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ABSTRACT 

This paper proposes a Particle Swarm Optimization (PSO) 

method for determining the optimal parameters of a first-order 

controller for TCP/AQM system. The model TCP/AQM is 

described by a second-order system with time delay. First, the 

analytical approach, based on the D-decomposition method 

and Lemma of Kharitonov, is used to determine the stabilizing 

regions of a first-order controller. Second, the optimal 

parameters of the controller are obtained by the PSO 

algorithm. Finally, the proposed method is verified and 

compared with the PI controller using the Network Simulator, 

NS-2. 
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1. INTRODUCTION 
During the last few years, the number of users in internet has 

grown rapidly, which leads problems in network in 

communication (because high packet loss rates, increased 

delays ...), indeed in network, the packet loss indicates 

congestion which happens when the packet flow is greater 

than the link capacity. In fact, the congestion-control 

mechanism becomes indispensable in an over-charged 

network. TCP (Transmission Control Protocol), has been the 

basis of control congestion. It adopts the end-to-end window-

based flow control to avoid congestion [1].  Recently, we 

assist to a growing interest of designing AQM (Active Queue 

Management) using control theory. The goal of AQM is to 

maintain shorter queuing delay and higher throughput by 

dropping packets at intermediate nodes. It has therefore 

attracted attention in the research for transmission control 

protocol (TCP) of end-to-end congestion control. Random 

early detection (RED) [2] is the first well known AQM 

algorithm, which aims to drop packets with a certain 

probability a function of the average queue size. Furthermore, 

it is difficult to obtain adequate values of RED parameters to 

provide satisfactory performance in terms to provide of 

overall quality of service (QoS). Therefore, feedback control 

principles appear to be an appropriate tool in the analysis and 

design of AQM strategies. Some controllers for AQM based 

on feedback control theory have been developed, such as 

Integral (I) controller and PI controller in [3], Proportional-

Derivative (PD) controller in [4], and PID controller in [5, 6].  

The first-order controllers derived of phase-lead and phase –

lags, have been used in the last decades. In fact, the problem 

of determining all stabilizing first-order controllers with 

analytical methods for delay free linear time-invariant systems 

has been recently solved in [7, 8, 9] Generally, dynamic 

performance of PI/PID and first-order controllers are unable 

to satisfy some performance specification of the transient 

performance (including small rise time, small settling time 

and small overshoot) and small steady state error 

simultaneously in some situation.  For resolved this problem 

an algorithm of improving the performance, based on Particle 

Swarm Optimization (PSO) is proposed, to determine  the 

optimal parameters of the first–order controller for TCP 

/AQM system. Indeed, the model of TCP/AQM is described 

by a second-order system with time delay [10]. Nevertheless, 

several approaches have been proposed to determine the 

stabilizing region of controller parameters for TCP/AQM 

model without take into account the delay in the closed loop 

[11, 12, 13] Our objective is to determining stabilizing 

optimal parameters of a first-order controller of the 

TCP/AQM model with time delay, using the PSO algorithm, 

for guarantee some performance for a high performance, this 

algorithm is named PSO/first-order controller. This paper has 

been organized as follows: in section 2, we introduce first the 

linear control system model. Next, we describe the AQM 

control law using a first-order controller with a mathematical 

formulation of its digital implementation. The stabilizing 

regions in the parameter space of a first-order controller for 

TCP/AQM system with time delay are determined with the 

analytical method in section 3. In section 4, the PSO method 

is proposed to obtain the optimal parameters of the controller. 

Simulation results both in Matlab and NS-2 are given in 

section 5. Finally, the conclusion is drawn in section 6.  

2. MODEL TCP/AQM 

2.1 TCP flow Control Model 
The dynamic model of TCP/AQM is developed in [14] using 

a fluid flow and stochastic differential equation analysis. In [3, 

10] the model is simplified and ignores the time out 

mechanism and slow start phase of TCP. This model is 

described by the following non-linear differential equations: 
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where ( )W t denotes theTCP window size (packet), ( )q t denotes 

the queue length in the router (packet);    
( ) ( )

;
dW t dq t

W t q t
dt dt

     



International Journal of Computer Applications (0975 – 8887) 

Volume 45– No.7, May 2012 

32 

 

( )p t denotes the probability packet marking/dropping 

  ( ) 0,1p t  ;  R t denotes the round-trip time;  C t denotes the 

link capacity (packet/s); 
p

T denotes  the propagation delay (s) 

;  N t denotes the load factor (number of TCP sessions). 

