
International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

25

Object Serialization: A Study of Techniques of
Implementing Binary Serialization in C++, Java and .NET

Clarence J M Tauro
Centre for Research,

Christ University
Hosur Road, Bangalore,

India

N Ganesan

Director (MCA), RICM

Bangalore, India

Saumya Mishra
Dept. of Computer

Science
Christ University

Anupama Bhagwat
Dept. of Computer Science

Christ University

ABSTRACT

The process of converting a data structure or object state into

a storable format is referred to as serialization. The

resurrection of the stored data in the same or another

computer environment is referred to as deserialization. Binary

Serialization is converting the object in binary format and

being able to store it in a storage medium. Many

programming languages provide interfaces for serializing

which can be implemented by our object classes that we want

to serialize. Serialization and deserialization can hence be

attained by writing codes for converting a class object into

any format which we can save in a hardware and produce

back later in any other or the same environment.

This paper describes how serialization is performed in

different programming languages. It gives a clear picture on

how to create classes and objects which need to be serialized

implementing the different build-in interfaces provided within

languages. Binary Serialization is one of them. In this paper

we explain how binary serialization of objects is done in C++,

Java and .NET.

1. INTRODUCTION
We often find ourselves in a situation where we need to

store the state of an object beyond the life of the application in

which it is used. To accomplish this goal, we use a technique

called as object serialization. During this process, the name of

the class, the public and private fields of an object, the

assembly containing the class, are converted to a stream of

bytes, which is then written to a data stream [1]. This is

serialization of an object to a storage medium. This object may

be deserialized when and where required; when deserialized, it

produces the exact clone of the object that was created.

Serialization helps encrypt data and transmit it through a

network. For example, there are algorithms proposed for RSA

cryptography. Cookies, after being serialized into binary array

and encrypted with RSA, may be transmitted in the Web

Service framework [1].

Binary serialization means the state of the object is stored on

storage medium in binary format. While serializing of an

object, the details of the object are converting into binary
format which hence contains a stream of bytes. This stream of

bytes can be stored on some storage media like disks or sent

through the network to another system. The object may be later

required to be created in a different environment or a different

computer, the same binary bit stream, at this point, may be

converted back on the basis of some logic and used to create a

replica of the same object. This process of serializing an object

may also be known as marshaling or deflating. The process of

extracting a data structure from a series of bytes

is deserialization [2]. The basic mechanism of binary

serialization is hence to flatten the object(s) into a one-

dimensional stream of bits and turn this stream of bit back to

recreating a clone of the same object. Different programming

frameworks have implemented and provided different

serialization techniques.

When you apply the Serializable custom attribute to a type, all

instance fields of the class (public, private, protected) are

serialized automatically. When we serialize a class, the objects

of the references to other classes that are contained in this class

are also serialized if they are marked as serializable. All

members are serialized, including public, private or protected

members. Furthermore, even circular references are supported

by binary serialization.

The two most important reasons are, to persist the state of an

object to a storage medium so an exact copy can be re-created

at a later stage, and to send the object by value from one

application domain to another.

2. PROGRAMMING LANGUAGE

SUPPORT
There are several programming languages which directly

support serialization. Few of such languages are Ruby, Java,

C#, C++, Objective-C, Python, Smalltalk, .NET families of

languages, and PHP. These different languages may have

different ways of implementing serialization in their class

objects. They may get it implemented by providing predefined

interfaces for serialization and deserialization which may be

re-used and inherited from the new classes that user creates

for the objects to be serialized. There may be some other ways

of implementing serialization/deserialization in programming

languages.

2.1 Binary Serialization in .NET
.NET Framework provides a robust mechanism of

implementing serialization and also important features which

allow a user to customize the process according to his/her

needs.

The Common Language Runtime (CLR) engine manages the

way the objects are stored in memory and the .NET

Framework provides an automated serialization mechanism

by using reflection. Reflection means the description of

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

26

classes and their members[9]. The name of the class, the

assembly, all the data members of the class instance are

written to storage upon serialization of an object. We may

create object of classes which has dependencies i.e. it has

references to other instances in member variables; hence there

is a serialization engine which tracks all the referenced objects

to ensure that the same object is not serialized twice. The only

requirement is that the object should be marked as

Serializable.

 For a class to be serializable it must have the attribute
SerializableAttribute set and all its members must

also be serializable, except if they are ignored with the attribute

NonSerializedAttribute. However, the private and

public members of a class are always serialized by default.

 The SerializationAttribute is only used for binary

serialization. The code in Figure 1 shows the usage of

SerializableAttribute [2].

Figure 1: Class SClass Serializable

If this attribute is not set in the class and we try to serialize it,

the CLR throws SerializationException.

The code snippet in Figure 2 shows how an object can be

serialized in binary format.

Figure 2: Serialization of object sobj

Serialization may be:

 Binary Serialization

 SOAP Serialization

 XML Serialization [8]

The code snippet in Figure 2 shows an example of Binary

Serialization. It uses class BinaryFormatter to do

the binary serialization. We need to create instances of Stream
and Formatter that we want to use and then call „Serialize‟

method on the formatter. We need to pass the stream and

object to be serialized as parameters to this method call. All

member variables of the object are serialized including the

private members into binary form.

