a technique for run time prediction, 

which uses user run time estimate, system run time estimate 

and run time prediction. Once the job is submitted to the 

system a template consists of <Pj, Pj ', Pj''>  is prepared, Pj 

execution of job j , Pj ' 

denotes user run time estimate and Pj'' denotes 

system generate predictions. Dan Tsafrir,  Yoav Etsion, and 

Dror G. Feitelson [25] has shown that the prediction of a new 

job J is derived from the average runtime of the two most 

recent jobs that were submitted by the same user prior to J and 

that have already terminated will improve the prediction 

performance. If no such jobs exist, they fall back on the 

associated user estimate. David Talby Dan Tsafrir Zviki 

Goldberg Dror G. Feitelson [26] has come with session based, 

estimation–less and information-less run time prediction for 

parallel and grid jobs. In session based prediction they used 

historical data about users and the user runtime estimates of 

submitted jobs. Estimation is based on user session, it takes  

work period of user and population of job in the jobs in the 

same session. In Estimation less module, the user need not 

submit their estimation, predictor uses history to generate the 

estimation. In Information less prediction methods, it neither 

uses user estimate nor system generated prediction. This 

predictor is the constant predictor predict the same, constant 

runtime for all jobs 

6.  CONCLUSIONS 

The run time estimates are an important research area in the 

current Meta computing environment because of twofold: in a 

grid like environment user don’t know in which machine their 

job is going to scheduled so their estimation to their job is of 

no use or incorrect, the user may overestimate their job in 

order to get their job done as earlier. There are many methods 

presented for predicting the run time, each of them has their 

own advantages and limitations. Table 1. Presents various 

aspects of prediction algorithms. This paper analyses about 

the statistical prediction. They fall into broad categories of 

analytical benchmarking and history based. Great influence of 

program execution frequency is a clue for success history 

based methods.    There are two ways to store the historical 

information from job execution. It can be stored in a central 

job history database, or it can be decentralized with each 

execution site maintaining its own job execution history. 

Prediction of run time is a key to improve the scheduling 

performance. The more research is anticipated to use data 

mining techniques in this field. The prediction of run time is 

large area this study is a small light towards that, out of which 

we erudite a lot about, run time prediction and branches in 

that 
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