The first differential equation in (1) describes the TCP 

window control dynamic and the second equation models the 

bottleneck queue length. The queue length and window size 

are positive, bounded quantities, i.e., 0,q q    ,  0,W W  

where q and W denote  buffer capacity and maximum 

window size, respectively. Also, the marketing probability 

p takes value only in  0,1 .The dynamic model of TCP/AQM 

(1) is linearized in [3, 10], we illustrated the linear TCP/AQM 

dynamics in the linear TCP/AQM dynamics in a block 

diagram in Fig. 1. According to Fig. 1, the TCP/AQM model 

can be expressed by the transfer function ( )G s . 
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where ( )
TCP

G s denotes the transfer function from loss 

probability p  to window size W and ( )G s
queue

relates W to 

queue length q . The term 
0sR

e


is the Laplace transform of the 

time delay in the delayed loss probability 
0( )p t R   notes the 

queue‟s dynamic. The network parameters , , 0N C R are 

positive, and 0
0

R   is the time delay [10].It is clear that the 

linearized TCP/AQM model is a second order plant with time 

delay.  

 

Fig1: Block diagram of the linerarizd TCPflow- control 

model 

2.2 AQM Control System Design 

In this section, we present first the AQM control law using the 

first-order controller. Then we demonstrate the implemented 

digital of this controller. 

2.2.1 First-Order Controllers in AQM system 
In fig 2, we give a closed-loop feedback control system 

depiction of AQM, where ( )C s is the AQM controller, 

   ( )G s G s G s
TCP queue

  is the plant dynamics,
0q is to the 

desired queue length around which the controller should 

stabilize q  

 

 

Fig 2:  Block diagram of AQM control system 

Transfer function of first order controller for AQM is 

described as   follows     

                                                                                               (3)  

2.2.2 Digital implementation of the first-order 
controller 

The objective of an AQM controller is to mark packets with a 

probability p .The marking probability is calculated according 

to the first-order controller and it is a function of the 

difference between the instantaneous queue length and the 

desired queue length to which we want to regulate, where 

q is given by 
0q q q    and, we assume

0 0p  , which 

makes p p  , The first order controller transfer function is in 

the form (1.1) , we can write 

 

                                                                                              (4)                                                             

In order to evaluate the effectiveness and performance of the 

proposed first order controller by simulation, we use the ns 2 

simulator which presents a discrete event simulator. In fact, 

the first order controller is not implemented in the core of 

Network Simulator, NS-2[15]. Hence, for the digital 

implementation of the first-order controller, we need to 

convert the transfer function (4) describe in the s–domain 

(Laplace Transform) into a z- transform and choose sampling 

frequency f
s

as 10-20 times the loop bandwidth. In our case, 

we choose 160f Hz
s
  [3, 10].  

The first-order controller transfer function is in the form (5), 

and in z-domain it becomes  
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where 
3

A  2 1 3B      and 1 sT
e

 
  

This transfer function (5) can be converted to the following 

difference equation for ,st kT  where 1 ,s sT f  
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     (6)                         

The digital implementations of a first-order controller tested 

in NS-2 can be described by the following pseudo code called 

at every sampling time. 
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It is clear that the pseudo code (7) dependent of the first-order 

controllers parameters  , ,1 2 3   . 

3. STABILIZING FIRST-ORDER 

CONTROLLERS 
 In this section, the aim is to determine the stabilizing regions 

of first-order controllers for TCP/AQM model with time delay 

via parametric methods. We consider the closed–loop AQM 

system in fig2, where ( )G s denotes the function transfer of the 

TCP/AQM plant and ( )C s denotes the transfer function of the 

first-order controller (3) 

             
 
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TCP queue Q S
                   (8)                                   
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The network parameters  , , 0N C R are positive, and
0R  is the 

time delay. The closed-loop AQM system is a second -order 

system with time delay, whose characteristic equation is  

                                 
   1 0C s G s 

                                 (9)                                       

which leads to the following characteristic quasi-polynomial.  