The BinaryFormatter class provides support for

serialization using binary encoding. The

BinaryFormatter class is responsible for binary

serialization and is used commonly in .NET's remote

technology.

Code snippet in Figure 3 shows deserialization of the same

example.

Figure 3: Deserialization

If we need to decide what fields to serialize and how the

serialization actually occurs, we may implement the interface
ISerializable in our class. We need two things to do

that.

1. Constructor that is overridden and can handle the

Deserialization process

2. GetObject method that tracks about which data is

serialized [2].

The code snippet in Figure 4 illustrates this.

Figure 4: Use of Constructor and GetObject method

When GetObjectData is called during serialization, we

would be responsible for populating

the SerializationInfo object provided with the method

call. Both GetObjectData as well as the special

constructor should be implemented

when ISerializable is added to a class.

2.2 Binary serialization in Java
Java has built-in mechanisms for serialization and

deserialization of objects in binary format. In Java, we can

serialize and deserialize any object that implements the

java.io.Serializable interface [3]. Java provides a set of

interfaces and classes for carrying out binary serialization and

deserialization of objects.Java serialization is primarily used

to write an object into a stream, which can easily be

[Serializable]

public class SClass {

 public int a = 0;

 public String str = null;

}

SClass sobj = new SClass();

sobj.a = 1;

sobj.str = "String";

IFormatter formatter = new BinaryFormatter();

Stream stream = new FileStream("MyFile.bin",

FileMode.Create, FileAccess.Write,

FileShare.None);

formatter.Serialize(stream, sobj);

stream.Close();

IFormatter formatter = new

BinaryFormatter();

stream1 = new FileStream("MyFile.bin",

FileMode.Open, FileAccess.Read,
FileShare.Read);

SClass sobj2 =

(SClass)formatter.deserialize(stream1);

 stream1.Close();

public class Employee :ISerializable

{

private int emp_no;

private string name;

protected TestData(SerializationInfo

info,StreamingContext context)

 {

 this.emp_no = info.GetInt32("emp_no");

 this.name = info.GetString("name");

 }

void ISerializable.GetObjectData(Serializat

ionInfo info, StreamingContext context)

 {

 info.AddValue("emp_no", this.emp_no);

 info.AddValue("name", this.name);

 }

}

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

27

transported through a network after being serialized so that it

can be rebuilt again.

Java API provides us with the below tools needed to serialize

and deserialize an object as follows :

 Interface Serializable

 Class ObjectOutputstream

 Class ObjectInputStream

In order to serialize an object in Java, the marker interface
Serializable should be implemented by the class of the

object or it should inherit a Serializable class.
Serializable interface does not have any methods or

attributes. It is used to identify the class which implements it

as a Serializable class.[7]

While serializing an object, the class
ObjectOutputStream should be implemented as this

allows an object to be serialized in binary form using the

method writeObject() [4]

Figure 5: Implementation of Serializable Interface

The code snippet in Figure 5 creates a class Employee with

attributes name and id .The class Employee implements the

interface Serializable [6].

The Code in Figure 6 serializes an object of class Employee

in binary form.

Figure 6: Serialization of object e1

Here, serialization is being done in the file test.serial.

The method writeObject() of ObjectOutputStream

class writes the Serializable object e1 to binary data

stream.

Deserialization is also as easy to implement. We need to use

the method readObject() in class

ObjectInputStream. To deserialize the object from

binary stream to the object instance, we need to create an

object of ObjectInputStream. [3]

Figure 7: Deserialization from test.serial file

We would then assign the values to a new object e2 created as

shown in above figure.

Java provides a simple method to serialize and deserialize

objects if knowing the correct approach and can be easily

included in their code by developers.

 Serialization is also supported in an object oriented Java

processor like jHISC. The relevance of serializing an object

confines to situations when an object has to be sent over

network or stored as a persistent object. Serialization may also

be attained in applications of mobile devices [5].

2.3 Binary Serialization in C++
In C++, the binary serialization is done by using objects of

ifstream class. Binary Serialization in C++ is not supported by

standard classes, like in Java and .NET [9]. So it is a bit

complicated using C++. Here we are storing the value of

attribute Rollno in a file in binary format using ofstream

object and then retrieving the value in another object. This is

shown in the program below[2].