                                                                                         (10)                                     

 Multiplying both sides of by 0R s
e yields                                       

                                                                                        (11)                                                             

As 0R s
e does not have any finite zeros [16], the zeros of 

*
( )sV are identical to those of ( )sV . The characteristic 

quasi-polynomial  
*

( )sV  of the closed-loop AQM system is 

stable if and only the zeros of ( )sV  are in open left hand 

plane (LHP).Then, ( )sV is defined as Hurwitz or stable. 

Determining stabilizing controller parameters  , ,1 2 3   of will 

be done in the next section.  

3.1 Determining the Admissible Ranges 

of
1

  

The characteristic quasi-polynomial (11) dependents of three 

 , ,1 2 3    parameters, in fact to finding  the stabilizing  

regions of first-order controllers present difficulty to 

determine analytical, for these reason, our aims is to 

determine  the admissible ranges of the first parameters 

1
 then to determine the remaining two parameters  ,2 3  . 

Therefore, for calculating the admissible values of
1

 , the 

following Lemma 1 is given, which allow give a condition for 

the stability of ( )sV , where ( )sV denotes the derivative of 

( )sV . 

 

 

Lemma 1. [17] Consider the quasi-polynomial  

                                                                            (12)                                               

 such that ...
1 2 r
     , with main term

0 0rh  and 

0
1 r
   .If ( )sV is stable then ( )sV is also a stable quasi-

polynomial. 

Now, using Lemma 1, if ( )sV is stable then ( )sV is also a 

stable quasi-polynomial, where 
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Note that only two parameters  ,1 2  appear in the 

expression of ( )sV . 

 Repeating the same reasoning: if ( )sV is stable, then   is also 

stable, ( )sV   given by 
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Note that only one controller parameter
1

 appears in the 

expression of ( )sV , moreover the term 0R s
e has no finite roots, 

so stability of ( )sV  is equivalent to stability in expression 

(13) without term
0R s

e .To sum up, using the condition of 

Lemma 1, we can get an admissible stabilizing range for the 

controller parameter
1

  [18]. 

3.2 Stabilizing Regions in the plane of  ,2 3   

 Once the admissible values of 
1

 is fixed within the range 

determined the above procedure, the set of the stabilizing 

regions in the plane of the parameters  ,2 3  is determined by 

using the D-decomposition method [19], which is described in 

what follows  

- Substitute s by j  and set the real and imaginary 

parts of ( )sV  to zero. 

- The  ,2 3  plane can be partitioned into root-

invariant regions. 

- Stabilizing regions in the  ,2 3  plane can be 

determined by choosing a point inside the root-

invariant regions and applying classical methods. 

Evaluating the characteristic function at the imaginary axis is 

equivalent to replacing s by j , 0   in (11), which gives 

                                                                                            (15) 

                                                                                                                                                                

where ( )R  and ( )I  are the real and the imaginary part of ( )Q j  
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Three cases will be investigated. 

Case1. Setting 0  , this leads to the following equations      

                              3 1

1
0R

B
                                          

(16) Case2. For 0  , the following pair of  ,2 3  is be 

calculated for each fixed value of
1

  
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      (17)                        

By sweeping over all values 0  , the
  ,2 3  plane can be 

partitioned into root–invariant regions; therefore stabilizing 

regions can be determined. The stabilizing region determined 

by expression (16) and (17) guaranteed only that stability of 

the TCP/AQM model for closed loop, thus it is unable to 

satisfy some performance. In order to achieve good control 

performance of the TCP/AQM model, we will propose, in 

next section, a method Particle Swarm Optimization (PSO) to 

search efficiently the optimal parameters of the first -order 

controller.  

4. OVERVIEW OF PARTICLE SWARM 

OPTIMZATION 
 

4.1 Particle Swarm Optimization 

Algorithm  

PSO algorithm was developed in 1995 by James Kennedy 

(social-psychologist) and Russell Eberhart (electrical 

engineer), which is a robust stochastic optimization technique 

based on the movement and intelligence of swarms. PSO 

relies on the exchange of information between particles of the 

population called swarm moving in the search space looking 

for the best solution [20]. PSO technique can generate a high-

quality solution within shorter calculation time and stable 

convergence characteristic than other stochastic methods 

[21]–[22]. It guides searches using a population constructed 

by many particles rather than individuals. Generally, PSO is 

characterized as a simple concept, easy to implement, and 

computationally efficient. In the PSO algorithm, each particle, 

candidate solution to the optimization problem, is 

characterized by a random position and velocity. During 

flight, each particle updates its own velocity and position, by 

moving its trajectory towards its best solution (fitness) and by 

leaving a track of its coordinates in the problem space which 

are associated with the best solution that is achieved so far. 

This value is called pbest . Each particle also modifies its 

trajectory towards the best previous position attained by any 

member of its neighborhood [23]. Each particle also modifies 

its trajectory towards the best previous position attained by 

any member of its neighborhood, which represent another best 

value called gbest . The PSO concept consists of considering a 

population (swarms) of the
p

n  particle moving randomly in 

the search space looking for the best solution. The modified 

velocity and position of each particle can be calculated using 

the current velocity and the distance from
,i gpbest to  

 

 

ggbest as shown in the following formulas: 

      
2 2
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1,2,...,d m  ; 1,2,..., pi n  

where
pn is the number of particles in a group; m  is the 

number of members in a particles; t  is  the pointer of 

iterations (generations);
( )

,

t

i dv  is the velocity of particle i at 

iteration t such as min ( ) max

,

t

d i d dV v V  ; w  is the inertia weight 

factor; ,1 2c c  is the acceleration constant; 
1 2( ), ( )r r  is the 

random number between 0 and 1;
( )

,

t

i dx   is the  current position 

of particle i at iteration t ;
ipbest is the best position 

discovered by the particle until the   iteration t ; gbest  is the 

global best particle position of the entire population. Each 

particle ( 1, 2, ... )P i ni p is characterized by the current 

position  ,1 ,2 ,
, ,...,

i i i dix x x x of Pi
particle in the d-dimensional space; 

its velocity  , , ...,
,1 ,2 ,

v v v vi i i i d


; the previous position pbest  of the Pi
 

particle is recorded and represented as
,...,i dpbest ; 

 the index of best particle among all of the particles in the 

group is represented by the
dgbest . To damp the velocity and 

to reduce uncontrollable oscillations of the particles, a method 

is incorporated into the system [24] limiting the velocity to a 

maximum value predetermined
max .V This constraint is defined 

so that the particles do not move too quickly, for which 

regions searched be between the present position and the 

target position. In fact, if 
max

V is too high, particles might 

explore the good solutions, but if 
max

V is too small, particles 

may not explore sufficiently beyond local solutions. The 
max

V parameter thus improves the resolution of the search and 

arbitrarily limits the velocities of each particle
max .V  Much 

research which employed PSO algorithm
max

V was often set at 

10–20% of the dynamic range of the variable on each 

dimension [23].The constant
1c  and

2c  represents the weighting 

of the stochastic acceleration terms that pull each particle 

toward pbest and gbest positions. In some works, these 

parameters are determined from the following equation 

                               
0 4

1 2
c c  

                                (19)                                               

In our case, we adopt 
1 2 2c c   which verify equation (19) 

[25].The inertia weight factor w is used to defined the 

exploration capacity of each particle, hence to improve the 

convergence of the PSO algorithm, in general, w  is according 

to the following equation  

                

max min

max

w w
w iter

iter


 

                      (20)    
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 where
maxiter is the maximum number of iterations 

(generations), and iter  is the current number of iterations.  