Figure 8: Defining serializable class

import java.io.Serializable;

public class Employee implements

Serializable {

static private Final long serialVersionUID =

6L;

private String name;

private Integer id;

public Employee(String name,Integer a) {

this. name = name;

this. a = a;

 }

 }

Employee e2;

FileInputStream flinpstr = new

FileInputStream("test.serial")

ObjectInputStream objinstr= new

ObjectInputStream(flinpstr);

e2 = (Employee) objinstr.readObject();

try{

Employee e1 = new Employee("Saumya",

100);

FileOutputStream flotpt = new

FileOutputStream("test.serial");

ObjectOutputStream objstr= new

ObjectOutputStream(flotpt);

try {

objstr.writeObject(e1);

objstr.flush();

}

finally {

//close of flow

try {

objstr.close();

} finally {

 flotpt.close();

 }

}

}

#include <iostream> //iostream

#include <fstream> //fstream

#include <string> //string

using namespace std;

class TestBinary {

private:

int rollno;

public:

TestBinary(int rno) : value(rno) { }

TestBinary () {

rollno = 0;

}

int getRollno() {

return rollno;

}

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

28

We have declared a class called TestBinary with private

attribute rollno and constructors. In the main function

below we are creating object of the class TestBinary by

passing value to the constructor. We display the value using

getRollno () function

Figure 9: Main function to serialize object write

We create object of class ofstream and open the file
binary.txt for output in binary mode. We then write the

value to the file using write () function of ofstream
class.

This way we can store the value of attributes in a file and if

needed store it on storage device or sent through the network

to another system.

Figure 10: Closing the file

Once we serialize the object, the file needs to be closed using

close () function of ofstream class.

In order to deserialize, we read the value from binary.txt

file using read() function of ifstream class and then

displaying it using getRollno() function of
TestBinary class.

In this way we can retrieve the stored value of attributes into

the object and use it in our programs. This is illustrated in the

code snippet in Figure 11.

Figure 11: Deserialization of object write

3. CONCLUSION
Object Serialization using the technique binary serialization

proves to be an effective mechanism of flattening objects of

classes into binary streams in order to communicate them to a

different system/network. Binary serialization is much more

efficient than any other form of serialization because it saves

memory and bandwidth and also the system processing time.

It is much more compact. The facility of serialization and

deserialization of an object has been provided in different

languages using implementation of various built-in interfaces

and classes defined for serialization and

deserialization.Languages like C++, ASP.NET and Java

provide simple interfaces and classes to serialize objects.

4. ACKNOWLEDGMENTS
 We are heartily thankful to Prof. Jibrael Jos and Prof. Joy

Paulose, Department of Computer Science, Christ University,

without whose support and supervision this task would have

been very difficult. We would also like to thank our friends

and family members who helped us a great deal by giving

useful suggestions and timely support.

5. REFERENCES
[1] Guanhua Wang;, “Application of serialization enhanced

SSO system” 2011 IEEE International Conference

on Computer Science and Automation Engineering

(CSAE).

[2] MicrosoftTM Developers Network

“http://msdn.microsoft.com/en-

us/library/72hyey7b(v=vs.71).aspx” (accessed on Feb

10, 2012)

[3] Opyrchal, L.; Prakash, A.; ,"Effective Object

Serialization in Java", 19th IEEE International

Conference on Distributed Computing Systems

Workshops on Electronic Commerce and Web-based

Applications/Middleware, 1999.

[4] Java™ObjectSerialization Specification, Revision 1.4.4,

http://java.sun.com/j2se/1.4/pdf/serial-spec.pdf.

(accessed on Feb 14, 2012)

[5] Ross, J.C.; Chandran, P , “Object Serialization support

for object oriented java processors” International

Symposium on Information Technology, 2008. ITSim

2008.

[6] Oracle Sun Developer Network(SDN)

"http://java.sun.com/developer/technicalArticles/Program

ming/serialization/” (accessed on Feb 14, 2012)

cout<<"*Closing File Stream...n"<<endl;

out.close();

cout<<"*Attempting to Read Object From

File..."<<endl;

TestBinary read(1);

ifstream in("binary.txt", ios::binary);

in.read((char*)&read, sizeof(read));

cout<<"t-Object has value "<<

read.getRollno() <<endl;

}

int main(int argc, char** argv)

{

cout<<"*Creating Test Object..."<<endl;

TestBinary write(123);

cout<<"t-Object has value "<<

write.getRollno() <<endl;

TestBinary operator=(int rno)

{

if(rollno == rno)

return *this;

rollno = rno;

return *this;

}

TestBinary operator=(TestBinary t)

{

if(rollno == t.rollno)

return *this;

rollno = t.rollno;

return *this;

}

};

cout<<"*Attempting to Serialize

Object..."<<endl;

ofstream out("binary.txt", ios::binary);

out.write((char*)&write, sizeof(write));

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4625945
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4625945
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4625945

International Journal of Computer Applications (0975 – 8887)

Volume 45– No.6, May 2012

29

[7] Kazuaki Maeda; " Comparative Survey of Object

Serialization

Techniques and the Programming Supports”, World Academy

of Science, Engineering and Technology 60 2011

[8] C Sharp Corner "http://www.c-

sharpcorner.com/interviews/Answer/499/ what-is-

serialization-in-net-types-of-serialization-and-wh”

(accessed on Feb 20, 2012)

[9] Axel Naumann; Philippe Canal"C++ and

Data”,Proceedings of Science, FERMILAB-CONF-08-

692-CD