4.2 Implementation of PSO/first-order 

controller 

In this part, we used the new performance criterion in the time 

domain [23] include the overshoot 
p

M , rise time
r

t ,settling 

time st  and steady state error 
ss

E  or determining the optimal 

parameters of the first-order controllers for TCP/AQM 

network systems. The first-order controller using the PSO 

algorithm is developed to improve a good step response that 

will result in performance criteria minimization in the time 

domain. Therefore, a new performance criterion  W  is 

defined as [23] 

       
       1 . .p ss s rW e M E e t t       

     (21) 

where  1 2 3, ,    are three parameters of the first-order 

controller to compose an individual and  is weighting factor. 

For used the PSO method, we adopt the term “individual” to 

replace the “particle” and the “population” to replace the 

“group” in this paper. The members  1 2 3, ,     are assigned 

as real values. If there are individuals in a population, then the 

dimension of a population is 3n . The performance 

criterion  W  can satisfy the designer requirements using  . 

In fact, if 0.7  , the overshoot and steady states error are 

reduced, but if 0.7  , the rise time and settling time are 

reduced [23]. In general, the  is defined in the range 

 0.8,1.5  [26]. In our case, due to trials,  is set to 1.5 to 

optimum the step response of TCP/AQM network systems. 

Now, we define the reciprocal of performance criterion  W   

by the fitness function f , as being the evaluation value of 

each individual in population. It implies the smaller  W  the 

value of individual  1 2 3, ,    , the higher its evaluation value 

                                     

 
 
1

f
W






                            (22)                                                                           

In many works, the Routh–Hurwitz criterion was employed to 

test the closed-loop system stability to limit the evaluation 

value of each individual of the population within a reasonable 

range [23]. If the individual satisfies the Routh–Hurwitz 

stability test applied to the characteristic equation of the 

system, then it is a feasible individual and the value of is 

small. In the opposite case, the value of the individual is 

penalized with a very large positive constant.  In our case it is 

not necessary to test the stability because the stabilizing 

regions of parameters  , ,1 2 3    are determined in the previous 

section. The proposed PSO method each particle contains 

three members  , ,1 2 3   . It means that the search space has 

three dimension and particles must „fly‟ in a three. Our 

objective here is to minimize the performance criteria such as 

the overshoot, rise time, settling, and steady- state error. We 

calculate the step response of the system and out of which we 

calculate the performance criteria. The Iterations are run till 

the performance criteria minimize. The flowchart of the PSO 

is shown in Fig .4. 
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Fig 4:  The flowchart of the PSO/first-order controller for 

TCP/AQM system 
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5. SIMULATIONS AND DISCUSSIONS 
This section validates the effectiveness and performance by 

simulation, of a first-order controller using PSO algorithm, 

named PSO/first -order controller. 

5.1 Simulations in Matlab 
In the first simulation, we will conduct simulation by Matlab. 

Thus, we consider determining the stabilizing regions in the 

parameter space of a first order controller applied to the 

system given in equation (6). According to the network 

parameter N = 60, C = 3750packets / s and
0 0.25R s , it follows 

from (23) that 

     

117187.5 0.246( )
( 0.512 )( 0.4)

sP s e
s s


 

 (23)                                            

The admissible range of
1

 is  1 -2,  , obtained by applying 

the procedure given in section 3, Then fixing 1 5
1

e    the 

interval, the stabilizing region in the plane of the remaining of 

the two parameters ( , )
2 3

  derived from equations (16) and 

(17) is determined. The stabilizing regions in the 

plane  α ,α ,α1 2 3
 in fig 5. 
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Fig 5: Stabilizing regions in the plane  α ,α ,α1 2 3  

Fig6 represents the step response of the closed loop system 

with  4( , , ) 1 5,1 4, 0 51 2 3 .e e e       
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Fig 6: Step response of the TCP/AQM closed-loop system 

It is seen that response of the closed-loop control system is 

stable, but it doesn't has good performances. Hence, in order 

to guarantee the good performance of the TCP/AQM system 

for closed loop, we applied PSO/ first-order controller, 

presented in section 4. According to the trials, the following 

PSO parameters are used to verify the performance of the 

PSO/first-order controller parameters. 

 The lower and upper bounds of the three controller 

parameters are chosen of the stabilizing regions of 

the fig5 follows as min max

1 10.5 5, 3 5e e       
 

         min max

2 20, 1.8 4 ,e     
 min max

3 30, 1.2 4e     
 

 population size= 50 

 iteration =50 

 acceleration constant 2
1 2

c c   

 
min = 0.4w  ,

max 0.9=w  

 the limit of change in velocity  [24] 
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Using the procedure presented in the flowchart, we obtain 

three optimal parameters of the first-order controller  

 1 2 3( , , ) 2.4414e-5,  5.4999e-5,1.9718e-5     

Fig 7 represents the step response of the closed loop system 

with  1 2 3( , , ) 2.4414e-5,  5.4999e-5,1.9718e-5     
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Fig 7:  Step response of the TCP/AQM closed-loop system 

using of PSO/first-order controller 

To show the effectiveness of the proposed approach, a 

comparison is made with the designed first order controller 

using PSO and the first order controller without optimization 

the performance of the two approaches are present in Table 1.   

Table 1. Performance of the PSO/first-order controller 

Performance 

Criteria  

First-order 

controller  

PSO/first-order 

controller 

Overshoot %)(pM  58.7063 12.0897 

Rise time ( )rt s  0.3986 0.3298 

Settling time ( )st s  8.0655 4.3947 

Steady- state 

error
ssE  0 0 

 

As can be seen in table1,  the PSO/first-order controller allows 

to obtain   better evaluation value, therefore,  it can  achieve 
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good performance criterion  (no overshoot, minimal rise time, 

Steady state error = 0). 

5.2 Simulation in NS 
 In order to verify the effectiveness and performance of the 

proposed PSO first order controller by simulation we used the 

NS-2 simulator .The network topology is shown in fig8.  

 

Fig 8: Simulation of network topology 

We introduced 60 TCP flows and the simulation time is 80 s. 

 1,...,S i ni  are TCP senders with average packet size 500 

Bytes. S
d

is a FTP sender which has 10 Mbps capacity and 

20ms propagation delay, the traffic scenario. The only 

bottleneck Link lies between Router 
A

R and
B

R , which has 

15Mbps capacity and 5ms propagation delay. Router 
A

R uses 

the PSO First-order controller (or PI controller), others use the 

Drop Tail. The sampling is160Hz . The buffer has a maximum 

capacity of 800 packets and the desired queue length is 200 

packets. The parameters of the PI controller defined in [3] are 

1.822 5a e  and 1.816 5b e  , the parameters of the first-order 

controller are chosen to the stabilizing region in 

fig.5  4( , , ) 1 5,1 4, 0 51 2 3 .e e e      and the parameters optimal of 

the PSO/first-order controller determined in the section 4 

are  1 2 3( , , ) 2.4414e-5,  5.4999e-5,1.9718e-5    .We will use the network 

configuration presented in fig.8, we make a comparison 

between PSO/ first-order controller with first order controller 

and  PI controller.  The desired queue is fixed at 200 packets 

in both controllers, their respective instantaneous queue 

lengths are plotted in figs 9, 10 and 11, respectively. We 

noticed that the PI controller and first -order controller have 

taken a long time to regulates the queue to reference value 

compared the PSO/ first-order controller which quickly keeps 

the queue length. 

.  

Fig 9: Instantaneous queue size, PSO/first-order controller 

 

Fig 10: Instantaneous queue size, first-order controller 

 

Fig 11: Instantaneous queue size, PI controller 

6. CONCLUSION 
This paper discusses the stability characteristic of TCP/AQM 

systems with time delay using the first-order controllers. First, 

The D-decomposition method and Lemma of Kharitonov is 

used for determining the stabilizing regions in the plane 

of  α ,α ,α1 2 3
. Second, a Particle Swarm Optimization (PSO) 

method is proposed for determining the optimal parameters of 

first-order controllers. The results show that the proposed 

controller can perform an efficient search for the optimal 

parameters. The simulation with NS-2 simulator shows that 

the proposed PSO/first-order controller has better 

performance than first-order controller and Hollot‟s PI control 

scheme. 
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